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Abstract

With the explosive growth of 3D content creation, there
is an increasing demand for automatically converting static
3D models into articulation-ready versions that support
realistic animation. Traditional approaches rely heavily
on manual annotation, which is both time-consuming and
labor-intensive. Moreover, the lack of large-scale bench-
marks has hindered the development of learning-based so-
lutions. In this work, we present MagicArticulate, an ef-
fective framework that automatically transforms static 3D
models into articulation-ready assets. Our key contri-
butions are threefold. First, we introduce Articulation-
XL, a large-scale benchmark containing over 33k 3D
models with high-quality articulation annotations, care-
fully curated from Objaverse-XL. Second, we propose a
novel skeleton generation method that formulates the task
as a sequence modeling problem, leveraging an auto-
regressive transformer to naturally handle varying num-
bers of bones or joints within skeletons and their inherent
dependencies across different 3D models. Third, we pre-
dict skinning weights using a functional diffusion process
that incorporates volumetric geodesic distance priors be-
tween vertices and joints. Extensive experiments demon-
strate that MagicArticulate significantly outperforms ex-
isting methods across diverse object categories, achieving
high-quality articulation that enables realistic animation.
Project page: https://chaoyuesong.github.io/
MagicArticulate.

1. Introduction
The rapid advancement of 3D content creation has led

to an increasing demand for articulation-ready 3D mod-

els, especially in gaming, VR/AR, and robotics simula-

tion. Converting static 3D models into articulation-ready

versions traditionally requires professional artists to man-

ually place skeletons, define joint hierarchies and specify

skinning weights, which is both time-consuming and de-

mands significant expertise, making it a major bottleneck in
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modern content creation pipelines.

To address these issues, various automatic approaches

for skeleton extraction have been proposed, which can be

categorized into template-based [3, 19] and template-free

methods [2, 14, 34, 35]. Template-based methods, like

Pinocchio [3], fit predefined skeletal templates to input

shapes. While they achieve satisfactory results for specific

categories like human characters, they struggle to generalize

to objects with varying structural patterns. Moreover, these

methods mostly rely on distance metrics between joints and

vertices for skinning weight prediction, which often fail on

shapes with complex topology. Many template-free meth-

ods [2, 4, 14, 21, 29] extract curve skeletons from meshes

or point clouds using shape medial axis or the centerline

of shapes, but often produce densely packed joints that are

unsuitable for animation. Recent deep learning methods

like RigNet [35] have shown promise in predicting skele-

tons and skinning weights directly from input shapes. How-

ever, they rely heavily on carefully crafted features and

make strong assumptions about shape orientation, limiting

their ability to handle diverse object categories. These lim-

itations stem from two fundamental challenges: the lack

of a large-scale, diverse dataset for training generalizable

models, and the inherent difficulty in designing an effective

framework capable of handling complex mesh topologies,

accommodating varying skeleton structures, and ensuring

the coherent generation of both accurate skeletons and skin-

ning weights.

To overcome these challenges, we first introduce

Articulation-XL, a large-scale dataset containing over 33k

3D models with high-quality articulation annotations care-

fully curated from Objaverse-XL [9, 10]. Built upon this

benchmark, we propose MagicArticulate, a novel frame-

work that addresses both skeleton generation and skinning

weight prediction. Specifically, we reformulate skeleton

generation as an auto-regressive sequence modeling task,

enabling our model to naturally handle varying numbers of

bones or joints within skeletons across different 3D mod-

els. For skinning weight prediction, we develop a func-

tional diffusion framework that learns to generate smoothly
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Figure 1. Given a 3D model, MagicArticulate can automatically generate the skeleton and skinning weights, making the model
articulation-ready without further manual refinement. The input meshes are generated by Rodin Gen-1 [42] and Tripo 2.0 [1].

transitioning skinning weights over mesh surfaces by incor-

porating volumetric geodesic distance priors between ver-

tices and joints, effectively handling complex mesh topolo-

gies that challenge traditional geometric-based methods.

These designs demonstrate superior scalability on large-

scale datasets and generalize well across diverse object cat-

egories, without requiring assumptions about shape orienta-

tion or topology.

