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Figure 1. Our proposed CleanDIFT feature extraction method yields noise-free, timestep-independent, general-purpose features that sig-
nificantly outperform standard diffusion features. CleanDIFT operates on clean images, while extracting diffusion features with existing
approaches requires adding noise to an image before passing it through the model. Adding noise reduces the information present in the
image and requires tuning a timestep per downstream task.

Abstract

Internal features from large-scale pre-trained diffusion
models have recently been established as powerful seman-
tic descriptors for a wide range of downstream tasks. Works
that use these features generally need to add noise to im-
ages before passing them through the model to obtain the
semantic features, as the models do not offer the most use-
ful features when given images with little to no noise. We
show that this noise has a critical impact on the useful-
ness of these features that cannot be remedied by ensem-
bling with different random noises. We address this is-
sue by introducing a lightweight, unsupervised fine-tuning
method that enables diffusion backbones to provide high-
quality, noise-free semantic features. We show that these
features readily outperform previous diffusion features by
a wide margin in a wide variety of extraction setups and
downstream tasks, offering better performance than even
ensemble-based methods at a fraction of the cost.

*Equal Contribution

1. Introduction

Learning meaningful visual representations that capture a
vast amount of world knowledge remains a key problem
in the field of computer vision. Diffusion models can be
trained at scale in a self-supervised manner and have rapidly
advanced the state of the art in image [12, 41, 51] and video
generation [13, 25, 58], making them a good candidate to
learn visual representations. Many early works have al-
ready achieved impressive results using internal features
from large-scale pretrained diffusion models for a wide
variety of tasks, such as semantic correspondence detec-
tion [62, 66, 67], semantic segmentation [2, 39, 63], panop-
tic segmentation [64], object detection [8], and classifica-
tion [31]. However, the optimal approach to extract this
world knowledge from a diffusion model remains uncertain.

To understand why that is the case, we take a look at how
diffusion models are trained: a varying amount of noise
is added to a clean input image (forward process) and the
model is tasked to remove the noise from the image (back-
ward process). The amount of added noise is dependent on
the diffusion timestep. As a result, the model learns to op-
erate on noisy images and also becomes dependent on the
noise timestep as different noise levels require the model to
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perform different tasks [1, 4]. Since noisy images inherently
contain less information than clean images (cf. Figure 2),
we hypothesize that this harms the internal feature repre-
sentation of diffusion models [9] and, thus, the extractable
world knowledge. Furthermore, the timestep acts as a hy-
perparameter that influences the internal feature representa-
tion and needs to be picked independently for every down-
stream application (cf. Figure 14).

We propose a novel feature extraction method that (1)
eliminates the need to destroy information by adding noise
to the input; and (2) produces timestep-independent generic
diffusion features useful for a wide range of down-stream
tasks, alleviating the need to tune a noising timestep per
down-stream task. We show how to adapt an off-the-shelf
large-scale pre-trained diffusion backbone to provide these
features at minimal cost (approximately 30 minutes of fine-
tuning on a single A100 GPU) and demonstrate improved
performance across a wide range of downstream tasks.

We achieve this by viewing a diffusion model as a family
of T feature extractors that operate on images with different
noise levels and provide features with different characteris-
tics. We consolidate all T feature extraction functions in our
feature extractor by aligning their internal representations.
Specifically, we initialize our feature extractor as a trainable
copy of the diffusion model; fine-tune it with clean images
and no timestep input; and align its features with all T time-
dependent feature extractors of the diffusion model.

We evaluate our improved features across a wide va-
riety of downstream tasks, such as semantic correspon-
dence matching, monocular depth estimation, semantic seg-
mentation, and classification, and find that they consis-
tently improve upon approaches based on standard diffu-
sion features. These improvements are most evident for
dense visual tasks such as semantic correspondence match-
ing, where our features show substantial performance gains
across a wide variety of setups [62, 66, 67] and set a new
state-of-the-art for unsupervised semantic correspondence
matching. Additionally, our proposed method eliminates
the need for noise or timestep ensembling [62], offering
substantial speed gains (e.g., 8ˆ over DIFT [62]), on top
of improved quality. Our method is generic and integrates
easily with established methods, such as fusing diffusion
and DINOv2 features [66, 67].
Our main contributions are as follows:
1. We propose CleanDIFT, a finetuning approach for diffu-

sion models that enables them to operate on clean im-
ages and makes the inherent world knowledge of these
models more accessible.

