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Cut tortillas into triangles. Heat oil in a pan. Fry the tortilla pieces. Place chips on a paper towel. Transfer chips to a bowl. Add salsa.

Cut chicken into pieces. Prepare butter dressing. Thread chicken to skewers. Brush skewers w/ dressing. Grill until cooked. Arrange and serve.
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Figure 1. Given an input image (left) and ordered step-by-step textual instructions for a task (top), ShowHowTo generates an image
sequence of visual instructions. Rows 1 and 2 demonstrate the generation of visual instructions for two recipes starting from the same input
image. Rows 2 and 3 show the generation of visual instructions for the same recipe but conditioned on different input images. ShowHowTo
generates scene-consistent (e.g., consistency in the person and cutting board) and temporally consistent image sequences (e.g., the bowl of
tortilla chips or plate of chicken skewers) that faithfully capture the instructions (e.g., cutting, frying, brushing, adding etc.).

Abstract

The goal of this work is to generate step-by-step visual in-
structions in the form of a sequence of images, given an in-
put image that provides the scene context and the sequence
of textual instructions. This is a challenging problem as it
requires generating multi-step image sequences to achieve
a complex goal while being grounded in a specific environ-
ment. Part of the challenge stems from the lack of large-
scale training data for this problem. The contribution of
this work is thus three-fold. First, we introduce an auto-
matic approach for collecting large step-by-step visual in-
struction training data from instructional videos. We apply
this approach to one million videos and create a large-scale,
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high-quality dataset of 0.6M sequences of image-text pairs.
Second, we develop and train ShowHowTo, a video diffu-
sion model capable of generating step-by-step visual in-
structions consistent with the provided input image. Third,
we evaluate the generated image sequences across three di-
mensions of accuracy (step, scene, and task) and show our
model achieves state-of-the-art results on all of them. Our
code, dataset, and trained models are publicly available.

1. Introduction

With the immense success of large vision-language mod-
els and the rise of wearable devices, we rapidly approach
the era of personalized visual assistants. This technology
promises to help us in a variety of everyday tasks and nu-
merous scenarios, such as preparing a Michelin-star dish,
taking care of plants, or fixing a bicycle. Unlike generic
instructional videos, visual assistants will provide guidance
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and feedback for specific environments and task variations.
Besides being useful for people, automated visual guid-

ance has been recently explored and shown to be beneficial
in robotics. For example, [9, 32, 43, 65] generate images of
intermediate goals and use them as guidance for manipula-
tion policies. Other recent methods [8, 19, 38, 57] derive
robotics policies from videos specifically generated for tar-
get tasks and environments.

When comparing the ability to generate textual step-by-
step instructions vs. generating visual instructions, one
can see a sharp contrast. State-of-the-art LLMs can re-
liably provide personalized step-by-step text-only instruc-
tions. However, translating such instructions into images
and videos still presents considerable challenges. This is
because current video generation models, despite their im-
pressive progress over the past years, focus on producing
relatively short clips [14, 46, 49, 63] whereas image gener-
ation models only produce one image at a time.

Recent attempts to generate visual instructions either
synthesize a single step [35, 36, 53] or are not contextu-
alized to the user’s specific environment [12, 41, 45]. In
other words, such methods may generate plausible images
for each step, however, such images will represent arbitrary
settings and can feature tools or ingredients unavailable to
the user. In robotics, temporally inconsistent guidance may
imply physically implausible demonstrations, resulting in
unsuccessful learning of policies. To address this issue, we
focus on generating step-by-step visual instructions condi-
tioned on an input image from the user, which we assume
showcases their starting position—the environment, ingre-
dients, tools, etc., as illustrated in Figure 1.

This paper makes the following contributions. (1) We in-
troduce the problem of generating a sequence of visual in-
structions conditioned on an input image. (2) We introduce
a fully automatic approach to collect step-by-step visual in-
struction training data from in-the-wild instructional videos,
creating a large-scale, high-quality dataset of 0.6M step-by-
step instruction sequences of 4.5M image-text pairs. (3) We
train a video diffusion model capable of generating sparse
step-by-step visual instructions consistent with the input
image. (4) We evaluate our generated sequences across
three aspects (step, scene, and task) and show our model
achieves state-of-the-art results on all of them.