Extensive experiments on our Articulation-XL and Mod-

elsResource [31] collected by Xu et al. [34, 35] demon-

strate the effectiveness of MagicArticulate in both skeleton

generation and skinning weight prediction. The proposed

methods also generalize well to 3D models from various

sources, including artist-created assets, and models gener-

ated by AI techniques. With the generated skeleton and

skinning weights, our method automatically creates ready-

to-animate assets that support natural pose manipulation

without manual refinement (Figure 1), particularly benefi-

cial for large-scale animation content creation.

Our key contributions include: (1) The first large-scale

articulation benchmark containing over 33k models with

high-quality articulation annotations; (2) A novel two-stage

framework that effectively handles both skeleton generation

and skinning weight prediction; (3) State-of-the-art perfor-

mance and demonstrated practicality in real-world anima-

tion pipelines.

2. Related works
2.1. Skeleton generation

There are two categories of methods for creating skele-

tons in 3D models. The first category relies on predefined

templates [3, 19] or additional annotations [8, 15, 18, 36].

Pinocchio [3] is a pioneering method for automatically ex-

tracting an animation skeleton from an input 3D model. It

fits a predefined skeleton template to the 3D model, evalu-

ating the fitting cost for different templates and selecting

the most suitable one for a given model. Li et al. [19]

proposed a deep learning-based method to estimate joint

positions for a given human skeletal template. However,

these template-based methods are limited to rigging char-

acters whose articulation structures are compatible with the

predefined templates, making it difficult to generalize to ob-

jects with distinct structures.

There are also methods that rely on additional inputs or

annotations to generate skeletons for 3D models, includ-

ing point cloud sequences [36], mesh sequences [8, 18],

and manual annotations [15]. Additionally, recent works

[27, 28, 37, 39–41] have focused on learning the joints and

bones of articulated objects directly from videos to recon-

struct object motion. In contrast, our approach aims to gen-

erate skeletons using only 3D models as input.

The second category consists of template-free methods

that operate without relying on predefined templates or ad-

ditional annotations. Many approaches [2, 4, 14, 21, 29]

are designed to extract curve skeletons from meshes or

point clouds by utilizing the medial axis or the centerline of

shapes. These methods often result in densely packed joints

that are unsuitable for effective articulation and animation.

Recent deep-learning approaches have also been developed

to learn skeletons directly from input shapes without rely-

ing on predefined templates. These methods are generally

trained on datasets containing thousands of rigged charac-

ters, allowing them to generate skeletons that align with ar-

ticulated components. For instance, Xu et al. [34] intro-
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duced a volumetric network designed to generate skeletons

for input 3D models. RigNet [35] leverages graph convolu-

tions to learn mesh representations, thereby enhancing the

accuracy of skeleton extraction. However, it relies on the

strong assumption that the input training and test shapes

maintain a consistent upright and front-facing orientation.

In this work, we formulate skeleton generation as an

auto-regressive problem to accommodate the varying num-

ber of bones in different 3D models. By generating bones

auto-regressively, our method dynamically adapts to each

model’s specific requirements, ensuring flexibility and ac-

curacy in skeleton creation.

2.2. Skinning weight prediction
To make 3D models ready for articulation, we also predict

skinning weights conditioned on the 3D shape and corre-

sponding skeleton, which define the influence of each joint

on each vertex of the mesh.

Several geometric-based techniques have been intro-

duced for skinning [3, 11, 12, 17]. These methods assign

skinning weights based on the distance between joints and

vertices. However, this distance-based assumption often

fails when the 3D shape has a complex topology. Deep

learning-based methods [20, 22, 23, 35], such as Neu-

roSkinning [22], take a skeleton template as input and pre-

dict skinning weights using a learned graph neural network.

RigNet [35] utilizes intrinsic shape representations that cap-

ture geodesic distances between vertices and bones, often

struggles with highly intricate mesh topologies and may

require extensive feature engineering to maintain perfor-

mance across varied object categories. SkinningNet [23]

employs a two-stream graph neural network to compute

skinning weights directly from input meshes and the cor-

responding skeletons. However, the performance of these

GNN-based methods can degrade when applied to datasets

with highly varying orientations, leading to reduced accu-

racy and robustness in complex and varied scenarios.

In this work, we predict skinning weights in a functional

diffusion process by incorporating volumetric geodesic dis-

tance priors between vertices and joints. This approach

effectively handles complex mesh topologies and diverse

skeletal structures without constraints of shape orientations.