2. We show how to consolidate information from all diffu-
sion timesteps into a single feature prediction, removing
the need for task-specific timestep tuning.

3. We demonstrate significant performance gains of our dif-
fusion feature extraction technique across a wide range

(a) Reconstruction without Noise (b) Diffusion Model Reconstruction
with added noise (t “ 261 [62])

Figure 2. Deterioration of Diffusion Features. As current meth-
ods need to pass noisy images to the model to obtain useful fea-
tures, they significantly reduce the information available. We al-
leviate this problem by obtaining useful features without noise,
improving the performance of downstream tasks.

of down-stream tasks, notably surpassing the current
state of the art in zero-shot unsupervised semantic corre-
spondence detection. We further demonstrate the gener-
ality of our enhanced features by showing that these per-
formance gains transfer to advanced methods that fuse
diffusion features or operate in a supervised setting.

4. Our proposed approach is significantly more efficient
than previous methods that tried to address this problem
by noise ensembling or supervised training.

2. Related Work
Self-Supervised Representation Learning Features
from large, pre-trained foundation models have been shown
to yield competitive performance to supervised models
for a variety of downstream tasks, both in zero-shot and
fine-tuning settings [20, 43, 48]. These foundation models
are trained on different pre-text tasks like inpainting [20],
predicting transformations [19], patch reordering [38, 42],
and discriminative tasks [6, 43]. DINOv2 [43] uses a
discriminative objective combined with self-distillation
to learn general-purpose visual features that have proven
useful for a variety of downstream tasks [10]. CLIP [48]
learns such features by employing a contrastive objective
on text-image pairs. Masked Autoencoders [20] (MAEs)
are trained to reconstruct masked out patches of the input,
also resulting in general-purpose visual features.

Diffusion Models as Self-Supervised Learners Diffu-
sion models [24, 60, 61] are generative models that have
defined the state-of-the-art in image generation [12, 14, 41,
46, 51, 53], video generation [13, 47], and audio genera-
tion [15, 30] in recent years. Their primary purpose is to
generate high-quality samples (images, videos, etc.). How-
ever, generation can also be interpreted as a pretext task for
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learning expressive features, since the model has to build
up comprehensive world knowledge in order to generate
plausible samples [9, 17, 27, 32, 62]. Features from diffu-
sion models (typically referred to as diffusion features) are
obtained by passing a noised image through the diffusion
model and extracting intermediate feature representations.
They have been shown to be useful for a variety of tasks
such as finding semantic correspondences [21, 35, 62], se-
mantic and panoptic segmentation [2, 39, 63, 64], classifi-
cation [31], and object detection [8].

For semantic correspondence matching, features are
leveraged to identify semantically matching regions across
images. Existing approaches utilize diffusion features either
in a zero-shot setting [21, 62] or fine-tune them for the se-
mantic correspondence task [33, 35, 67]. Some zero-shot
approaches do not fine-tune on semantic correspondence
but still require tuning a prompt to activate attention maps at
the query location of the correspondence [21]. In contrast,
our approach aims to provide universal features usable for
various down-stream tasks in a true zero-shot manner.

Further, diffusion features have been shown to comple-
ment features from other self-supervised learning methods
such as DINOv2 [18, 43, 66]. DINOv2 features provide
sparse but accurate semantic information, while Diffusion
features provide dense spatial information albeit with some-
times inaccurate semantics. State-of-the-art approaches for
semantic correspondence detection exploit this and fuse fea-
tures [66, 67]. Compared to DINOv2 features, diffusion
features yield smoother, spatially more coherent correspon-
dences [66].

