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Abstract

In this paper, we introduce a novel, truly prior-free 3D
object tracking method that operates without given any
model or training priors. Unlike existing methods that
typically require pre-defined 3D models or specific train-
ing datasets as priors, which limit their applicability, our
method is free from these constraints. Our method consists
of a geometry generation module and a pose optimization
module. Its core idea is to enable these two modules to auto-
matically and iteratively enhance each other; thereby grad-
ually building all the necessary information for the track-
ing task. We thus call the method as Bidirectional Itera-
tive Tracking(BIT). The geometry generation module starts
without priors and gradually generates high-precision mesh
models for tracking, while the pose optimization module
generates additional data during object tracking to further
refine the generated models. Moreover, the generated 3D
models can be stored and easily reused, allowing for seam-
less integration into various other tracking systems, not just
our methods. Experimental results demonstrate that BIT
outperforms many existing methods, even those that exten-
sively utilize prior knowledge, while BIT does not rely on
such information. Additionally, the generated 3D models
deliver results comparable to actual 3D models, highlight-
ing their superior and innovative qualities. The code is
available at https://github.com/songxiugiang/BIT. git.
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Figure 1. We propose a prior-free 3D object tracking method
called BIT, which is both model-free and training-free. The pose
optimization and geometry generation modules iteratively enhance
each other to ultimately realize object tracking. The generated
model can be reused, achieving excellent results.

1. Introduction

The advancement of embodied intelligence technology ne-
cessitates a deep understanding of the real world, and a
crucial foundation for this understanding is the accurate
and continuous real-time 6DoF pose estimation of objects
in the real world, also known as 3D object tracking. Ex-
isting methods typically rely on predefined 3D model pri-
ors [4, 20, 22] or training priors [9, 30], or a combination
of both [27], to achieve accurate tracking results. While the
use of priors simplifies the tracking task, it also incurs high
training costs and the need for precise model reconstruc-
tion, which significantly limits the flexibility and scalability
of these methods across diverse environments and object



types. In this paper, we explore, for the first time, a truly
prior-free 3D object tracking paradigm that is both model-
free and training-free, specifically without requiring given
3D models or pose-annotated training images.

We introduce a Bidirectional Iterative Tracking (BIT) to
tackle the challenging task of prior-free tracking. The key
idea of BIT is to automatically generate the necessary in-
formation for tracking, rather than relying on pre-existing
priors that serve a similar purpose. BIT relies solely on
monocular RGB data as input. It comprises two key mod-
ules: the geometry generation module and the pose opti-
mization module. The geometry generation module can
automatically deform a sphere to match the target object’s
shape, while the pose optimization module tracks the pose
and selects the appropriate information as a foundation for
geometry generation. These modules work in cooperation,
iteratively enhancing each other’s functionality. Addition-
ally, the information generated by BIT can be used imme-
diately or stored for future reuse, allowing other tracking
systems to seamlessly integrate it. The core components of
BIT include a tracker SLOT [4], a segmenter SAM [6], and
a differentiable renderer SoftRas [8].

The BIT method improves upon previous methods by
completely eliminating the reliance on model priors and
training priors (the training of SAM is not specific to the
tracked object, and in our method it also can be replaced
with other segmentation method). Existing 3D object track-
ing methods typically depend on provided priors to reduce
the difficulty of tracking, which can be classified into three
main categories: Model-based methods, which rely on CAD
models or reconstructed models as priors and cannot func-
tion without them. Training-based methods, which involve
training on specific datasets and then generalizing to unseen
objects. Model and training-based methods, which rely on
both models and training data simultaneously. In practical
scenarios, acquiring such models and training data incurs
significant costs, which clearly limits the flexibility and ap-
plicability of these methods. BIT overcomes these limita-
tions by functioning independently of such priors, making
it more versatile and cost-effective. The key contributions
of this paper are as follows:

The BIT framework is proposed, which realizes prior-free
tracking of 3D objects, encompassing both model-free
and training-free.

An effective bidirectional iterative tracking method is
proposed, where the pose optimization module and the
geometry generation module can iteratively enhance each
other, achieving synchronized improvement in their ef-
fects and jointly completing the tracking task.