2.3. Auto-regressive 3D generation
Recently, auto-regressive models have been widely used

in 3D mesh generation [5–7, 24, 26, 30, 33]. MeshGPT

[26] models meshes as sequences of triangles and to-

kenizes them using a VQ-VAE [32]. It then employs

an auto-regressive transformer to generate the token se-

quences. This approach enables the creation of meshes

with varying face counts. However, most subsequent meth-

ods [5, 6, 33] are limited to generating meshes up to 800

faces, due to the computational cost of mesh tokeniza-

tion. MeshAnythingV2 [7] introduces Adjacent Mesh To-

kenization (AMT), doubling the maximum face count to

1,600. EdgeRunner [30] further increases this limit to 4,000

faces by enhancing mesh tokenization techniques. In this

work, we explore the potential of auto-regressive models

for shape-conditioned skeleton generation. To achieve this,

we formulate skeletons as sequences of bones. Unlike mesh

generation, which focuses on creating detailed and realistic

shapes by utilizing a high number of faces, skeleton gener-

ation prioritizes accuracy over complexity. Accurate skele-

tons are crucial for realistic articulation and animation, and

typically consist of fewer than 100 bones, as indicated by

the statistics in Articulation-XL.

3. Articulation-XL
To facilitate large-scale learning of 3D model articulation,

we present Articulation-XL, a comprehensive dataset cu-

rated from Objaverse-XL [9, 10]. Our dataset construc-

tion pipeline consists of three main stages: initial filtering,

VLM-based filtering, and category annotation.

Initial data collection. We begin by identifying 3D models

from Objaverse-XL that contain both skeleton and skinning

weight annotations. To ensure data quality and practical

utility, we apply the following filtering criteria: 1) we re-

move duplicate data based on both skeleton and mesh sim-

ilarity; 2) we exclude models with only a single joint/bone

structure; 3) we filter out data with more than 100 bones,

which constitute a negligible portion of the dataset. This

initial filtering yields 38.8k candidate models with articula-

tion annotations.

VLM-based filtering. However, we observe that many ini-

tial candidates contain poorly defined skeletons that may

impair learning (see Figure 3). To ensure dataset quality, we

further implement a Vision-Language Model (VLM)-based

filtering pipeline: 1) we render each object with its skele-

ton from four viewpoints; 2) and then utilize GPT-4o [25]

to assess skeleton quality based on specific criteria (detailed

in supplementary). This process results in a final collection

of over 33k 3D models with high-quality articulation an-

notations, forming the curated dataset Articulation-XL. The

dataset exhibits diverse structural complexity: the number

of bones per model ranges from 2 to 100, and the number

of joints ranges from 3 to 101. The distribution of bone

numbers is illustrated in Figure 2c.

Category label annotation. Additionally, we also lever-

age a Vision-Language Model (VLM) to automatically as-

sign category labels to each model using specific instruc-

tions. The distribution of these categories is illustrated via a

word cloud and a pie chart, as shown in Figure 2a and Fig-

ure 2b, respectively. We observe a rich diversity of object

categories, with human-related models forming the largest

subset. Detailed statistics and distribution analyses are pro-

vided in the supplementary material.
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(a) Word cloud of Articulation-XL cate-
gories.

16k character

13k anthropomorphic
4.7k animal

4.7k mythical creature
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0.5k scanned data
0.4k plant

0.3k vehicle 2k others
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(b) Breakdown of Articulation-XL categories.
(c) Bone number distributions of Articulation-
XL.

Figure 2. Articulation-XL statistics.
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Figure 3. Some examples from Articulation-XL alongside ex-
amples of poorly defined skeletons that were curated out.

4. Methods

We propose a two-stage pipeline to make 3D models

articulation-ready. Given an input 3D mesh, our method

first employs an auto-regressive transformer to generate a

structurally coherent skeleton (Section 4.1). Subsequently,

we predict skinning weights in a functional diffusion pro-

cess, conditioning on both the input shape and its corre-

sponding skeleton (Section 4.2).

4.1. Auto-regressive skeleton generation
In the initial stage of MagicArticulate, we generate skele-

tons for 3D models. Unlike previous approaches that rely on

fixed templates, our method can handle the inherent struc-

tural diversity of 3D objects through an auto-regressive gen-

eration framework, as presented in Figure 4.