Distillation for Diffusion Models Knowledge Distilla-
tion [22] is a technique used to distill knowledge from a
teacher model into a student model. In the context of dif-
fusion models, this is typically applied either to reduce the
required denoising steps [54] or to distill a classifier-free
guided [23] model into one without CFG [36]. While our
approach is inspired by distillation, we consolidate features
from T different models, with T being the number of dis-
crete diffusion timesteps, because the features are different
at every timestep.

3. Method
3.1. Preliminaries
Diffusion Models Diffusion models are trained to predict
a clean image x0 given a noisy image xt, either explic-
itly or implicitly. The noisy image xt is a weighted sum
with random Gaussian noise xt “ ?

ωtx0 `?
1 ´ ωtω with

timestep-dependent coefficients ωt and noise ω „ N p0, Iq.
t P r0, T s denotes the time step of the diffusion process,
with t “ 0 corresponding to the clean image and t “ T
corresponding to pure noise.

Figure 3. Fraction of variance of diffusion features explained by
1) encoding the clean image at t “ 0 (no additive noise), and 2)
encoding just the added noise ω at t “ 999. Even at relatively low
timesteps such as t “ 261 as used by DIFT [62], a substantial part
of the features directly depends only on the added noise.

Intuitively, the model faces different objectives for dif-
ferent noise levels [1, 4]: for very high noise, there is little
information in the input, and the model is first generating
the coarse structure of the image [50]. At lower noise levels,
more high- and medium-frequency information is available
and the task shifts to generating finer details and intricate
structures. This multi-objective nature intuitively explains
why previous methods found diffusion features extracted
from different timesteps to provide information with differ-
ing semantics.

Diffusion Feature Extraction Typically, diffusion fea-
ture extraction happens after first adding noise to an image
and passing the resulting xt to a U-Net [52] denoiser. Fea-
tures are then extracted at multiple hand-picked locations
of the U-Net decoder [2, 39, 62, 66, 67]. Different levels of
noise added to the input image result in features beneficial
for different downstream applications. Typical diffusion
timesteps are t “ 261 [62], t “ 100 [66] or t “ 50 [67]. By
adding noise to the input image, these methods bottleneck
the perceptual information the model can extract. To illus-
trate this, we show Stable Diffusion 2.1’s reconstruction of
an image noised at t “ 261 [62] in Figure 2.

Diffusion Features Encode Noise We hypothesize that
diffusion features extracted from noisy images xt encode
the noise ω in addition to information from the image. We
investigate this hypothesis in a very simple setting by ex-
amining how well features featpω;T q extracted from only
the noise ω approximate the features featpxt “ ?

ωtx0 `?
1 ´ ωtω; tq. Using least squares, we fit a single scalar

approximation coefficient to obtain the optimal reconstruc-
tion. We then quantify how much of the variance of the
overall features is explained by this approximation (cf. Fig-
ure 3). Even at relatively low timesteps, such as t “ 261
used by DIFT [62], encoding pure noise explains a substan-
tial fraction of the features’ variance. Current diffusion fea-
ture methods extract this information jointly with the image
information. Our proposed method addresses this issue by
eliminating the noise from the feature extraction process.
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Figure 4. Our training setup. We train our model to predict fea-
tures from a clean input image, while the frozen diffusion model
is fed the noisy image. The projection heads project our model’s
features onto the noisy diffusion model features, given the noising
timestep t. For downstream tasks, we discard the projection heads
and directly use our model’s internal representations as features.

We further analyze the residual and similarly decompose
it via the features predicted for the clean image featpxt “
x0; t “ 0q. We find that they do not fully explain the re-
mainder of the features either. Instead, a substantial part of
the feature variance at medium noise timesteps is timestep
dependent and cannot be attributed to components present
at t “ 0 or t “ T . This matches observations by previous
works [62] that found diffusion features at higher timesteps
offer better semantics, despite the added noise at the image
input.

3.2. CleanDIFT: Noise-Free Diffusion Features
We present CleanDIFT, our method to address the problem
of noisy and time-dependent diffusion features. CleanDIFT
extracts clean DIffusion FeaTures from a pretrained diffu-
sion backbone through a lightweight fine-tuning process.
An overview of our setup is shown in Figure 4.