2. Related Work
Datasets of visual instructions. The scale and quality of
the training data play a key role in visual instruction genera-
tion. Many available datasets combine instructional or ego-
centric videos and manual temporal annotation of individual
steps [3, 51, 54, 70] or use professional illustrations [62].
Yet the requirement of manual annotations makes these
sources of data hard to scale to novel tasks and environ-
ments. To alleviate the need for manual annotations, self-

supervised methods have been developed to automatically
obtain key steps from in-the-wild videos [21, 39, 52, 58,
59]. These key steps can then be used for visual instruction
generation [53]. Recently, the improved capabilities of large
language models [2, 4, 18, 20, 33] allowed for solely using
video narrations to produce temporal captions, key steps,
and instructions [36, 37, 50]. We build on these works to au-
tomatically obtain key steps from videos; however, in con-
trast to the related works, our dataset is constructed com-
pletely automatically, is composed of individual instruction
frames instead of temporal intervals, and contains signifi-
cantly fewer errors. Additionally, we focus on the entire
domain of instructional videos, not only cooking.

Conditional video generation. Recently, diffusion mod-
els [28] have seen a surge in popularity for generative tasks,
including video generation [40, 64]. Initial works extended
a U-Net model using space-time factorization for the gener-
ation of videos in pixel space [29–31]. With the large cost
of generating video, others [11, 15, 23, 27, 40, 64, 69] in-
stead use an auto-encoder to model videos within the latent
space, reducing significantly the number of parameters and
memory requirements. Video generation models are often
conditioned on textual prompts [16, 23, 24, 29, 30, 67], im-
ages that act as initial frames [60, 68], or both to generate a
sequence of frames [7, 10, 11, 17, 25, 31, 34, 56, 69]. It has
also been shown that for temporal consistency, a combina-
tion of both image conditioning and textual conditioning is
important [55, 56]. However, these methods focus on rel-
atively short video clips and are not able to generate long
multi-step sequences of fine-grained instructions that take
minutes to execute.

Generating step-by-step instructions. Both step-by-step
visual instructions and continuous videos consist of se-
quences of frames, yet the instruction sequences differ from
the videos significantly. While videos often contain only
small pixel-level frame-to-frame changes [61], visual in-
struction sequences often contain large semantic (e.g., raw
→ cooked) and viewpoint (e.g., inside → outside) changes
from one key frame to another [41]. Obtaining sufficient
training data for visual instructions presents a significant
challenge. Therefore, Phung et al. [45] generate step-by-
step visual instructions using a pretrained text-conditioned
image diffusion model with shared attention across steps
to ensure consistency in the generated image sequences,
while Menon et al. [41] use illustrations drawn by artists
from WikiHow [62] as the training data for text-to-image-
sequence generation. Other works using image-conditioned
models can generate step-by-step sequences by iterative
generation [12, 35, 36, 53]. In contrast, our method gen-
erates step-by-step visual instructions all at once, attending
across steps to generate the full image sequence, including
the input, which results in superior quality and consistency.
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narrated input video
from the internet

Speech transcription1

52.56 - 63.49: Add the leeks, garlic, and onion to your
butter, and then just let it saute for a little
bit so that the leeks and onions all get
a little bit softer, and they kind of cook
down a little bit, really release the flavor.

63.49 - 66.28: Then you’re going to add your flour to
this mixture.

66.28 - 73.20: And what this is gonna do is, first of all,
you’re gonna cook the flour so it gives it
a better taste, and then it’s gonna thicken
up your soup too.

73.20 - 75.10: So it’s two reasons there.
75.10 - 76.42: So let that cook for just a minute.

Video filtering

Is instructional? Yes.

2

Step extraction3

52.56 - 63.49: Add leeks, garlic, and
onion to butter and
sauté until they’re soft.