The 3D models automatically generated by BIT can be
easily reused and seamlessly integrated into many other
tracking systems without additional processing, providing
convenience for the utilization of other tracking methods.
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2. Related Works

Based on our knowledge, there are currently no 3D ob-
ject tracking methods that do not rely on either model pri-
ors or training priors. In this section, we will first provide
an overview of 3D object tracking and methods for single-
frame pose estimation relevant to our work, followed by an
introduction to differentiable rendering. Single-frame pose
estimation determines an object’s pose from a single frame
without relying on previous frames, leading to higher com-
putational demands due to a larger search space. In con-
trast, 3D object tracking uses pose information from pre-
vious frames for a more efficient and accurate estimation,
optimizing within a smaller search space.

2.1. Model-based Methods

Precise 3D models can provide strong constraints for track-
ing, which is particularly important for textureless or
weakly textured objects. In recent years, many model-based
methods [4, 17, 19, 20, 22, 23] have achieved excellent
tracking results by utilizing well-designed energy functions.
These energy functions are typically constructed from in-
terpretable features, such as the color distribution of pix-
els [4, 17, 19, 20, 23] or edges [3, 22, 24, 25] in the frame.
These methods do not rely on deep networks, thereby avoid-
ing issues related to training and generalization. They typ-
ically offer good tracking accuracy and real-time perfor-
mance while having low hardware requirements. When pre-
cise CAD models are available, these methods are generally
the best choice for object tracking. However, obtaining pre-
cise CAD models is not always feasible, which is the main
limitation of these methods.

2.2. Training-based Methods

Some methods do not rely on explicit 3D models as priors
but require training on specific datasets to acquire the nec-
essary knowledge, subsequently using this learned informa-
tion to predict poses. Additionally, some methods require
a specific number of reference frames and corresponding
camera poses to reconstruct an object’s point cloud model
via Structure-from-Motion (SfM), as seen in OnePose [21]
and OnePose++ [2]. After reconstruction, the object’s pose
is estimated by matching the 2D image with the 3D point
cloud. BundleSDF [29] utilizes RGB-D data for 3D recon-
struction while tracking. Some methods, like Gen6D [9]
and MFOS [7], estimate the pose directly from given refer-
ence frames. These techniques typically depend on a series
of provided reference frames, thereby introducing certain
constraints. FoundationPose [30] trains neural networks on
large datasets to acquire as much knowledge as possible, en-
abling them to handle a wider range of scenarios. Overall,
while these methods reduce dependence on model priors to
some extent, their reliance on training can lead to general-
ization issues, and the collection of training data are costly.
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Figure 2. Overview of our method BIT. Our method starts with the first frame, using a bounding box to identify the object to track,
optionally incorporating available reference frames. The geometry generation module quickly inverse renders a mesh model for the pose
optimization module, which in return supplies additional key frames as reference frames. This mutual enhancement between the modules
transforms a model-free scene into a model-based scene, leading to improved results.

2.3. Model and Training-based Methods

Some methods rely on both model priors and training priors
to achieve better tracking accuracy or address specific prob-
lems (such as category-level pose estimation [26, 28, 31]).
DeepAC [27] combines deep networks with precise CAD
models to achieve enhanced results. Additionally, some
methods [26, 28, 31] can perform tracking with imprecise
models. These methods estimate the poses of different in-
stances within a category based on a shared category prior
(which can be considered a model prior, typically 3D point
clouds). However, these methods usually heavily rely on
depth information and struggle to achieve ideal results when
relying solely on RGB inputs. Another significant issue is
that these methods require extensive training and are prone
to generalization challenges.

2.4. Differentiable Rendering

Traditional rendering pipelines are non-differentiable due to
discrete sampling in rasterization. Differentiable rendering
transforms this into a differentiable process, allowing gradi-
ents to flow from 2D images to 3D models, which provide
a basis for generating 3D geometry from 2D data. Some
methods [5, 10] use handcrafted functions for gradient ap-
proximation, while SoftRas [8] achieves full differentiabil-
ity with an aggregation function. Differentiable rendering
is applied in reconstruction, shape fitting, and technologies
like NeRF [11]. It requires object poses and segmented
contours or masks, often needing multiple views for better
results. A method [15] combines 2D trackers with differ-
entiable rendering to reconstruct the geometry, color, tex-
ture, and 6DoF pose of 3D objects. However, this method
is time-consuming, requiring about 2 seconds per frame,
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whereas we address a real-time, prior-free problem.

3. Method

The overview of our method BIT is shown in Fig. 2. BIT
takes RGB images as input, with the first frame utilizing
a bounding box to indicate the target object for tracking.
Additionally, if available, it can incorporate a limited num-
ber of reference frames. Our method is capable of simulta-
neously performing iterative real-time tracking and model
generation. It primarily consists of two mutually enhancing
components: the geometry generation module and the pose
optimization module.