Extraction Setup We train our feature extraction model
to match the diffusion model’s internal representations. We
initialize the feature extraction model as a trainable copy of
the diffusion model. Crucially, the feature extraction model
is given the clean input image, while the diffusion model
receives the noisy image and the corresponding timestep
as input. Our goal is to obtain a single, noise-free feature
map from the feature extraction model that consolidates the
information of the diffusion model’s timestep-dependent
internal representations into a single one. To align our
model’s representations with the timestep-dependent diffu-
sion model features during training, we introduce point-
wise timestep-conditioned feature projection heads. The
feature maps predicted by these projection heads are then
aligned to the diffusion model’s features. For feature ex-
traction at inference time, we usually discard the projec-
tion heads and directly use the feature extraction model’s

internal representations. However, the projection heads can
also be used to efficiently obtain feature maps for specific
timesteps by reusing the feature extraction model’s inter-
nal representations and passing them through the projection
heads for different t values.

Training Objective We regard the diffusion model as
a family of feature extraction functions featp¨, ω, tq for
timestep t P r1, 999s and noise ω „ N p0, Iq. Each of these
functions maps an image x to a feature vector featpx, ω, tq.
We aim to consolidate the information provided by all fea-
ture extraction functions into a single joint function featcp¨q
with the same dimensionality:

featpx, ω, t “ 1q
featpx, ω, t “ 2q

...
featpx, ω, t “ 999q

,
///.

///-
featcpxqconsolidate

information

Stable Diffusion CleanDIFT

To align our model’s features with the diffusion model’s
features, we maximize the similarity between the diffusion
model’s features and the projected features of our feature
extraction model:

featcpxq

$
’’’&

’’’%

projp ¨ , t “ 1q !Ñ L "! featpx, ω, t “ 1q
projp ¨ , t “ 2q !Ñ L "! featpx, ω, t “ 2q

...
projp ¨ , t “ 999q !Ñ L "! featpx, ω, t “ 999q

Specifically, we minimize the negative cosine similarity be-
tween the diffusion model’s features and our model’s fea-
tures extracted at stages k “ t1, ...,Ku in the network.
Given a clean image x0, the feature extraction model’s out-
put for feature map k is denoted as featpkq

c px0q. Our Clean-
DIFT feature map is then adapted by the learned projection
heads projpkqpfeatpkq

c px0q, tq, where projpkqp¨, ¨q is the pro-
jection head for feature map k. The diffusion model re-
ceives the noisy image xt corresponding to the same x0

and timestep t. The projection head then learns a timestep-
dependent alignment from CleanDIFT features to the diffu-
sion model’s features featpkqpxt; tq. Putting it all together,
our loss function is defined as:

L “ ´
Kÿ

k“1

simpprojpkqpfeatpkq
c px0q; tq, featpkqpxt; tqq. (1)

For each training image x0, we sample I different nois-
ing timesteps ti in a stratified manner, with each timestep
ti „ Up i

IT,
i`1
I T q, where T is the maximum timestep. By

sampling multiple timesteps per image we incentivize the
feature extraction model to match the diffusion model’s fea-
tures across the entire noise spectrum.
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4. Experiments
We test our hypothesis that the proposed extraction setup
enables us to leverage more of the world knowledge in-
herent in diffusion models compared to existing diffusion
feature extraction methods while being task-agnostic and
timestep-independent. To that end, we evaluate our fea-
tures on a wide range of downstream tasks: unsupervised
zero-shot semantic correspondence, monocular depth esti-
mation, semantic segmentation, and classification. We com-
pare our features against standard diffusion features, meth-
ods that combine diffusion features with additional features,
and non-diffusion-based approaches.