66.28 - 75.10: Add flour to the
mixture and cook for
a minute.

Cross-modal frame alignment4

Add leeks [...] and sauté until they’re soft.

52.56−ϵ 63.49+ϵ

66.28−ϵ 75.10+ϵ

Add flour to the mixture and cook [...].

Figure 2. Our automatic approach for creating the ShowHowTo dataset—a large-scale instructional dataset consisting of step-by-
step instruction sequences of image-text pairs to perform diverse HowTo tasks. Examples of step-by-step textual instructions and the
corresponding frames are highlighted in green.

3. Building Large-Scale ShowHowTo Dataset
Learning to generate visual instructions requires a large-
scale dataset that captures the rich diversity of real-world
tasks and their step-by-step execution. However, manu-
ally creating such a dataset is prohibitively expensive and
time-consuming, limiting the dataset’s scale and coverage.
We address this challenge by introducing an automated ap-
proach that leverages the natural alignment between narra-
tions and visual demonstrations in instructional videos from
the web to mine high-quality sequences of image-text pairs.

Using our proposed approach, we construct a large-scale
dataset containing over half a million instruction sequences
of image-text pairs spanning 25,026 diverse HowTo tasks.
These sequences cover diverse domains including cooking
(e.g., make strawberry crumb bars, prepare an avocado
margarita), home improvement (e.g., stain a cabinet, cre-
ate a tire garden), assembly (e.g., set up a 10×10 tent, tie a
ring sling), DIY crafts (e.g., make a bracelet, make a fairy
glow jar) and many more. We note that our data collection
approach does not require any manual annotation, which is
an important aspect to enable scaling.

3.1. Automatic Dataset Collection
Our approach takes as input a narrated instructional video
for a specific task. First, it extracts a sequence of key steps
in the form of concise, free-form textual instructions from
the video’s narration. Then, it associates each step with the
corresponding keyframe in the video. The output is an or-
dered sequence of image-text pairs. This is a very challeng-
ing task due to the high level of noise, the possible misalign-
ment of the narration and the visual content as well as the
sheer variety of visual appearance and the spoken natural
language in the input internet videos.

To tackle these challenges, we design a four-stage ap-
proach, illustrated in Figure 2: (1) The narration of the in-
put internet instructional video is transcribed into sentences
with corresponding timestamps. (2) The transcribed nar-
ration is verified to be instructional and removed if not.
(3) The key instruction steps are extracted from the tran-

script along with their approximate temporal bounds. (4)
A representative frame for each instruction step is selected
through cross-modal alignment. By applying this approach
to videos from HowTo100M [42], we obtain 578K high-
quality sequences of image-text pairs with approximately
eight steps per video on average.

Formally, we define our dataset as a collection of in-
struction sequences of image-text pairs. Each sequence
{(Ii, τi)}ni=0 represents an ordered set of steps required to
accomplish a specific task T . It consists of pairs of images
Ii and the corresponding natural language instructions τi,
with n denoting the number of steps in the sequence. Next,
we describe the four stages in detail.

Speech transcription. Accurate transcription (ASR) of
spoken narrations is a key strength of our approach, as
these transcripts capture the instructor’s step-by-step guid-
ance that we use to align with the video. HowTo100M pro-
vides 1.2 million web instructional videos, but we forego
the original transcripts generated using the YouTube API
due to noise [26, 37]. Instead, we use WhisperX [6], a state-
of-the-art speech recognition model, to obtain high-quality
transcriptions with accurate timestamps from videos. We
provide comparisons of the original transcripts and the im-
proved ones in the supplementary material [1].

Filtering of irrelevant videos. We find that many How-
To100M videos are non-instructional, containing product
reviews, vlogs, movie clips, etc. This noise may stem
from the original data collection process, which relied on
keyword-based web crawling and is susceptible to false pos-
itives due to inaccurate metadata. We leverage video tran-
scripts as a strong signal for identifying instructional con-
tent and use a recent LLM (Llama 3.1 [20]) to filter the
videos. We verify the reliability of this process through the
evaluation on a labeled subset. Detailed analysis, qualita-
tive results, and the prompts used for querying the LLM are
provided in the supplementary material [1].