4.1.1. Problem formulation
Given an input 3D mesh M, our goal is to generate a struc-

turally valid skeleton S that captures the articulation struc-

ture of the object. A skeleton consists of two key compo-

nents: a set of joints J ∈ R
j×3 defining spatial locations,

and bone connections B ∈ N
b×2 specifying the topological

structure through joint indices. Formally, we aim to learn

the conditional distribution:

p(S|M) = p(J,B|M), (1)

where M can be sourced from various inputs, including di-

rect 3D models, text-to-3D generation, or image-based re-

construction.

A key challenge in skeleton generation lies in the vari-

able complexity of articulation structures across different

objects. Traditional approaches [3, 19] often adopt pre-

defined skeleton templates, which work well for specific

categories like human bodies but fail to generalize to ob-

jects with diverse structural patterns. This limitation be-

comes particularly apparent when dealing with our large-

scale dataset that contains a wide range of object categories.

To address this challenge, we draw inspiration from re-

cent advances in auto-regressive mesh generation [7, 26]

and reformulate skeleton generation as a sequence model-

ing task. This formulation allows us to: 1) handle varying

numbers of bones or joints within skeletons across different

3D models; 2) capture the inherent dependencies between

bones; 3) scale effectively to diverse object categories.

4.1.2. Sequence-based generation framework
Our framework transforms the skeleton generation task into

a sequence modeling problem through three key compo-

nents: skeleton tokenization, shape conditioning, and auto-

regressive generation. Following the sequence ordering

strategies from recent mesh generation methods [24, 26],

we order bones by their lower joint index, followed by the

higher one. Joints are sorted in ascending z-y-x order (with

z representing the vertical axis). For each bone, joint indices

are cyclically permuted so that the lower index appears first.

Skeleton tokenization. We represent each skeleton S as a

sequence of bones, where each bone is defined by its two

connecting joints (6 coordinates in total). To ensure con-

sistent and discrete representation, we employ a carefully

designed tokenization process. We first scale and trans-

late the input mesh and corresponding skeleton to a unit

16001



Shape
Encoder

Auto-regressive Transformere
er

…

…

BOS …

…
Shape token

Skeleton token

Point cloudsInput mesh 

Frozen module

Trainable module

Generated skeleton

EOS

Figure 4. Overview of our method for auto-regressive skeleton generation. Given an input mesh, we begin by sampling point clouds

from its surface. These sampled points are then encoded into fixed-length shape tokens, which are appended to the start of skeleton tokens

to achieve auto-regressive skeleton generation conditioned on input shapes. The input mesh is generated by Rodin Gen-1 [42].

cube [−0.5, 0.5]3, ensuring their spatial alignment. Subse-

quently, we map the normalized joint coordinates to a dis-

crete 1283 space, leading to a sequence length of 6b for b
bones. As such, the discretized coordinates are converted

into tokens, which serve as input to the auto-regressive

transformer. Unlike MeshGPT [26], we omit the VQ-VAE

compression step based on our dataset analysis. Specifi-

cally, in Articulation-XL, most of the models have fewer

than 100 bones (i.e., 600 tokens). Given these relatively

short sequence lengths, using VQ-VAE compression would

potentially introduce artifacts without significant benefits in

computational efficiency.

Shape-conditioned generation. Following the conventions

in [6, 7], we utilize point clouds as the shape condition by

sampling 8,192 points from the input mesh M. We then

process this point cloud through a pre-trained shape en-

coder [44], which transforms the raw 3D geometry into a

fixed-length feature sequence suitable for transformer pro-

cessing. This encoded sequence is then appended to the

start of the transformer’s input skeleton sequence for auto-

regressive generation. Additionally, for each sequence, we

insert a <bos> token after the shape latent tokens to signify

the beginning of the skeleton tokens. Similarly, a <eos> to-

ken is added following the skeleton tokens to denote the end

of the skeleton sequence.