4.1. Experimental Setup
Implementation Details Following previous works [62,
66, 67], we evaluate our method on a Stable Diffusion (SD)
backbone [51]. We apply our method to SD 1.5 and SD 2.1
to enable fair comparisons with existing methods that use
either. We fully fine-tune our feature extraction model on
image-caption pairs for only 400 steps, taking 30 minutes
on a single A100 GPU, which was sufficient for our strong
performance and further training did not yield any signif-
icant gains. We extract features after the U-Net’s middle
block and after each of the U-Net’s decoder blocks, except
the two final blocks. A detailed visualization of where we
extract features is provided in Figure 11. This yields a total
of K “ 11 feature maps that we align between the diffusion
model and the feature extraction model. Our point-wise fea-
ture projection heads consist of three stacked Feed Forward
Networks (FFNs) that are zero-initialized such that initially
they act as identity mappings due to their residual connec-
tions. Since every aligned feature map has its own projec-
tion head, this results in 45M additional trainable parame-
ters for SD 2.1. We study the effect of different projection
head architectures in Sec. E. We train using Adam [29] with
a batch size of 8 and a learning rate of 2e-6 with a linear
warmup. For stratified timestep sampling, we utilize I “ 3
stratification bins across all our experiments, i.e. three dif-
ferent noise levels per training image.

Datasets We fine-tune our feature extraction model on a
random subset of COYO-700M [5], which is similar to the
LAION [56], the dataset that Stable Diffusion 1.5 and 2.1
were trained on originally. That way, we ensure that all
performance improvements originate from the feature ex-
traction model consolidating the diffusion model’s internal
feature representations over time, not from choosing a dif-
ferent dataset that matches the test dataset distribution more
closely. The subset selects images with a minimum size of
5122. We crop and resize them to match the correspond-
ing input resolution of the underlying diffusion model. We
analyze the effect of using different datasets in Sec. G.

SD 2.1 Ours

Figure 5. Semantic correspondence results using DIFT [62] fea-
tures with the standard SD 2.1 (t “ 261) and our CleanDIFT fea-
tures. Our clean features show significantly less incorrect matches
than the base diffusion model.

4.2. Unsupervised Semantic Correspondence
As many previous diffusion feature methods focus on (un-
supervised) semantic correspondence matching [35, 62, 66,
67], we perform an extensive evaluation of our method on
this task. Following previous works on semantic corre-
spondence matching [62, 66, 67], we measure our perfor-
mance in Percentage of Correct Keypoints (PCK). We aver-
age PCK directly across all keypoints, not over images. We
use ω “ 0.1 as a threshold and report both PCK values with
error margins relative to the image size and to the bounding
box size, denoted as PCKimg and PCKbbox respectively. We
evaluate the performance on the test split of the SPair-71k
dataset, which consists of approximately 12k image pairs
from 18 categories. Some existing works [62, 66, 67] eval-
uate on additional datasets but find SPair-71k to be the most
challenging and therefore the most informative benchmark.
For the text prompt we use “A photo of a category.”, with
category being the corresponding category of the SPair
image. We experiment with distilling the text conditioning
in Sec. B.

Results We first compare our extracted features to
DIFT [62], an approach that detects semantic correspon-
dences using standard diffusion features. Substituting these
with our CleanDIFT features yields a performance increase
of 1.79 absolute percentage points for PCKimg and 1.86 per-
centage points for PCKbbox. Notably, DIFT averages the ex-
tracted feature maps across 8 different noise samples. With-
out this averaging over noise samples, our performance gain
is even larger (2.81 PCK@ωimg gain). This indicates that
our feature extraction model learns more than a mere aver-
aging over the noise in the diffusion model’s feature maps
(see Figure 5 and Sec. C for examples). We present an
extended version of the time-step dependent performance
analysis conducted by [62] in Figure 6: We evaluate the
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Figure 6. Following [62], we evaluate semantic correspondence
matching accuracy for different noise levels. Our feature extrac-
tor outperforms the standard noisy diffusion features across all
timesteps t. We additionally demonstrate that simply providing
the diffusion model with a clean image and a non-zero timestep
does not result in improved performance.

diffusion model’s performance for different timesteps t in
two settings. In the first setting, we provide the diffusion
model with a noisy input image xt as usual. In the second
setting, we demonstrate that feeding the clean image along
with a non-zero timestep is not a viable solution to obtain
meaningful features: We provide the diffusion model with
the clean input image x0 for all timesteps t. We observe
that the model’s performance for the clean input image de-
grades faster and has a lower peak than for the noisy input.
This is to be expected, as the diffusion model was trained
on noisy images, not clean images. Importantly, our Cle-
anDIFT features are timestep-independent and consistently
outperform standard diffusion features, even when the latter
are optimized for the best-performing timestep. We further
observe that this advantage generalizes effectively to other
backbones, such as DiTs [44] (see Tab. 7).