Step extraction. We observe that, in instructional videos,
the key steps necessary to achieve a particular task are very
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often mentioned in the narration, even if they are not well-
aligned with what is shown in the frame [26]. Building on
this, we prompt an LLM to extract the instructional steps
from the narration transcripts in the format of WikiHow
step-by-step guides, providing exemplars in the prompt to
guide the extraction. Somewhat surprisingly, the LLM not
only correctly extracts the key steps from the transcripts, but
the model is also able to associate each step with the correct
temporal intervals from the transcript, even if the step spans
over multiple narrations. See Figure 2 for an example, and
the supplementary material [1] for additional details and the
prompt used.

Cross-modal frame alignment. For each instructional
step, our goal is to identify a single representative frame
that best demonstrates the instruction visually. While con-
trastive models [22, 47, 66] can align text instructions with
frames, we observe that naive text matching across thou-
sands of video frames leads to noisy results. Therefore, we
limit the alignment to the identified instruction step tempo-
ral interval, expanded by ϵ = 15 seconds to allow for some
level of misalignment between the narrations and visual
demonstrations [26]. Given these expanded intervals, we
compute text-frame similarity scores using DFN-CLIP [22]
and select the best alignment that satisfies the temporal or-
dering of the steps. We provide more details about the
matching process in the supplementary material [1].

3.2. Dataset Statistics
In total, after filtering, the dataset contains 578K unique se-
quences of image-text pairs, with a total of 4.5M steps, av-
eraging 7.7 (± 2.8) steps per sequence, and 11.4 (± 4.7)
words per step. The sequence lengths vary from 1 to
26 steps, with 97.6% of sequences being 2 to 16 steps
long. From task information provided by HowTo100M, the
dataset contains instructions for 25K HowTo tasks across
several categories, such as cooking, home and garden im-
provement, vehicles, personal care, health, and more. We
include a comparative table to other datasets and further
dataset analysis in the supplementary material [1].

4. ShowHowTo Model and Training Procedure

Given a user-provided image I0, such as a photo of ingredi-
ents or tools on a table, our goal is to generate a sequence
of images {Îi}ni=1 of any length n based on the number of
required steps, that guides the user to achieve an intended
task T , such as a cooked chicken tikka masala dish. Our
goal is to generate images Îi to match the user-provided
context, i.e., to be grounded in the user’s environment by
utilizing the specific objects, tools, and workspace from the
input image I0. We achieve this goal by training a diffu-
sion model conditioned on the input image I0 along with
the step-by-step textual instructions {τi}ni=0 that fulfill the
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Figure 3. Model architecture. Given an input frame I0 (left)
and a variable number of text instructions τi describing each step,
our diffusion model generates visual instructions Îi that correctly
follow the prompts τi and are consistent with the input image I0.

intended task T in any number of steps 1 ≤ n ≤ 15.
We build on recent progress in diffusion models for

video generation [56]. However, there are the technical
challenges of (a) how to inject the multi-step instruction
guidance and (b) how to generate variable length sequences.
We address these challenges in the next paragraphs.

Architecture. Our model, shown in Figure 3, is based on a
latent video diffusion model [56] composed of a U-Net en-
coder and decoder, each with interleaving spatial and tem-
poral attention layers. The input image I0 is projected into
the latent space via the VAE encoder E , and is concatenated
to each frame of the random noise zi to form the model’s
input. The U-Net progressively denoises the input latent
sequence while attending to all images in the sequence to
ensure the generated images are temporally consistent and
aligned with the input image. For better conditioning on the
input image, the U-Net also contains cross-attention layers
that attend to a feature representation of the input image di-
rectly. To guide the generation process to the desired visual
instruction sequence, each frame i in the sequence attends
to its prompt τi via cross-attention layers of the U-Net. In
the ablations, we show that separate text conditioning for
each frame in the sequence is instrumental for generating
high-quality step-by-step visual instructions.

