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Abstract

Vision-language models pre-trained at large scale have
shown unprecedented adaptability and generalization to
downstream tasks. Although its discriminative potential
has been widely explored, its reliability and uncertainty are
still overlooked. In this work, we investigate the capabil-
ities of CLIP models under the split conformal prediction
paradigm, which provides theoretical guarantees to black-
box models based on a small, labeled calibration set. In
contrast to the main body of literature on conformal predic-
tors in vision classifiers, foundation models exhibit a par-
ticular characteristic: they are pre-trained on a one-time
basis on an inaccessible source domain, different from the
transferred task. This domain drift negatively affects the
efficiency of the conformal sets and poses additional chal-
lenges. To alleviate this issue, we propose Conf-OT, a trans-
fer learning setting that operates transductive over the com-
bined calibration and query sets. Solving an optimal trans-
port problem, the proposed method bridges the domain gap
between pre-training and adaptation without requiring ad-
ditional data splits but still maintaining coverage guaran-
tees. We comprehensively explore this conformal predic-
tion strategy on a broad span of 15 datasets and three non-
conformity scores. Conf-OT provides consistent relative im-
provements of up to 20% on set efficiency while being ×15
faster than popular transductive approaches. We make the
code available 1.

1. Introduction

Deep learning is currently undergoing a paradigm shift
with the emergence of large-scale vision-language models
(VLMs), such as CLIP [49]. These models, which are
trained on a massive amount of paired language and im-
age data leveraging contrastive learning techniques, have
demonstrated unprecedented zero-shot capabilities on a
wide array of downstream visual tasks, including classi-
fication [44, 49], object detection [33, 41], segmentation

1https://github.com/jusiro/CLIP-Conformal

[31, 36] or image synthesis [52], among many others. In-
spired by the transferability power of VLMs, many ef-
forts have focused on improving the discriminative per-
formance of CLIP during adaptation to downstream tasks
[18, 20, 26, 34, 56, 72, 74, 75].

Following their remarkable performance on general
computer vision tasks, VLMs, and more particularly CLIP,
are becoming increasingly popular in safety-critical sce-
narios, such as autonomous driving and medical imaging
[32, 35, 54, 57]. Therefore, ensuring the reliability of model
predictions is paramount for the safe deployment of these
models in real-world applications, particularly considering
their increasing adoption. Nevertheless, this crucial aspect
has often been overlooked in the literature, with only a
handful of recent works exploring the uncertainty of CLIP
predictions from a calibration standpoint [42, 45, 55, 60].

Albeit popular, confidence calibration methods lack the-
oretical guarantees of the actual model performance. For
example, these cannot estimate the most likely output (or
set of outputs) and provide a verified probability of such
prediction being correct. A principled solution is to quan-
tify the uncertainty via conformal prediction (CP) frame-
works [1, 46, 48, 53, 66], which has experienced a growing
interest in more traditional machine learning models. CP
provides confidence guarantees by yielding prediction sets
that contain the correct label with a desired coverage level,
e.g., they can ensure that the true category will be part of
the predictive sets, on average, 95% of the time. Particu-
larly, split conformal prediction [46, 66] provides a practical
scenario to incorporate such marginal guarantees to black-
box models by leveraging a small calibration set, which is
assumed to be, at least, exchangeable with respect to test
data [66]. With the growing interest in the trustworthiness
of machine learning systems, many works have explored CP
on classical image classification benchmarks [2, 13, 25, 59],
including ImageNet [11] or CIFAR [28] datasets. For exam-
ple, these works have focused on proposing novel criteria
to create the predictive sets (non-conformity scores in con-
formal prediction literature) with improved efficiency [39],
adaptiveness [2, 51], or conditional coverage [13].

Building on these observations, this work explores how
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(a) Conformal prediction in VLMs (b) Transfer learning and exchangeability.

Figure 1. How to transfer black-box VLMs without breaking exchangeability? In this work, we explore split conformal prediction
(SCP) for VLMs (see (a)) to provide trustworthiness guarantees. These zero-shot models typically undergo adaptation to enhance their
performance. However, leveraging the SCP calibration data for adaptation breaks the exchangeability assumption [66], which produces
miss-coverage during inference (see (b)). We propose a transductive, unsupervised transfer to overcome such challenges, coined Conf-OT.

conformal prediction can be integrated into vision-language
models to enhance their reliability while maintaining a
competitive performance. Indeed, vision-language foun-
dation models are promising black-box predictors, as
evidenced by the existing literature [40, 49]. Nevertheless,
their zero-shot predictive performance depends on the
source data distribution and concept frequency [61]. Thus,
they usually require an adaptation stage when severe
domain gaps exist in the target tasks w.r.t. the pre-training
data assembly. This adaptation can be performed with
efficient linear probing solutions [34, 56]. However,
this situation is problematic in the conformal prediction
framework. In particular, if adjusting these classifiers using
a few labeled examples, e.g., in a calibration set gathered
for conformal prediction, the testing data scores may not
be exchangeable w.r.t. calibration. Hence, the theoretical
guarantees of conformal prediction will not hold, as illus-
trated in Fig. 1(b). This motivates the following question:
can the performance of VLMs in conformal settings be
improved via transfer learning without additional data
sources beyond the calibration set?2

The main contributions of this paper can be summarized as:
• We introduce the split conformal prediction framework

for large-scale pre-trained vision-language models, pro-
viding trustworthiness guarantees on the zero-shot pre-
dictions based on a small labeled calibration set.