After receiving the first frame and the reference frames
(if available), the geometry generation module can quickly
generate an initial model by inverse rendering using the
given data and send the generated model to the pose opti-
mization module. The pose optimization module then em-
ploys this generated model for continuous tracking, select-
ing key frames from the tracking results and feeding this
data back to the geometry generation module. The geome-
try generation module, in turn, utilizes this feedback to fur-
ther optimize the generated model. These two processes it-
erate continuously, simultaneously optimizing both the gen-
erated model and tracking performance. Once the generated
model reaches a sufficient level of precision, only the pose
optimization module needs to be executed.

Throughout the entire process, the pose optimization
module does not require any training. The reference for
inverse rendering used by the geometry generation module
is automatically generated during the tracking process, also
eliminating the need for training.
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Figure 3. The geometry generation module. This module takes the first frame, along with a bounding box, an initial pose, and camera
intrinsic K as input. It can also incorporate additional reference frames if available. A better mesh model can be obtained by inverse

rendering a sphere or the previously generated model.

3.1. Geometry Generation Module

The geometry generation module rapidly generates an ob-
ject’s mesh model by iteratively inverse rendering during
the tracking process. The generated model is then supplied
to the pose optimization module. Figure 3 illustrates the
overview of the geometry generation module.

The geometry generation module takes as input the first
frame Z, an initial pose Tg [Rolto], and a bounding
box by that specifies the target object. Here, Ry € R3*3
represents the rotation matrix, and £y € R3 is the translation
vector. Additionally, the camera intrinsic matrix K € R3*3
is also provided.

Additionally, if available, the geometry generation mod-
ule can incorporate reference frames {Z;}, corresponding
poses {T;}, and bounding boxes {b;}. Since the post-
processing for the initial frame and reference frames is iden-
tical, we assume the presence of reference frames to stream-
line the description of our method. Furthermore, the pose
optimization module can automatically generate these ref-
erence frames during the iterative process. For the sake of
simplicity, we will use {Z;} to refer to both Z and {Z,},
and apply the same convention to {7T;} and {b;}.

The input frames {Z;} are first fed to a segmenter
SAM [6] to obtain the object’s masks, with the bounding
boxes {b;} serving as prompts. To ensure the object area
defined by {b;} is not too small and to facilitate easier op-
timization during post-processing, we crop the object area
and resize it to a fixed size, resulting in the resized masks
{M,;}. During this process, we adjust the camera intrinsics
from K to K; for each resized mask M. This adjustment
is necessary because K influences the size and position of
the image, ensuring that the input pose {7;} remains com-
patible with the modified masks M,;. For further details on
this process, please refer to our supplementary materials.

Starting with a 3D sphere Gy as the initial model and fol-
lowing the SoftRas [8] method, we iteratively deform this
sphere Gy into the target mesh model G* using the resized
masks {M,;} and poses {T;}. SoftRas is chosen due to its
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rapid processing speed. Since the masks provide compre-
hensive cues and supervision for inverse rendering, there is
no need to train the differentiable renderer. We simplified
the loss function for mesh inverse rendering in SoftRas, re-
sulting in a very concise loss function L:

C = EIOU({Gvfl—'i?K’L}v {M’L}) + Nﬁl(G)v (l)

where L,y represents the 2D IoU loss between the given
masks {M;} and the projected masks of the model G un-
der poses {T; } and intrinsics { K}, G represents the inter-
mediate 3D model transitioning from G to G*. L; is the
Laplacian regularization term used to control the smooth-
ness of the geometry. The parameter p acts as a balanc-
ing factor. The loss function is intentionally kept simple to
facilitate the rapid convergence of the input geometry to a
specific shape suitable for tracking. Additionally, a straight-
forward loss function is crucial for generalization. For more
details please see our supplementary materials.

Throughout the process, the 3D model initially starts as
a sphere, and each iteration generates a mesh model that
can be utilized by the pose optimization module. Except for
the first iteration, each subsequent iteration receives a fixed
number of key frames generated by the pose optimization
module as inputs. Additionally, in every iteration, the first
frame and reference frames (if available) are consistently
used as inputs. Since the contours of the masks segmented
by SAM are not smooth and have minor pixel discrepan-
cies, we found that the inverse-rendered model might ap-
pear slightly smaller than the actual object. To compensate
for this, we scale the inverse-rendered model by a factor of
1.05, which is an empirically determined parameter.