Training. We initialize the model from the pretrained
checkpoint [56] trained on WebVid10M [5] for image an-
imation and fine-tune the entire U-Net weights on our
dataset. In contrast to training on videos, where the output
video is commonly of a fixed length (e.g., 16 frames in the
case of [56]), step-by-step instructions have a variable se-
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quence length. To ensure our model can generate variable-
length sequences, we vary the sequence length during train-
ing by sampling from our sequences. For efficient compu-
tation, the length is varied over different batches but is kept
the same across all samples in a single batch. If the dataset
sequence is longer than the desired length k, we randomly
sample the starting frame and use the next consecutive k
frames as the model’s target. We verify and further discuss
these choices in Section 5.3 and provide the implementation
details in the supplementary material [1].

5. Experiments

We first introduce our evaluation setup in Section 5.1. In
Section 5.2, we compare our method to current state-of-the-
art quantitatively on the test set and through a user study.
Section 5.3 analyzes key designs of our method through ab-
lation studies. Finally, Section 5.4, showcases qualitative
results of our method. For implementation details and addi-
tional results, see the supplementary material [1].

5.1. Evaluation details

Dataset. We construct train and test splits from our dataset
of 578K samples. Our test set comprises 3,964 sequences
from 200 tasks covering the distribution over task categories
in the full dataset. To ensure sample quality, we priori-
tize samples with high DFN-CLIP alignment scores as mea-
sured in our dataset creation pipeline (Section 3). For zero-
shot evaluation of our method, we also use a random subset
of 1442 non-illustrated instructional sequences1 from the
WikiHow-VGSI dataset [62] as an additional test set.

Evaluation metrics. We evaluate our model by measuring
the correctness and consistency of the generated visual in-
structions using similar metrics as Menon et al. [41]. We
describe the used metrics next with full details available in
the supplementary material [1]. (1) Step Faithfulness [41]
measures whether each generated image Îi correctly depicts
its corresponding text instruction τi. It is computed as the
zero-shot accuracy of the DFN-CLIP model where the gen-
erated image Îi is classified into classes {τi}ni=0 of all text
instructions of the sequence. (2) Scene Consistency mea-
sures whether the generated image Îi consistently captures
the scene from the input image I0 (e.g., the same utensils
are used on the same kitchen countertop as in the input im-
age). Intuitively, a generated image Îi is considered scene-
consistent if it visually matches any frame from its source
video {Ii}ni=1 (excluding the input image to avoid trivial
copy solution). Therefore, for each generated image Îi, the
most similar image according to the DINOv2 [44] score is
retrieved from the test set images. The metric then measures
if the retrieved image is from the same video as the input.

1See the project website for the list of selected sequences.

ShowHowTo WikiHow [62]

Method Step Scene Task Step Scene
Faithf. Consist. Faithf. Faithf. Consist.

(a) InstructPix2Pix [13] 0.25 0.17 0.25 0.32 0.12
(b) AURORA [35] 0.25 0.33 0.24 0.33 0.15
(c) GenHowTo [53] 0.49 0.13 0.27 0.60 0.06
(d) Phung et al. [45] 0.36 0.03 0.38 0.46 0.04
(e) StackedDiffusion [41] 0.43 0.02 0.42 0.57 0.07
(f) ShowHowTo 0.52 0.34 0.42 0.72 0.12

(g) Random 0.19 0.00 0.01 0.26 0.00
(h) Stable Diffusion [48]† 0.70 0.03 0.44 0.84 0.03
(i) Copy of the input image 0.19 0.62 0.39 0.26 0.26
(j) Source sequences 0.50 1.00 0.56 0.60 1.00

† Generation not conditioned on the input image.

Table 1. Comparison with state-of-the-art on the ShowHowTo
and the WikiHow datasets. Out of all the visual instruction gen-
eration methods, our method best follows the input prompts while
being consistent with the input image.