• In contrast to the main corpus of recent literature in com-
puter vision, which explores the CP framework using spe-
cialized models, VLMs are pre-trained on a generalist, in-
accessible source domain, different from the downstream
task and data distribution. To address this challenge,
we propose Conf-OT, an unsupervised transfer learning
framework that reduces the domain gap while maintain-
ing coverage guarantees. Concretely, the proposed trans-
ductive strategy aims to solve the optimal transport prob-
2An additional labeled few-shot adaptation set could be introduced,

thus keeping calibration data exchangeable to future queries. Nevertheless,
demanding more labeled data might be unrealistic in practice, e.g., in crit-
ical scenarios such as detecting rare, low-prevalence diseases [17, 30, 54].

lem on the joint calibration and query text-driven similar-
ity matrix, producing a code assignment that respects the
marginal properties of the target distribution.

• We provide extensive experiments to assess the perfor-
mance of popular non-conformity scores atop black-box
predictions produced by CLIP models, including 15 pop-
ular image classification benchmarks. The results demon-
strate the effectiveness of Conf-OT to improve the set size
efficiency and class-conditional coverage.

• Notably, upon the standard black-box conformal predic-
tion paradigm, Conf-OT substantially outperforms recent
transductive methods in the literature — even in the dis-
criminative aspect — yet being a training-free approach,
which requires minimal computational overhead.

2. Related work
Zero-shot and transfer learning in VLMs. Contrastive
VLMs such as CLIP models exhibit outstanding general-
ization capabilities [49], and enable zero-shot image classi-
fication without adaptation [40], despite being notably more
accurate when concepts are represented during pre-training
[61]. The latter limitation has directed the community to-
ward developing data-efficient adaptation techniques, usu-
ally under the few-shot paradigm [18, 20, 26, 34, 56, 74,
75]. Particularly, efficient black-box Adapters, which only
require embedded representations [18, 26, 34, 56, 74], are
playing a pivotal role in this topic. The best results are
obtained through advanced linear probing techniques that
combine text-driven class prototypes with few-shot visual
information [26, 34, 56]. As stated earlier, the reliability of
these models remains less explored, with just a few recent
works assessing the calibration aspect of VLMs [42, 55].
In contrast, our work focuses on a more principled frame-
work for uncertainty quantification of VLMs outputs. To
the best of our knowledge, there has been limited explo-
ration of predictive uncertainty in vision-language models
from a conformal prediction standpoint.
Transductive adaptation for image classification. A di-
rection to improve pre-trained models consists of leverag-
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ing the shared information of unlabeled test data, so-called
transduction — in contrast to its more extended inductive
counterpart, which makes independent predictions for each
new data point. The first setting usually reports notable
performance gains over the second [5], at the cost of addi-
tional test-time computation. Several transductive methods
fine-tune the whole encoder [12, 67], whereas others pro-
mote lightweight black-box adaptation [5, 38, 73, 76]. The
latter usually adjusts the class-wise prototypes in the fea-
ture space by exploiting mutual information on the query
set [5, 62], or optimal transport [76]. Regarding VLMs, its
transductive adaptation has been less explored, with only a
few recent works [38, 73] focusing on the discriminative as-
pect. For example, [38] develops a solution for small tasks
modeling the target data through a Dirichlet probability dis-
tribution, while TransCLIP [73] integrates a KL-divergence
into a GMM clustering that encourages the predictions not
to deviate from the textual prototypes.
Conformal prediction in vision classifiers. Conformal
prediction is a framework for uncertainty quantification that
produces statistically valid predictive regions [1, 46, 48,
53, 64]. This work focuses on split conformal prediction
[46, 66], a resource-efficient, practical setting that allows
conformalizing any black-box classifier. In particular, given
a trained model that outputs logit predictions, it assumes
access to a fresh labeled calibration set exchangeable [66]
with testing data. This data is exploited to find a confidence-
specific threshold from a non-conformity score, which is
later employed for creating predictive sets with theoretical
guarantees over such confidence level. To this end, differ-
ent scores have been proposed [2, 39, 51]. Least Ambigu-
ous Classifier, a.k.a. LAC [39] creates predictive sets by di-
rectly using the raw class probabilities. Adaptive Prediction
Sets (APS) [51] computes the score by accumulating the
sorted softmax values in descending order, and its regular-
ized extension RAPS [2] tames the tail by enforcing small
sets integrating explicit penalties.