3.2. Pose Optimization Module

The pose optimization module is shown in Fig. 4, which has
two main purposes: First, it receives the generated 3D mesh
model and uses it to quickly estimate the object’s pose in
the frame. Second, it generates key frames and the object’s
bounding boxes, and sends these data along with their cor-
responding poses to the geometry generation module.



Method Input Training Model Refers black drill duplo_dude rinse.aid toy_plane vim_mug Avg.t
PoseRBPF [1]} RGB-D* v v X 75.3 84.1 87.2 48.6 59.0 70.8
LatentFusion [13]f RGB-D v b 4 v 89.4 88.9 67.4 82.9 40.0 73.7
LatentFusion [13]f RGB-D v X v 74.1 754 63.0 55.0 38.3 61.1
PVNet [14]F RGB v v b 4 49.5 433 72.9 48.6 67.9 56.4
Gen6D [9]% RGB 4 b 4 v 64.9 59.2 72.0 69.8 51.0 63.4
Ours(0) RGB b X b 4 63.1 69.7 80.5 76.2 81.4 74.2
Ours(3) RGB b 4 X v 82.9 89.9 88.3 81.7 88.4 86.2

Table 1. Tracking results on the MOPED dataset under the ADD-AUC (0-10 c¢m). Ours(0) uses no reference frames, Ours(3) uses 3
reference frames. Bold indicates the best result, and underline indicates the second best. T denotes the data reported by LatentFusion, and
denotes the results reported by Gen6D under its configuration. *According to the description in LatentFusion’s experiments, we infer that

this method uses RGB-D data.
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Figure 4. The pose optimization module, which can track the ob-
ject’s pose and generate key frames for model generation module.

We utilize the tracking method SLOT [4] as the baseline
for tracking the object’s pose. This method accepts the gen-
erated model as input and then optimizes the object’s pose
using the color features in the input RGB image around the
projected mask of the model. Since it does not include any
deep networks, it does not require training. For a detailed
explanation of this method, please refer to our supplemen-
tary materials. Next, we will provide a detailed explanation
of how to generate the key frames and bounding boxes re-
quired for the geometry generation module.

The key frames should encompass as many viewpoints as
possible to enhance the effectiveness of the geometry gener-
ation module. Concurrently, to reduce computational load,
redundant viewpoints should be minimized. To achieve this,
we construct a view group, denoted as V, to store the view-
points of frames calculated from the tracked poses:

2

where v; € R3 is the i—th view, which can be calculated
from the corresponding pose T; = [R;|t;]:

v = R/ t;/|[t]].

v = {U07v13 V2, "'7”7171}7

3)

When a new frame Z,, is tracked and the camera view v,,
is established, we compute the angular differences between
v, and all the views in the set V as follows:

Uy, - U;

[|on|[[vil|

), forvi € V. “)

Aa; = acos(
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Method  Refers Key Frames Iters Model Acc. |
Ours(3) 3 3 3 0.035
Ours(6) 6 12 3 0.011
Ours(12) 12 12 3 0.010

Table 2. Our generated models in different cases. Model accuracy
is measured by the normalized Hausdorff distance.

If all the Aa,; values exceed a certain threshold a@p;,, we
consider the frame Z,, to be a key frame candidate.

We then project the 3D mesh model according to the
tracked pose T;, to obtain a bounding box b,,. If b,, is more
than 10 pixels away from the image border, we consider
b, to be valid and designate Z,, as a true key frame, sub-
sequently adding v,, to V. If a sufficient number of key
frames are selected, these frames, along with their corre-
sponding bounding boxes and poses, will be sent to the ge-
ometry generation module to perform inverse rendering.

4. Experiments

We conducted experiments on both publicly available
datasets and real-world scenarios, presenting both quanti-
tative and qualitative results. The experimental setup con-
sisted of a desktop computer equipped with an Intel 12700
CPU and a single NVIDIA GTX 3080 (10GB) GPU. In our
experiments, we set ani, = 3°. The masks were resized
to 256 x 256 resolutions during the inverse rendering pro-
cess. We employed the Adam optimizer, configured with
a learning rate of 0.01 and beta values of (0.50, 0.99), to
optimize the model. The initial model is a 3D sphere with
1302 vertices. Additionally, 4 = 0.1 was set in the loss
function. Each inverse rendering iteration during the model
generation process consisted of 200 optimization steps.