Auto-regressive learning. For skeleton generation, we

employ a decoder-only transformer architecture, specifi-

cally the OPT-350M model [43], which has demonstrated

strong capabilities in sequence modeling tasks. During

training, we provide the ground truth sequences and utilize

cross-entropy loss for next-token prediction to supervise the

model:

Lpred = CE(T, T̂), (2)

where T represents the one-hot encoded ground truth token

sequence, and T̂ denotes the predicted sequence.

At inference time, the generation process begins with

only the shape tokens as input, and the model sequentially

generates each skeleton token, ending when the <eos> to-

ken is produced. The resulting token sequence is then deto-

kenized to recover the final skeleton coordinates and con-

nectivity structure.

4.2. Skinning weight prediction
The second stage focuses on predicting skinning weights,

which controls how the mesh deforms with skeleton move-

ments. In this work, we represent skinning weights as an n-

dimensional function defined on mesh surfaces, which are

continuous, high-dimensional, and exhibit significant vari-

ation across different skeletal structures. To address these

complexities, we employ a functional diffusion framework

for accurate skinning weight prediction.

4.2.1. Preliminary: Functional diffusion
Functional diffusion [38] extends classical diffusion mod-

els to operate directly on functions, making it particularly

suitable for our task. Consider a function f0 mapping from

domain X to range Y:

f0 : X → Y. (3)

The diffusion process gradually adds functional noise g
(mapping the same domain to range) to the original func-

tion:

ft(x) = αt · f0(x) + σt · g(x), t ∈ [0, 1] (4)

where αt and σt control the noise schedule. The goal is to

train a denoiser D that recovers the original function:

Dθ[ft, t](x) ≈ f0(x). (5)

This formulation naturally aligns with our task require-

ments. By treating skinning weights as continuous func-

tions over the mesh surface, we can capture smoothly tran-

sitioning weights between vertices. Additionally, the frame-

work’s flexibility allows it to adapt to diverse mesh topolo-

gies and skeletal structures.
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4.2.2. Skinning weight prediction
Building upon the functional diffusion framework, we for-

mulate skinning weight prediction as learning a mapping

f : R
3 → R

n from 3D points to their corresponding

weights. Specifically, the input to our model consists of

3D points P ∈ R
v×3 sampled from the surface of the

mesh. The output is an n-dimensional skinning weight ma-

trix W ∈ R
v×n. Here, the ground truth skinning weights

of sampled points for training are copied from their near-

est vertices and will also be copied back when inference. n
denotes the maximum number of joints in the dataset.

To enhance prediction accuracy, we introduce two key

components. First, we condition the generation on both

joint coordinates and global shape features extracted by a

pre-trained encoder [44]. Second, we leverage volumetric

geodesic priors calculated from [11]. Specifically, we com-

pute the volumetric geodesic priors from each mesh ver-

tex to each joint. We then assign these priors to sampled

points based on their nearest vertices and normalize them to

match the range of skinning weights, forming a volumetric

geodesic matrix G ∈ R
v×n. Our model learns to predict the

residual between the actual skinning weights and this geo-

metric prior, i.e., f : P → (W − G), enabling more stable

predictions.

Following [38], we optimize our model using x0-

prediction with the objective:

Ldenoise = ‖Dθ ({x, ft(x)} , t)− f0(x)‖22 , x ∈ P.
(6)

We employ the Denoising Diffusion Probabilistic Model

(DDPM) [13] as our scheduler. In practice, we normalize

the skinning weights and volumetric geodesic priors to the

range [−1, 1] before adding noise. We will conduct ablation

studies on this design in Section 5.4.2.

5. Experiments
5.1. Implementation details

Datasets. We evaluate our method on two datasets: our

proposed Articulation-XL and ModelsResource [31, 35].

Articulation-XL contains 33k samples, with 31.4k for train-

ing and 1.6k for testing. ModelsResource is a smaller

dataset, containing 2,163 training and 270 testing samples.

The number of joints for each object varies from 3 to 48,

with an average of 25.0 joints. While the data in ModelsRe-

source maintains a consistent upright and front-facing ori-

entation, the 3D models in Articulation-XL exhibit varying

orientations. We have verified that there are no duplications

between Articulation-XL and ModelsResource.

Training details. Our training process consists of two

stages. For skeleton generation, we train the auto-regressive

transformer on 8 NVIDIA A100 GPUs for approximately

two days. For skinning weight prediction, models are

trained on the same hardware configuration for about one

day. To enhance model robustness, we apply data augmen-

tation including scaling, shifting, and rotation transforma-

tions. For more details, please refer to the appendix.