Prior art on split conformal prediction has been validated
on vision classification tasks [2, 9, 15, 51, 59, 69]. Nev-
ertheless, these evaluations assume narrow scenarios, us-
ing specialized (only-vision) models, usually trained with
a large corpus of data in-distribution w.r.t. calibration/test.
This focus significantly differs from the current emerging
paradigm in vision, driven by large-scale pre-training using
VLMs, which are transferred to a broad corpus of down-
stream tasks [18, 49, 75]. Note that this zero-shot setting
does not affect the coverage guarantees of split conformal
prediction, which are distribution-free, but might hamper
the efficiency and, hence, the usability of the produced sets.
Transduction in conformal prediction has been classi-
cally linked to full conformal prediction [1, 48, 53, 65].
However, this framework — see Appendix A — differs
from the split setting addressed in our work. Particularly,

it does not consider access to a calibration set. Instead, it
evaluates each test data-label pair conformity by resorting
to multiple model fits. It is worth noting that leveraging test
data distribution is not exclusive to full conformal methods.
For example, [19] explores a transfer learning scenario with
a domain shift between train and calibration/test under the
split conformal prediction umbrella. Particularly, the au-
thors study a transductive strategy to reduce the domain gap
during training, from which we draw inspiration. Never-
theless, the scenario in [19] assumes access to the source
training data and requires training the base model, which
drastically differs from our focus on foundation models.

3. Background
3.1. Zero-shot models
Contrastive vision-language pre-training. Large-scale
VLMs, such as CLIP [49], are trained on large heteroge-
neous datasets to encode similar representations between
paired image and text information. CLIP comprises a vision
encoder, fθ(·), and a text encoder, fϕ(·). These encoders
project data points into an ℓ2-normalized D-dimensional
shared embedding space, yielding the corresponding visual,
v ∈ RD×1, and text, t ∈ RD×1, embeddings.
Zero-shot inference. For a particular image classification
task, CLIP-based models can provide predictions based on
the similarity between category prompts, i.e., text descrip-
tions for the new categories, and testing images. Given a
set of K classes and an ensemble of J text prompts for
each one, {{tkj}Jj=1}Kk=1, a common practice is to obtain a
zero-shot prototype for each target category by computing
the center of the ℓ2-normalized text embeddings for each
class, tk = 1

J

∑J
j=1 tkj . Thus, for a given query image, the

zero-shot prediction, p̂ = (p̂k)1≤k≤K , is obtained from the
softmax cosine similarity between its vision embedding, v,
and category prototypes tk:

p̂k =
exp(v⊤tk/τ

CLIP)∑K
i=1 exp(v

⊤
i ti/τ

CLIP)
, (1)

where lk = (v⊤tk/τ
CLIP) are the logits. Note that v⊤t is

the dot product, equivalent to cosine similarity, as vectors
are ℓ2-normalized. Thus, logits are similarity measures for
each sample to the textual class prototypes scaled with τ CLIP,
a temperature parameter learned during the pre-training.

3.2. Conformal prediction
Preliminaries. Let us denote the black-box scores for an
input image space of a zero-shot model, e.g., CLIP outputs
in Eq. (1), as X ⊂ R1×K . Also, we denote their corre-
sponding label space, Y = {1, 2, ...,K}, and (x, y) as a
random data pair sampled from a joint distribution PXY .
Split conformal inference. To provide trustworthiness on
the outputs of a machine learning model, conformal pre-
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diction [66] aims to produce predictive sets containing the
ground truth label with a user-specified probability. For-
mally, the goal is to construct a set-valued mapping C :
X → 2K , from a model output such that:

P(Y ∈ C(x)) ≥ 1− α, (2)

where α ∈ (0, 1) denotes the desired error rate (e.g., 10%),
and C(x) ⊂ Y is the prediction set. This is denoted as the
coverage guarantee, and is marginal over XY .

Split conformal prediction [46] assumes a practical set-
ting for black-box models, enabling deploying coverage
guarantees for any predictor [29]. First, it grants access to
a labeled calibration subset Dcal= {(xi, yi)}Ni=1. Second, it
assumes that the test data, Dtest= {(xi)}N+M

i=N+1, are i.i.d. or
exchangeable [66] fresh data points, not used for training.
First, the split conformal prediction process starts by defin-
ing a non-conformity score si = S(xi, yi) for each calibra-
tion sample, where si is a measure of deviation between an
example and the training data, which we will specify later.
Second, the 1-α quantile of the non-conformity score is de-
termined from calibration data, which will serve as a confi-
dence threshold to satisfy a given coverage:

ŝ = inf
[
s :

|i ∈ {1, ..., N} : si ≤ s|
N

≥ ⌈(N + 1)(1− α)⌉
N

]
.

(3)

Third, for each testing sample, the non-conformity score for
each label is calculated. The prediction set comprises labels
whose non-conformity score falls within ŝ:

C(x) = {y ∈ Y : S(x, y) ≤ ŝ}. (4)

Non-conformity scores. Different criteria have been pro-
posed, aiming to produce small (a.k.a. efficient) sets but able
to model adaptiveness, e.g., larger predictive for uncertain
test points. For the first, LAC [39] tends to produce the
smallest possible predictive sets, while for the latter, adap-
tive scores such as APS [51] and RAPS [2] are popular op-
tions in vision. These are introduced in Appendix B.
Black-box setting. The standard split conformal prediction
setting deployed in vision tasks [2, 13, 69] usually takes as
input the raw logits produced by the base model, li, and
contemplates the possibility of controlling the sharpness of
its distribution, e.g., by using temperature scaling [2, 69]
before producing softmax scores, i.e., pi = σk(li/τ), being
σ(·)k the softmax activation, and τ a temperature parameter.
Once the classwise probabilities are obtained, these are used
as input for computing non-conformity scores, i.e., xi = pi.