(3) Task Faithfulness measures how well the generated se-
quence {Îi}ni=1 represents its intended task. It is measured
as the zero-shot accuracy of the DFN-CLIP model where
the generated sequence’s averaged feature vector is clas-
sified into all 200 test set tasks. In contrast to Menon et
al. [41], the generated sequences are evaluated holistically
rather than per-step, as often steps are not unique to a task
(e.g., “knead dough” step appears in both “Make sourdough
bread” and “Make pizza” tasks), and the classification is
done into all test set tasks rather than a small random sub-
set, providing a more robust evaluation.

5.2. Comparison with the State-of-the-Art
Compared methods. We compare ShowHowTo to state-
of-the-art methods for visual instruction generation as well
as various baselines. For image-to-image methods (a-c), we
generate the visual instructions sequence by iteratively us-
ing the last generated image as the input for the next step
generation to achieve temporal consistency. (a) Instruct-
Pix2Pix [13] is trained to manipulate input images accord-
ing to a text prompt by training on synthetic paired image
data. In contrast, (b) AURORA [35] is trained on a man-
ually curated dataset of image pairs from videos, while (c)
GenHowTo [53] extracts the image pairs for training from
instructional videos automatically.

Methods that generate image sequences (d-e) do not ac-
cept an input image, therefore, we apply the common input
masking approach, where the first denoised frame of the se-
quence is replaced by the noised ground truth frame in each
step of the generation. The (d) Phung et al. [45] method
generates consistent sequences of visual instructions by at-
tending to all frames in the sequence in the spatial atten-
tion layers. As it is a training-free method, we reimplement
it and use it with the Stable Diffusion backbone [48]. (e)
StackedDiffusion [41] is trained on WikiHow illustrated
image sequences. It generates the image sequence as a sin-
gle tiled image. Similarly to the related work, we evaluate
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Figure 4. User study results. Win rates of the ShowHowTo
method against baselines from pairwise forced decision user eval-
uations, divided into step, scene, and task. Values larger than 50%
indicate ShowHowTo is preferred over the other methods (right).

all methods in zero-shot setup without finetuning.
Lastly, we show (g) Random lower bound and vari-

ous naive baselines (h-i). (h) Stable Diffusion [48] is a
text-conditioned generative method with no input image
conditioning that generates each image independently, the
(i) Copy baseline uses the input image as the output for any
prompt. As an upper limit, (j) Source sequences uses the
original dataset frames corresponding to the text prompts.

Quantitative results. We show the results of different
methods on our ShowHowTo test set as well as on a subset
of WikiHow sequences [62] in Table 1. The methods trained
to perform localized edits (a-b) generate outputs fairly con-
sistent with the input image (see the Scene Consistency met-
ric), yet they fail to properly capture the instructions de-
scribed by the text prompts (evidenced by the Step Faith-
fulness metric). On the other hand, methods for generating
sequences of visual instructions (d-e) model the instructions
well according to the input text prompts, but they perform
poorly in scene consistency. In contrast, our method (f)
generates visual instructions that are consistent with the in-
put scene and correctly capture the action specified by the
prompt. Our method even generates images that are more
faithful to the input textual instructions than the dataset se-
quences (j) (see the Step Faithfulness metric). There are two
reasons for this: objects in real images can appear small or
occluded, impacting CLIP matching, and sometimes steps
do not appear visually in the video.

Additionally, in the supplementary material [1], we test
our method in a zero-shot setup on the GenHowTo bench-
mark [53] and report additional quantitative metrics on the
ShowHowTo dataset.

User study. We present a user study with 9 partici-
pants evaluating sequences from 100 randomly sampled
tasks from our test set. Each participant compared 50
ShowHowTo sequences with baselines using three criteria:
(1) Step Faithfulness (Which sequence better follows the
steps?), (2) Scene Consistency (Which sequence is more
likely to come from the same video?), and (3) Task Faith-
fulness (Which sequence accurately depicts the instruc-
tions for the task of [task]?). As shown in Figure 4,
ShowHowTo outperforms all baselines. Notably, users pre-
ferred our generations over sequences from source videos in

Text conditioning type Step Scene Task AverageFaithf. Consist. Faithf.