5.2. Skeleton generation results

Metrics. We adopt three standard metrics following [35] to

evaluate skeleton quality: CD-J2J, CD-J2B, and CD-B2B.

These Chamfer Distance-based metrics measure the spatial

alignment between generated and ground truth skeletons

by computing distances between joints-to-joints, joints-to-

bones, and bones-to-bones respectively. Lower values indi-

cate better skeleton quality.

Baselines. We compare our method against two represen-

tative approaches: Pinocchio [3], a traditional template-

fitting method, and RigNet [35], a learning-based method

using graph convolutions. All methods are evaluated on the

Articulation-XL and ModelsResource datasets.

Comparison results. Qualitative comparisons are pre-

sented in Figure 5, where we compare different methods

across various object categories. Pinocchio struggles with

objects that differ from its predefined templates, especially

obvious in non-humanoid objects (as shown in the 2nd

row and the 3rd row on the right). RigNet demonstrates

improved performance when tested on ModelsResource,

where the data maintains a consistent upright and front-

facing orientation. However, it still struggles with complex

topologies (as illustrated in the 1st and 2nd rows on the left).

Furthermore, RigNet performs worse on Articulation-XL,

where the data exhibit varying orientations. In contrast, our

method generates high-quality skeletons that closely match

artist-created references across diverse object categories.

The quantitative results are shown in Table 1. Our

method consistently outperforms baselines across all met-

rics on both datasets.

Generalization analysis. To evaluate the generalization

capability, we perform cross-dataset evaluation by training

RigNet and our MagicArticulate on Articulation-XL and

testing on ModelsResource. As shown in Table 1 (marked

with *), our method maintains competitive performance

compared to RigNet trained directly on ModelsResource,

while RigNet’s performance degrades significantly when

tested on unseen data distributions, performing even worse

than the template-based method Pinocchio.

To further assess real-world applicability, we evaluate all

methods on AI-generated 3D meshes from Tripo 2.0 [1]

(Figure 6). Our method successfully generates plausible

skeletons for diverse object categories, while RigNet fails

to produce valid results despite being trained on our large-

scale dataset. Notably, even Pinocchio’s template-based ap-

proach struggles to generate accurate skeletons for basic
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Artist-created Ours RigNet Pinocchio PinocchioRigNetOursArtist-created
Figure 5. Comparison of skeleton creation results on ModelsResource (left) and Articulation-XL (right). Our generated skeletons

more closely resemble the artist-created references, while RigNet and Pinocchio struggle to handle various object categories.

Table 1. Quantitative comparison on skeleton generation. We

compare different methods using CD-J2J, CD-J2B, and CD-B2B

as evaluation metrics on both Articulation-XL (Arti-XL) and Mod-

elsResource (Modelres.). Lower values indicate better perfor-

mance. The metrics are in units of 10−2. Here, * denotes models

trained on Articulation-XL and tested on ModelsResource.

Dataset CD-J2J CD-J2B CD-B2B

RigNet*

ModelsRes.

7.132 5.486 4.640

Pinocchio 6.852 4.824 4.089

RigNet 4.143 2.961 2.675

Ours* 4.103 3.101 2.672

Ours 3.343 2.455 2.140

Pinocchio

Arti-XL
8.360 6.677 5.689

RigNet 7.478 5.892 4.932

Ours 2.586 1.959 1.661

categories like humans and quadrupeds, highlighting the ad-

vantage of our method in handling novel object structures.

5.3. Skinning weight prediction results
Metrics. We evaluate skinning weight quality using three

metrics: precision, recall, and L1-norm error. Precision and

recall measure the accuracy of identifying significant joint

influences (defined as weights larger than 1e− 4 following

[35], while the L1-norm error computes the average differ-

ence between predicted and ground truth skinning weights

across all vertices. We will also report the deformation error

in appendix.

Baselines. We compare our method against Geodesic Voxel

Binding (GVB) [11], a geometric-based method available

in Autodesk Maya [16] and RigNet [35]. When trained

on Articulation-XL, we filter out a subset containing 28k

training and 1.2k testing samples, excluding data with more

3D generated meshes Ours RigNet Pinocchio

Figure 6. Skeleton creation results on 3D generated meshes.
Our method has a better generalization performance than both

RigNet [35] and Pinocchio [3] across difference object categories.