4. Proposed solution
4.1. Conformal prediction in zero-shot models
Motivation. Prior art in conformal prediction for vision
[2, 13, 25, 59] assumes access to specialized black-box

models pre-trained on a training subset drawn from the
same data distribution as calibration and test. Nevertheless,
this scenario is unrealistic when transferring cutting-edge
foundation models, particularly zero-shot VLMs. These are
pre-trained on multiple tasks from inaccessible source data
that differs from the target domain.
Transfer learning setting. Let us assume a scenario in
which a black-box model from a source domain, Dtrain,
produces logits for a set of target categories. Also,
for a new task, there exists a labeled calibration set
Dcal= {(li, yi)}Ni=1, and unlabeled testing data, Dtest=
{(li)}N+M

i=N+1, and we aim to create conformal predictive
sets. Importantly, Dcal and Dtest are exchangeable distribu-
tions from a target domain, which are different from Dtrain.
Problem statement. The first measure to produce efficient
sets is to learn a transfer function from the source to the
target domains. One naive option would involve leveraging
Dcal supervision to adapt the black-box outputs, e.g., fol-
lowing few-shot adaptation literature [18, 56]. Nonetheless,
it is crucial to consider the final conformal predictive sce-
nario. As shown in Fig. 1(b), modeling the logit distribution
to maximize the likelihood of label assignment using such
labels would break the exchangeability assumptions.

4.2. Transductive conformal prediction
We propose a transfer learning strategy, which is: i) unsu-
pervised, i.e., does not directly rely on label supervision,
and ii) transductive, i.e., calibration and test (queries in the
transductive literature) data points are jointly transferred.
Thus, the proposed setting avoids introducing any distribu-
tional shifts that could potentially break the exchangeability
assumption required in conformal prediction.
Optimal transport for transfer learning. We lever-
age well-established knowledge in optimal transport (OT)
[10, 63] to learn a joint mapping from source to target do-
main in the label assignments in an unsupervised manner.
Such technical choice is motivated by the capabilities of OT
to produce assignments that respect, for instance, a given
label-marginal distribution — estimated from the calibra-
tion set — thus reducing potential domain drifts. Our ap-
proach, coined Conf-OT, is detailed in Algorithm 1, and
we describe each component below.

Learning objective. Let us consider the combined calibra-
tion and test sets, which are integrated into a similarity ma-
trix, S ∈ RK×(N+M). Each column represents the simi-
larities to each category prototype, i.e., the logits of a given
sample, li, extracted as detailed in Sec. 3.1. Our goal is to
find the joint probabilities matrix, Q ∈ RK×(N+M)

+ , typi-
cally referred to as codes, which maximizes the similarity
assignment. Note that each column in Q, i.e., qi, is the
prototype assignment for each sample. To achieve this, we
propose to cast this task as an optimal transport problem,
introducing marginal constraints for the expected target dis-
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tribution. Formally, the search problem can be defined as:

max
Q∈Q

tr(Q⊤S), (5)

where the matrix Q is relaxed to be an element of the trans-
portation polytope:

Q = {Q | Q1(N+M) = m,Q⊤1K = u(N+M)}, (6)

such that 1(·) denotes a column vector of ones, and u(·) an
uniform distribution, being (·) the input vector length. In
this element, m and u(N+M) determine the marginal dis-
tributions expected in the target domain. First, u(N+M) =

1
(N+M)1(N+M), is the sample-conditional marginal distri-
bution, which is expected to be uniform to distribute the
total similarity across all data points evenly. On the other
hand, m, is the label-marginal distribution of the class
assignments. Despite using a uniform distribution m =
uK = 1

K1K has provided satisfactory results on different
computer vision tasks [3, 7], in our scenario, we constrain
the solution to respect the observed label-marginal distri-
bution on the calibration set, such that m = 1

N

∑N
1 yohe

i ,
where yohe

i is the one-hot encoding of yi.
Optimization. The objective in Eq. (5) is a linear program.
However, its optimization is not straightforward, particu-
larly regarding the computational complexity, exacerbated
by increasing data points and categories. To alleviate this
issue and provide a fast adaptation strategy, we resort to the
Sinkhorn algorithm [10], which integrates an entropic con-
straint, enforcing a simple structure on the optimal regular-
ized transport. Hence, the optimization problem becomes:

max
Q∈Q

tr(Q⊤S) + εH(Q), (7)

where H(Q) is the entropy, H(Q) = −
∑

ki qki log qki,
such that q are elements of Q, and ε controls its weight.
Now, the soft codes Q∗ are the solution of the problem pre-
sented in Eq. (7) over the set Q, which can be efficiently
optimized with a few iterations as:

Q∗ = Diag(r(t))Q(0)Diag(c(t)). (8)

The renormalization vectors are computed using a small
number of matrix multiplications via the iterative Sinkhorn-
Knopp algorithm, where in each iteration:

r(t) = m/(Q(0)c(t−1)), (9)

c(t) = u(N+M)/(Q
(0)r(t)), (10)

where c(0) = 1(N+M). Also, Q(0) is initialized as Q(0) =
(exp(S/τ)/

∑
(exp(S/τ)), with τ representing a tempera-

ture scaling parameter that controls the strength of the en-
tropic constraint in Eq. (7). Upon convergence, the matrix
Q∗ is normalized to produce soft class assignments that sum
one for each sample, i.e.,

∑
k q

∗
ki = 1(N+M)⊤.