1 prompt (concatenated step prompts) 0.21 0.29 0.38 0.29
1 prompt (summarized step prompts) 0.20 0.30 0.40 0.30
1 prompt per step (τ0 = ‘an image’) 0.51 0.30 0.42 0.41
1 prompt per step (ShowHowTo) 0.52 0.34 0.42 0.43

Table 2. Ablation of step conditioning. The per-frame condition-
ing of ShowHowTo is instrumental in generating visual instruc-
tions faithful to the textual instructions.

Model training data Step Scene Task AverageFaithf. Consist. Faithf.

WikiHow-VGSI [62] 0.55 0.12 0.30 0.32
HowToStep [37] 0.39 0.33 0.29 0.34
ShowHowTo (food videos only) 0.51 0.32 0.37 0.40
ShowHowTo 0.52 0.34 0.42 0.43

Table 3. Ablation of the training data as measured on the
ShowHowTo test set. Our training dataset yields significant im-
provement over the manually curated WikiHow as well as the
closely related HowToStep due to the quality of our instructions.

42% of cases for both step and scene metrics, which may be
attributed to instructional videos not showing good views of
steps at times and the high quality of our generation. Lower
task faithfulness scores against the source sequences sug-
gest room for improvement in future methods. More details
are in the supplementary material [1].

5.3. Ablations
We evaluate the key design decisions of our proposed
method, i.e., the model conditioning, training data, and
variable sequence length training, in the next paragraphs.
Furthermore, additional performance analysis of the trained
model is available the supplementary material [1].

Text model conditioning. We evaluate how different types
of text conditioning affect model performance. For video
models, it is common to provide a single text prompt for
conditioning. However, visual instructions vary substan-
tially from one another, possibly requiring different condi-
tioning. We construct a single prompt for each sequence
by concatenating all step prompts and by summarizing the
step prompts using an LLM [20]. In Table 2, we show that
our choice of separate prompt per step significantly outper-
forms both of the single prompt variants. Additionally, we
demonstrate that using the free-form step description for τ0
outperforms the fixed prompt ‘an image’.

Training data. In Table 3, we analyze the impact of dif-
ferent training datasets by comparing our dataset with two
related instructional datasets of similar scale and task cov-
erage: (i) HowToStep [37], which contains automatically
extracted video-text sequences from cooking videos, and
(ii) WikiHow-VGSI [62], which consists of manually cre-
ated image-text sequences from WikiHow articles, where
the images primarily consist of digitally drawn illustrations.
To train on the HowToStep dataset, we select the mid-

27440



Training sequence length Step Scene Task AverageFaithf. Consist. Faithf.

≤ 4 steps 0.47 0.39 0.40 0.42
≤ 8 steps (ShowHowTo) 0.52 0.34 0.42 0.43
≤ 8 steps, randomly sampled 0.51 0.32 0.41 0.41
= 8 steps 0.56 0.26 0.42 0.41
≤ 16 steps 0.57 0.26 0.42 0.41

Table 4. Ablation of the training sequence length as measured
on the ShowHowTo test set. We compare the performance of our
model when trained on different sequence lengths.

dle frame of each video segment as the visual instruction
frame. We observe significantly worse performance caused
both by the lack of precise instruction frame information
as well as very noisy video segments (e.g., the dataset con-
tains ‘Thank you for watching!’ segments which are not in-
structional). The performance is also worse when compared
to the model trained only on the food-related ShowHowTo
sequences that are extracted from the very same videos as
the HowToStep sequences, indicating a superiority of our
sequence extraction process. Training on WikiHow-VGSI
yields higher Step Faithfulness score, likely due to the qual-
ity of manually matched images and prompts. However,
the overall performance remains significantly below our ap-
proach, as the model primarily learns from illustrated im-
ages, resulting in less consistent scene generation.