In cases where we used reference frames on the dataset,
we employed an algorithm that utilizes the golden ratio to
evenly distribute a certain number of viewpoints on the sur-
face of a sphere and then selected the frames closest to these
generated viewpoints to serve as reference frames.



(a) Tracking results and generated models in iterations without reference frame
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(b) Tracking results and generated models in iterations with 3 reference frames

Figure 5. Tracking results and generated models in 3 iterations on the MOPED dataset, displayed from left to right.
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Figure 6. The accuracy of the generated models (solid lines) and
tracking (dashed lines) across iterations (note the axis direction).

4.1. Results on the MOPED Dataset

The MOPED dataset [13] is a real-world captured dataset
containing 11 objects, each comprising several RGB-D
video sequences divided into reference and evaluation sets,
with a resolution of 640x480. The poses are obtained
through a combination of multiple methods [12, 16, 32, 33].
Due to the annotation manner, the poses in some sequences
may not be entirely accurate. Therefore, following the ap-
proach of Gen6D [9], we selected 5 relatively reliable ob-
jects for evaluation. For each object, there are 100-600 ref-
erence images and 100-300 query images.

We use the ADD-AUC (0-10 ¢m) metric to evaluate
the tracking results. We test our method in two versions:
Ours(0) uses no model or training priors and no reference
frames, generating 3 key frames per iteration. Ours(3) also
uses no model or training priors but employs 3 reference
frames, generating 6 key frames per iteration. For each ob-
ject, we perform model generation for up to 3 iterations.

Since the proposed method addresses a new problem, to
the best of our knowledge, there are currently no directly
comparable methods. Therefore, we selected the methods
most similar to ours for comparison. We compare our re-
sults with PoseRBPF [1], LatentFusion [13], PVNet [14],
and Gen6D [9]. The results are shown in the Tab. 1. We
also present a part of tracking results, as well as the gener-
ated models, as shown in Fig. 5.

1205

il b o &
~® b v®

Ape Phone Cat Bench

Figure 7. The final generated models (3 iterations) in different
reference frames and key frames on the RBOT dataset.

Even without any priors and reference frames, our
method (Ours(0)) outperforms all other methods in average.
With 3 reference frames, our method (Ours(3)) significantly
outperforms the others. Notably, our method requires no
training and uses only RGB data, whereas other methods
were trained on the tested or other objects. Additionally,
compared to other methods, our method demonstrates more
uniform accuracy across various objects, indicating that it is
data-independent and a truly training-free approach.

4.2. Results on the RBOT Dataset

During tracking, our method can rapidly generate the 3D
model of an object, by comparing the performance of var-
ious trackers using both precise ground truth CAD models
and our generated models on the RBOT dataset [23], we
explored the models’ reusability.

The RBOT dataset is a 3D object tracking dataset with 18
objects and 72 sequences, each containing 1000 test frames,
with a resolution of 640x512, covering a baseline regular
scenario and dynamic light, noisy, and occlusion scenar-
ios. It has been used to evaluate some advanced 3D track-
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Figure 8. Generated models in the case of 6 reference frames and
12 key frames on the RBOT dataset, displayed from top to bottom
in each iteration.

Method | Model Reg. Dyn. Noisy Occ. Avg.t
GT 799 812 56.6 733 728
RBOT | Ours(3) | 38.1 375 259 324 335
[23] Ours(6) | 63.2 629 423 56.1 56.1
Ours(12) | 67.8 67.0 449 60.2 60.0
GT 89.9 90.7 69.6 889 848
SLOT | Ours(3) | 38.8 384 269 36.1 35.1
[4] Ours(6) | 68.8 682 498 66.0 63.2
Ours(12) | 75.2 743 533 724 688
GT 954 949 862 932 924
Song23 | Ours(3) | 52.7 50.9 44.8 483 492
[17] Ours(6) | 81.5 79.8 709 777 715
Ours(12) | 857 838 746 819 815
GT 90.0 90.6 715 856 844
RBGT | Ours(3) | 489 47.8 379 443 447
[18] Ours(6) | 73.9 733 576 68.6 68.3
Ours(12) | 79.7 789 614 74.0 735
GT 942 946 81.7 932 909
SRT3D | Ours(3) | 49.7 489 409 464 465
[19] Ours(6) | 759 752 638 727 719
Ours(12) | 81.8 809 691 794 778

Table 3. Tracking accuracy with GT models and the generated
models by our method on the RBOT dataset. Bold indicates the
best result except for the ground truth.

ing methods, such as SRT3D [19], RBGT [18], SLOT [4],
Song23 [17] and the RBOT method [23].