Producing conformal sets through codes. Given the opti-
mized matrix of codes, Q∗, the final step consists of pro-
ducing conformal sets from the obtained soft codes, q∗

i

(columns in Q∗), for each query sample. To do so, calibra-
tion, {(q∗

i
⊤, yi)}Ni=1, and test, {(q∗

i
⊤)}N+M

i=N+1, sets are sep-
arated again. Given an arbitrary non-conformity score, the
predictive sets are created as detailed in Sec. 3.2: i) generat-
ing non-conformity scores from codes for calibration data,
si = S(qi⊤, yi), ii) finding the user-specified 1 − α quan-
tile as in Eq. (3), and iii) creating conformal sets on test data
based on such threshold following Eq. (4).

Algorithm 1 Conf-OT conformal prediction.

1: input: calibration dataset Dcal= {(li, yi)}Ni=1, query
set Dtest= {(li)}N+M

i=N+1, non-conformity score function
S , error level α, entropic weight τ , iterations T .
// Block 1. - Transductive transfer learning.
// Step 1.1. - Init. optimal transport problem.

2: S ∈ RK×(N+M) = [lki]
k=K,i=N+M
k=1,i=1 // Sim. matrix.

3: m = 1
N

∑N
1 yohe

i // Label-marginal.
4: u(N+M) =

1
(N+M)1(N+M) // Sample marginal.

// Step 1.2. - Compute renormalization vectors.
5: Q(0) = (exp(S/τ)/

∑
(exp(S/τ)) // Init. codes.

6: c(0) = 1(N+M) // Init. renormalization vector.
7: for t in [1, . . . , T ] do
8: r(t) = m/(Q(0)c(t−1)) // Eq. (9).
9: c(t) = u(N+M)/(Q

(0)r(t)) // Eq. (10).
10: end for

// Step 1.3. - Compute codes.
11: Q∗ = Diag(r(T ))Q(0)Diag(c(T )) // Transport codes.
12: Q∗ = Q∗Diag(1/

∑
k q

∗
ki) // Normalize.

// Block 2. - Conformal prediction.
13: Dcal= {(q∗

i
⊤, yi)}Ni=1, Dtest= {(q∗

i
⊤)}N+M

i=N+1

// Step 2.1. - 1− α non-conformity score quantile.
14: {si}Ni=1 = {S(q∗

i
⊤, yi)}Ni=1 // Non-conformity scores.

15: ŝ← {si}Ni=1, α // Search threshold - Eq. (3).
// Step 2.2. - Create query sets.

16: return: {C(q∗
i
⊤)}Mi=N+1 // Eq. (4).

Efficiency remarks. Immediate concerns might arise re-
garding the computational feasibility of Conf-OT. On the
contrary, it is highly efficient, especially compared to other
transductive pipelines. First, it operates over black-box log-
its, and second, it is training-free, requiring only a few itera-
tions of the Sinkhorn algorithm with commodity resources.
For the most extensive datasets, e.g., ImageNet (K = 1, 000
and (N + M) = 50, 000), the whole procedure requires
only 1.1 seconds of additional overhead compared to its in-
ductive counterpart (running on commodity CPUs). We ex-
tensively study its efficiency in Sec. 5.2 and Appendix G.6.
Its robustness to different data ratios for calibration samples
and query batch sizes is explored in Appendix G.7.
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5. Experiments