Variable sequence length. Instructions are often of vari-
able length, therefore, one of the key model requirements is
to support generating image sequences of different lengths.
While attention-based architectures allow for any sequence
length, the question is how to train such a model. We test
training the model on variable sequences of up to 4 frames,
8 frames, and 16 frames. We also train the model on se-
quences of length 8 only. In Table 4, we show that train-
ing on shorter sequences up to 4 frames results in high
Scene Consistency but low Step Correctness, while train-
ing on sequences up to 16 frames is the opposite. This can
be attributed to the fact that short sequences often keep the
same background across the whole sequence, encouraging
the model to preserve the background at the expense of the
prompt. Longer sequences, on the other hand, have more
variation of the background, e.g., as the task moves from the
counter to the hob. The model is thus less likely to enforce
the background during inference. Lastly, we also show that
it is important to train always on consecutive sequences of
visual instructions. If a subset of visual instructions from a
video is sampled randomly (with the temporal ordering pre-
served), the scene consistency is decreased (Table 4, row 3).

5.4. Qualitative Results

Qualitative results in Figure 1, Figure 6, and additional fig-
ures in the supplementary material [1] demonstrate the key
strengths of the ShowHowTo model. It consistently pre-
serves the scene as well as various objects, tools, and in-
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Figure 5. Qualitative comparison using the input image (left) and
the textual instructions (top) for the task of making a calzone. The
images from the source video are shown in the first row. Except for
ShowHowTo, methods either struggle to preserve the input scene
or to produce coherent steps.

gredients from the user-provided input image (e.g., pot and
vegetables in Figure 6, first row). It dynamically adjusts the
viewpoint to emphasize key actions. Similarly to vanilla
text-to-image and text-to-video models, our model can also
introduce plausible task-relevant objects (e.g., knives or
bowls) if these objects are not present in the user-provided
input image. Notably, the model effectively adapts human
poses to demonstrate various object manipulations (e.g.,
flower arranging in Figure 6, third row).

Figure 5 shows qualitative comparisons with related
methods. Methods for generating instructional sequences
(StackedDiffusion [41] and Phung et al. [45]) fail to pre-
serve the scene from the input image. For example, they
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cubes onto a plate.
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desired colour.
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Add more cornflour to the
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Figure 6. Qualitative results of our method for sequences from the test set. Given the input image (left) and the textual instructions
(top), ShowHowTo generates step-by-step visual instructions while maintaining objects from the input image (e.g., the cooking pot and the
ceramic bowl in rows one and four) as well as among generated images (e.g., glass bowl in the second row).

generate blue, black, or wooden kitchen countertop instead
of the glossy white one from the input image. On the
other hand, image-to-image approaches (GenHowTo [53],
AURORA [35], and InstructPix2Pix [13]) perform mini-
mal edits and propagate errors through the output image se-
quence due to iterative generation (e.g., the persistent float-
ing dough generated by the GenHowTo method).

Limitations. While our method can generate complex step-
by-step visual instructions conditioned on the input image,
it inherits the limitations of the models it is based on and
introduces new limitations stemming from the novel source
of training data. ShowHowTo model can struggle to main-
tain object states across many frames; for example, it can
generate an image with raw meat after it was cooked in pre-
vious steps. Though the model often correctly generates
common objects from instructional videos, for rare objects,
such as electrical components, the model may generate ob-

jects in physically impossible configurations. Please see the
supplementary material [1] for failure case examples.

6. Conclusion

This work explores, for the first time, generating
environment-specific visual instructions to accomplish a
user-defined task. We introduce a fully automated and
scalable pipeline to create a dataset of 578K instructional
image-text sequences from online videos, without requir-
ing any manual supervision. Using this data, we train the
ShowHowTo model to generate contextualized step-by-step
visual instructions. Experiments demonstrate superior abil-
ity to generate accurate, scene-consistent instructional steps
across various HowTo tasks, outperforming existing meth-
ods. We believe this work opens new avenues for person-
alized guidance in assistive technologies and step-by-step
goal generation for robot planning.
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