The 3D models are generated by Tripo 2.0 [1].

than 55 joints (which constitute a small fraction of both real-

world cases and Articulation-XL).

Comparison results. Qualitative comparisons in Figure 7

visualize the predicted skinning weights and their L1 error

maps against artist-created references. Our method predicts

more accurate skinning weights with significantly lower er-

rors across diverse object categories. In contrast, both GVB

and RigNet show larger deviations, particularly in regions

around joint boundaries.

The quantitative results are shown in Table 2, which

support qualitative observations, demonstrating that our

method consistently outperforms baselines across most

metrics on both datasets.
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Artist-painted
Skinning weights Error map Skinning weights Error map Skinning weights Error map

Ours RigNet GVB
Figure 7. Comparisons with previous methods for skinning weight prediction on ModelsResource (top) and Articulation-XL (bot-
tom). We visualize skinning weights and L1 error maps. For more results, please refer to the supplementary materials.

Table 2. Quantitative comparison on skinning weight predic-
tion. We compare our method with GVB and RigNet. For Pre-

cision and Recall, larger values indicate better performance. For

average L1-norm error, smaller values are preferred.

Dataset Precision Recall avg L1

GVB

ModelsResource
69.3% 79.2% 0.687

RigNet 77.1% 83.5% 0.464

Ours 82.1% 81.6% 0.398

GVB

Articulation-XL
75.7% 68.3% 0.724

RigNet 72.4% 71.1% 0.698

Ours 80.7% 77.2% 0.337

Table 3. Ablation studies for skeleton generation.

CD-J2J CD-J2B CD-B2B

w/o data filtering 2.982 2.327 2.015

w/ data balance 2.691 2.033 1.731

Ours 2.586 1.959 1.661

5.4. Ablation studies

5.4.1. Ablation studies on skeleton generation

We conduct ablation studies to evaluate the effects of

VLM-based data filtering and category balance strategies

on skeleton generation. All experiments are performed on

Articulation-XL with the same number of iterations to en-

sure a fair comparison. The results, presented in Table 3,

show notable performance degradation without data filter-

ing, highlighting the importance of high-quality training

data. We investigate the impact of category imbalance (see

Figure 2b) by replicating data from non-human-like cate-

gories and applying augmentations such as scaling, shift-

ing, and rotation. This balanced training strategy shows no

improvement over the original results, which could be at-

tributed to the dominance of humanoid data in the test set.

Table 4. Ablation studies on skinning weight prediction.

Precision Recall avg L1

w/o geodesic dist. 81.5% 77.7% 0.444

w/o weights norm 82.0% 77.9% 0.436

w/o shape features 81.4% 81.3% 0.412

Ours 82.1% 81.6% 0.398

5.4.2. Ablation studies on skinning weight prediction

We conduct ablation studies on three critical components of

our skinning weight prediction framework. The quantita-

tive results on ModelsResource are shown in Table 4. First,

removing the volumetric geodesic distance initialization re-

duces precision by 0.6% and recall by 3.9%, demonstrating

its crucial role in guiding accurate weight distribution. Sec-

ond, eliminating our normalization strategy, which scales

both skinning weights and geodesic distances to [−1, 1] be-

fore noise addition, leads to an 8.7% increase in L1 er-

ror. Finally, excluding global shape features from the pre-

trained encoder [44] results in less accurate predictions. All

these results validate our design choices and show that each

component contributes notably to the final performance.

6. Conclusion
In this work, we present MagicArticulate to convert static

3D models into articulation-ready assets that support re-

alistic animation. We first introduce a large-scale dataset

Articulation-XL with high-quality articulation annotations,

which is carefully curated from Objaverse-XL. Built upon

this dataset, we develop a novel two-stage pipeline that first

generates skeletons through auto-regressive sequence mod-

eling, naturally handling varying numbers of bones or joints

within skeletons across different 3D models. Then we pre-

dict skinning weights in a functional diffusion process that

incorporates volumetric geodesic distance priors between

vertices and joints. Extensive experiments demonstrate our

method’s superior performance and generalization ability

across diverse object categories.
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