5.1. Setup

Datasets. In this work, we leverage CLIP’s zero-shot ca-
pabilities to deploy a large-scale benchmark of conformal
inference strategies across a wide corpus of 15 datasets.
Note that the main body of literature on conformal inference
in vision [2, 51, 59, 69] is deployed on narrower scenar-
ios using specialized models. In contrast, we use standard
datasets for CLIP’s zero- and few-shot adaptation, which
gathers a heterogeneous number of tasks, from general ob-
jects to action recognition or fine-grained categories in spe-
cialized applications. These are: Imagenet [11], ImageNet-
A [23], ImageNetV2 [50], ImageNet-R [24], ImageNet-
Sketch [68], SUN397 [70], FGVCAircraft [37], EuroSAT
[22], StanfordCars [27], Food101 [4], OxfordPets [47],
Flowers102 [43], Caltech101 [16], DTD [8], and UCF101
[58]. We refer the reader to Appendix C for specific de-
tails on each task. The corresponding test partition from
each dataset is employed for our conformal inference exper-
iments by producing disjoint calibration and testing subsets.
Implementation details. We use CLIP [49] pre-trained
models, using different backbones: ResNet-50 and ResNet-
101 [21], and ViT-B/32, ViT-B/16, and ViT-L/14 [14]. Also,
we experiment with MetaCLIP [71] ViT-B/16 and ViT-H/14
backbones. Unless otherwise indicated, ablation studies are
performed with CLIP ViT-B/16. The text encoder from each
model is used to produce class-wise prototypes for each
downstream category by using standard templates and cat-
egory names [18, 75], e.g., ”A photo of a [CLS].”.
Note that these templates are indicated in Appendix C.
Then, logits for each sample are produced by computing
the temperature-scaled cosine similarity as formalized in
Sec. 3.1. The hyper-parameters of Conf-OT are fixed for
all tasks: the entropic weight is set to τ = 1, and the repeti-
tions in the Sinkhorn algorithm are T = 3.
Baselines. Note that we find no clear candidate for tack-
ling the proposed scenario: training-free black-box trans-
ductive adaptation of CLIP models over the logit space.
Hence, we adjusted prior transductive approaches to op-
erate in the logit space. First, TIM [5] is leveraged as a
general transductive framework based on information max-
imization. Concretely, a modified version to incorporate
the label-marginal distribution obtained from the calibra-
tion set using a Kullback-Leibler (KL) divergence, coined
TIMKL(m̂||m), is employed, as well as a version using a uni-
form prior, TIMKL(m̂||uK). Second, we include the recently
proposed TransCLIP [73], a GMM-based clustering method
specially designed for VLMs. These baselines are formally
introduced in Appendix F.
Conformal prediction algorithms. Three popular non-
conformity scores for classification are assessed. In par-
ticular, we employ LAC [39], and two adaptive approaches,

APS [51], and RAPS [2], to generate prediction sets at er-
ror rates of α ∈ {0.1, 0.05}. We set the hyper-parameters
in RAPS to kreg = 1 and λ = 0.001. These values pro-
vided stable performance in [2]. Even though the authors
in [2] provide different strategies for automatically fixing
these values for set size or adaptiveness optimization, we
avoid using additional validation splits for hyper-parameter
tuning in our experimental setting.
Experimental protocol and metrics. The test subset from
the target datasets is partitioned into equally-sized calibra-
tion and testing, following the standard split strategy in [2]3.
All experiments are repeated 20 times using different ran-
dom seeds. We include discriminative performance met-
rics, such as Top-1 accuracy, and figures of merit typically
employed in conformal prediction settings. Concretely, we
compute the standard coverage (“Cov.”) and average set
size (“Size”), as well as class-conditioned coverage gap
(“CCV”), which was recently proposed as a measure of
adaptiveness [13]. These are formalized in Appendix D.

5.2. Main results
Enhancing SoTA conformal predictors. First, we com-
pare the effect of Conf-OT with the base version of each
non-conformity score using zero-shot predictions, i.e., no
transfer learning. Results in Tab. 1 demonstrate the advan-
tages of the proposed transductive approach to enhance re-
cent conformal inference strategies. Conf-OT provides con-
sistent smaller set sizes for all conformal methods while
maintaining the empirical coverage guarantees for both
α ∈ {0.1, 0.05}. As a figure of its merit, set sizes consis-
tently decrease in a relative ratio of nearly 20% compared
to the base version. Also, class conditional coverage is con-
sistently improved over 0.7 points when α = 0.1 and 0.3
points when α = 0.05. These results underscore the value
of considering the structure of the unlabeled test samples
during prediction to achieve better adaptability across many
categories. Last, it is worth mentioning that the discrimi-
native performance is enhanced notably by 2.6% for CLIP
ResNet-50 and 2.9% for CLIP ViT-B/16. The positive per-
formance of Conf-OT is also observed for additional CLIP
and MetaCLIP encoders, whose results are provided in Ap-
pendix G.1. Results per dataset are in Appendix G.2.
Comparison to transductive baselines. Conf-OT is com-
pared with relevant baselines in Tab. 2. The evaluation ex-
tends not only to the performance but also to the computa-
tional efficiency of such methods. The latter is of special
relevance in the explored application since base conformal
inference methods do not produce considerable overhead
during inference and are designed to operate in real-world
scenarios with limited hardware resources. The figures of
merit in Tab. 2 indicate that Conf-OT requires negligible
additional inference times. Also, Conf-OT requires no spe-

3Experiments using smaller data ratios are in Appendix G.7.
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Method α = 0.10 α = 0.05

Top-1↑ Cov Size↓ CCV↓ Cov. Size↓ CCV↓

CLIP ResNet-50
LAC [39] 54.7 0.900 10.77 9.82 0.950 19.22 5.91

w/ Conf-OT 57.3+2.6 0.900 8.61-2.2 9.15-0.7 0.951 15.53-3.7 5.61-0.3

APS [51] 54.7 0.900 16.35 8.36 0.950 26.50 5.34
w/ Conf-OT 57.3+2.6 0.900 12.94-3.4 7.64-0.7 0.950 20.96-5.5 5.03-0.3