Due to the significant differences between frames in the
RBOT dataset and the rapid movement of objects, we used
3-12 reference frames, and then tracked the first 100 frames
in the regular scenario, and generate the objects’ models
during tracking. For each object, we performed up to 3 it-
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Figure 9. Tracking accuracy of various trackers on the RBOT
dataset using GT models and the our generated models.

erations. Then these generated models served as inputs for
other model-based trackers for testing across all scenes of
the entire dataset, allowing us to compare their performance
against the ground truth CAD models.

We employed the 5 ¢m/5° metric to measure the track-
ing accuracy, which indicates success in a frame if the trans-
lation error is less than 5 ¢m and the rotation error is less
than 5°. Otherwise, it is considered a failure, and the pose
is reset to the ground truth. The proportion of successful
frames represents the tracking accuracy. We use the nor-
malized Hausdorff distance between the generated models
and ground truth models to measure the models accuracy.

Table 2 shows the models’ accuracy (in normalized
Hausdorff distance) in the last iteration, and Fig. 6 shows
the normalized Hausdorff distance in every iteration. It can
be seen that the generated models have relatively high ac-
curacy with 6 or more reference frames. Additionally, by
the second iteration, the model is already close to the final
one. This indicates the proposed method’s rapid conver-
gence. Figures 7 and 8 also display portions of the gener-
ated models, demonstrating the effectiveness of our method.
Furthermore, Figure 6 illustrates the variation in tracking
accuracy of the baseline tracker [4] across the entire dataset
using the intermediate generated models. The results show
that the tracking accuracy improves as the models become
more accurate.

The test results of the 5 tracking methods using the fi-
nal generated models on the RBOT dataset are presented in
Tab. 3 and Fig. 9. It is clear from these results that when
given 6 or more reference frames, the generated models can
achieve results very close to the ground truth CAD mod-
els. This proves the effectiveness of our method, as it can
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Figure 10. Qualitative results on the real world scenes. From left to right, the first frame, tracking results, and the generated models.

effectively transform a model-free tracking problem into a
model-based tracking problem.

4.3. Qualitative Results

We captured RGB images of real-world scenes to test the
proposed method, with a resolution of 640 x 480. We eval-
uated our method under 3 conditions: (1) no reference and 3
key frames, (2) 3 reference frames and 3 key frames, and (3)
6 reference frames and 6 key frames. The reference frames
are from the RBOT datatset. For each object, we performed
up to 3 iterations. The tracking results are shown in Fig. 10.
Under all 3 conditions, our method successfully achieved
effective tracking and generated object models. Further ex-
perimental results can be found in our supplementary video.

4.4. Time Analysis

With a resolution of 640x480, tracking a frame takes about
30 ms. When using 6 reference frames and 12 key frames
for generating models, each iteration takes about 10 sec-
onds. Therefore, a 3D model of an object can be obtained
in about 30 seconds over 3 iterations. Notably, our method
only utilizes a single NVIDIA 3080 (10GB) GPU. After
completing the model generation, only tracking is required,
allowing our method become real-time (30 FPS). Addition-
ally, tracking can be run as a background thread to reduce
time consumption.

5. Limitations

Our method has several limitations that need to be ad-
dressed. Firstly, it is incapable of generating recessed fea-
tures on object surfaces and cannot accurately model spe-
cific topologies, such as ring-shaped or hollow structures.
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Secondly, in challenging scenarios, SAM’s segmentation
performance may be affected, particularly in cases involv-
ing occlusion, motion blur, or similar colors, and the ob-
ject’s complex geometry can also have a certain impact; er-
rors in the mask may degrade the initially rendered model
and tracking accuracy, further complicating iterative im-
provements. Lastly, tracking failures may occur in chal-
lenging scenes, particularly with fast-moving objects and
when there is a lack of reference frames.

6. Conclusions

We have proposed a prior-free tracking method based on
RGB data, capable of quickly generating 3D models of
objects while tracking them. This approach transforms a
model-free tracking problem into a model-based one with-
out requiring pose-annotated training. The method operates
when the target object is specified in the first frame and can
incorporate reference frames if available. The generated
models can be reused by other trackers and exhibit high
accuracy. The method’s consistent results across datasets
demonstrate its independence from specific data, clearly
distinguishing it from training-based methods. Extending
3D object tracking to non-rigid objects for broader applica-
tions and exploring tracking for objects with more complex
topologies are future research directions in our work.
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