RAPS [2] 54.7 0.900 13.37 8.46 0.950 22.06 5.44
w/ Conf-OT 57.3+2.6 0.900 11.17-2.2 7.72-0.7 0.950 17.24-4.8 5.19-0.3

CLIP ViT-B/16
LAC [39] 63.8 0.899 5.52 10.37 0.950 10.24 6.14

w/ Conf-OT 66.7+2.9 0.900 4.40-1.1 9.48-0.9 0.949 7.99-2.3 5.80-0.3

APS [51] 63.8 0.900 9.87 8.39 0.950 16.92 5.51
w/ Conf-OT 66.7+2.9 0.899 7.64-2.2 7.44-1.0 0.949 12.58-4.3 5.09-0.4

RAPS [2] 63.8 0.900 8.12 8.50 0.950 12.66 5.52
w/ Conf-OT 66.7+2.9 0.900 6.68-1.4 7.48-1.0 0.949 10.11-2.6 5.16-0.4

Table 1. Conf-OT performance atop popular non-conformity
scores, i.e., LAC [39], APS [51], and RAPS [2]. Average perfor-
mance across 15 datasets. “↓” indicates smaller values are better.

cific specialized hardware, as it can run on commodity re-
sources. In contrast, popular transductive methods require
considerable GPU modules and inference times. While be-
ing a much more efficient solution, Conf-OT also excels
in performance. For instance, TIM and TransCLIP dete-
riorate the produced set sizes when using LAC conformal
score. Regarding adaptive scores such as APS and RAPS,
all methods provide improvements over the base version,
with TIMKL(m̂||uK) outperforming Conf-OT when using
APS. We explain this positive performance of TIM+APS
by the effect of the entropy minimization term on produc-
ing higher-confidence predictions, which positively affects
APS [69]. However, such a positive trend is a mirage that
does not hold when evaluated across additional backbones
and coverage rates, as shown in Appendix G.3. Also, none
of the considered methods improve the class-conditional
coverage. Indeed, TransCLIP fails to provide the desired
marginal coverage rate. Its Laplacian regularization term
may cause this, as it is a neighborhood-based term that does
not provide a joint optimization of calibration and test sets.
The limitations of SoTA transductive methods enhance the
qualities of the proposed solution. Conf-OT is a training-
free solution that provides consistently smaller conformal
sets compared to SoTA, maintaining coverage guarantees.
As an additional bonus, Conf-OT also provides the best re-
sult regarding discrimination, i.e., Top-1 accuracy.

5.3. In-depth studies
In the following, we provide additional experiments to ex-
plore the conformal inference on VLMs in a more detailed
manner, as well as key features of the proposed Conf-OT.
Complementary to temperature scaling. Conformal in-
ference is usually related to other uncertainty frameworks,
such as calibration. Notably, previous literature [2] tends to

Method α = 0.10

Top-1↑ T GPU Cov. Size↓ CCV↓

LAC [39] 63.8 0.42 - 0.899 5.52 10.37
TIMKL(m̂||uK ) [5] 64.7+0.9 11.05 8.24 0.899 8.30+2.8 10.41+0.0
TIMKL(m̂||m) [5] 65.0+1.2 11.03 8.24 0.898 7.73+2.2 10.89+0.5
TransCLIP [73] 65.1+1.3 12.00 12.2 0.892 5.76+0.2 11.02+0.7
Conf-OT 66.7+2.9 0.61 - 0.900 4.40-1.1 9.48-0.9

APS [51] 63.8 0.54 - 0.900 9.87 8.39
TIMKL(m̂||uK ) [5] 64.7+0.9 11.16 8.24 0.900 7.24-2.6 9.32+0.9
TIMKL(m̂||m) [5] 65.0+1.2 11.14 8.24 0.900 7.82-2.1 9.38+1.0
TransCLIP [73] 65.1+1.3 12.12 12.2 0.892 8.27-1.6 11.50+3.1
Conf-OT 66.7+2.9 0.72 - 0.899 7.64-2.2 7.44-1.0

RAPS [2] 63.8 0.55 - 0.900 8.12 8.50
TIMKL(m̂||uK ) [5] 64.7+0.9 11.15 8.24 0.900 7.18-0.9 9.32+0.8
TIMKL(m̂||m) [5] 65.0+1.2 11.36 8.24 0.900 7.68-0.4 9.42+0.9
TransCLIP [73] 65.1+1.3 12.12 12.3 0.899 7.17-1.0 10.20+1.7
Conf-OT 66.7+2.9 0.74 - 0.900 6.68-1.4 7.48-1.0

Table 2. Comparison to transductive baselines. Results using
CLIP ViT-B/16 on 15 datasets. “T” refers to runtime in seconds,
and “GPU” to peak memory usage (Gb).

integrate calibration steps such as temperature scaling (TS).
Recently, the authors in [69] explored the impact of temper-
ature scaling on adaptive scores (APS, RAPS), observing
that high-confidence predictions (τ < 1) lead to smaller sets
on average. The Sinkhorn optimal transport solver incor-
porates entropic constraints through a temperature-scaling
parameter (see Algorithm 1), potentially affecting the con-
formal sets. Hence, we consider this aspect to deserve a
specific study. Fig. 2 illustrates the joint effect of TS and
Conf-OT. Results follow the observations in [69]: TS with
τ < 1 improves efficiency in adaptive methods, also when
combined with Conf-OT. Notably, Conf-OT improvements
are orthogonal to the ones produced by simply the sharpness
of the probability distribution since it also controls other as-
pects, e.g., the label-marginal distribution in the overall as-
signment. Thus, while the effect of TS using non-adaptive
scores such as LAC is absent, Conf-OT consistently im-
proves. Based on these observations, we kept τ = 1 for the
entropic constraint weight in Conf-OT to provide a general
framework for all non-conformity scores.
Is the improvement only on the discriminative aspect?
One could argue that the better behavior of Conf-OT is ex-
plained by producing the largest probabilities on the correct
class more often, i.e., discriminative performance, as ob-
served in Top-1 accuracies improvement in Tab. 1. How-
ever, we have observed that this is not the case. For ex-
ample, Fig. 3(a) shows a limited correlation between size
and accuracy across datasets for LAC. Also, Fig. 3(b) illus-
trates an inverse trend when further optimizing the entropic
constraint in adaptive conformal methods. Additionally, al-
though all transductive baselines improve accuracy, they
sometimes do not produce better conformal sets in Tab. 2.
These observations indicate a disjoint behavior between dis-
criminative and conformal inference figures.
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(a) LAC [39] (b) APS [51] (c) RAPS [2]

Figure 2. Entropic constraint (τ ). Conf-OT is compatible with recent observations [69] regarding the positive effect on set size of
temperature scaling (τ < 1) on adaptive scores (b,c). However, such behavior does not generalize to non-adaptive scores, i.e., LAC (a),
whereas Conf-OT improves the performance atop all non-conformity scores. Results using CLIP ViT-B/16 on 15 datasets with α = 0.10.

(a) (b)

Figure 3. Accuracy vs. set size change (∆) using Conf-OT.
(a) Correlation among datasets for LAC [39]. (b) Effect of the
entropic constraint for RAPS [2]. Results using CLIP ViT-B/16 on
15 datasets with α = 0.10. More information in Appendix G.4.

Conf-OT components. The proposed approach presents a
small number of tunable elements. First, as previously dis-
cussed, we fixed the entropic constraint weight to its stan-
dard value, τ = 1. Second, we fixed the number of rep-
etitions in the Sinkhorn algorithm to 3. These are enough
for convergence, as shown in Appendix G.5. Last, Conf-
OT uses the label-marginal distribution of the calibration
set to constrain the optimal transport problem. Tab. 3 pro-
vides figures that showcase the importance of this element.
It is worth mentioning that the potential of accessing this
marginal distribution in transductive settings is not new.
Indeed, oracle scenarios in image segmentation have also
pointed in this direction [6]. Nevertheless, the standard con-
formal inference setting grants access to this information to
ensure the assumption of data exchangeability [66]. The
constraints of the Sinkhorn algorithm excel at efficiently in-
corporating such priors, especially compared to the other
resource-demanding transduction baselines.
Data efficiency. We delve into this aspect of our trans-
ductive strategy in two measures: the calibration data ratio
and robustness to small query sets. Specific numbers are in
Appendix G.7. These demonstrate that the efficiency of the

Method Prior α = 0.10

Top-1↑ Cov. Size↓ CCV↓

LAC [39] 63.8 0.899 5.52 10.37
w/ Conf-OT m = uK 65.5+1.7 0.900 5.32-0.2 9.87-0.5
w/ Conf-OT Ours 66.7+2.9 0.900 4.40-1.1 9.48-0.9

APS [51] 63.8 0.900 9.87 8.39
w/ Conf-OT m = uK 65.5+1.7 0.900 8.72-1.2 7.31-1.1
w/ Conf-OT Ours 66.7+2.9 0.899 7.64-2.2 7.44-1.0

RAPS [2] 63.8 0.900 8.12 8.50
w/ Conf-OT m = uK 65.5+1.7 0.900 7.57-0.6 7.31-1.2
w/ Conf-OT Ours 66.7+2.9 0.900 6.68-1.4 7.48-1.0

Table 3. Role of label-marginal prior (m in Eq. (6)) in Conf-OT.
Results using CLIP ViT-B/16 and averaged over 15 datasets.

sets produced by Conf-OT holds even in the most challeng-
ing scenarios, e.g., using only 10% of data for calibration
or receiving extremely small query sets of 8 or 16 images.

6. Limitations

In this work, we have explored the conformal prediction
framework for zero-shot VLMs. To alleviate the absence
of an adaptation stage, we have introduced a transductive
setting to enhance the efficiency and adaptiveness of any
conformal score by leveraging well-established knowledge
in optimal transport. Our method is effective, but it presents
some limitations. These are inherited from its transductive
and conformal prediction nature. Particularly, it is valid un-
der data exchangeability assumptions to guarantee the de-
sired coverage, like any other conformal prediction method,
and requires additional resources during inference, yet be-
ing ×15 faster than other transductive approaches.
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