A Tale of Two Features [66] extends the approach of
DIFT by combining diffusion features with DINOv2 [43]
features. Again, we replace the standard diffusion features
with our CleanDIFT features and observe that the perfor-
mance gain transfers when combining our features with DI-
NOv2 features. Telling Left from Right [67] further im-
proves upon the results of A Tale of Two Features by in-
troducing a test-time adaptive pose alignment strategy. We
observe that the performance gain transfers to this setting as
well. To the best of our knowledge, Telling Left from Right
combined with our CleanDIFT features sets a new state-of-
the-art in unsupervised zero-shot semantic correspondence
matching. In summary, replacing standard diffusion fea-
tures with our CleanDIFT features consistently results in a
significant performance improvement across all three meth-
ods. We show an overview of the results in Tab. 1 and a
more extensive evaluation per category in Sec. B.

We also investigate the performance of our features in a
supervised fine-tuning setting for semantic correspondence
matching. Following [35], we train an aggregation network
that uses all extracted feature maps and learns to aggre-
gate them into a single task-specific feature map for se-
mantic correspondence matching. In contrast to [35], we
do not have to perform costly DDIM inversion [59] to ob-
tain a matching noisy image for every timestep. Instead,

Method Our
Features

PCK@ω pÒq
ωimg = 0.1 ωbbox = 0.1

General Approaches
DINOv2+NN - - 55.6

Diff. Feat.-based Approaches

DIFT [62] ✁ 66.53 59.57
✂ 68.32!1.79 61.43!1.86

A Tale of Two Features [66] ✁ 72.31 63.73
✂ 73.35!1.04 64.81!1.08

Telling Left from Right [67] ✁ 77.07 68.64
✂ 78.40!1.33 69.99!1.35

Table 1. Zero-shot unsupervised semantic correspondence match-
ing performance comparison on SPair71k [37]. Our improved fea-
tures consistently lead to substantial improvements in matching
performance. We report PCK on the test split of SPair71k, ag-
gregated per point. Numbers are reproduced, for a discussion and
comparison to reported numbers view Tab. 5.

we directly feed the clean image to our feature extraction
model. Therefore, extracting features with our CleanDIFT
approach is 50x faster, since we perform a single denoiser
forward pass while [35] perform 50 for the inversion. Our
model achieves a PCKimg value of 72.48 vs their 72.75 and a
PCKbbox value of 64.37 vs their 64.53. We observe a slight
performance regression compared to their approach, how-
ever, at a speedup of 50ˆ. Luo et al. [35] also present a
single-step ablation of their full method that only requires
a single forward pass which makes it more comparable to
ours. We outperform this single-step version by a wide mar-
gin of 9.0 percentage points for PCKimg and 9.1 percentage
points for PCKbbox.

4.3. Depth Estimation
We also investigate monocular depth estimation on
NYUv2 [40]. Similar to [43], we follow the evaluation pro-
tocol from [34]. We use SD 2.1 as the base model and resize
the input to the model’s native resolution of 7682. We ex-
tract features from the same location as [62] and obtain a
feature map of dimension 482. Unlike [43], we do not up-
sample the features and directly apply the linear probe. The
probe predicts depth in 256 uniform bins which we com-
bine with a classification loss after a linear normalization
following [3]. We train one probe for our CleanDIFT fea-
tures and one for standard diffusion features at t “ 299,
as that timestep minimizes the error in our settings. Our
qualitative results (see Figure 7) show a substantial fidelity
gap in the estimated depth maps between the features from
the standard SD 2.1 backbone and the features from our
feature extraction model. This is reflected in a substan-
tial improvement in quantitative metrics over the baseline
as seen in Tab. 2. Lastly, we reuse the probe trained on
standard diffusion features and apply it on the CleanDIFT
features. While this does not match the performance of the
CleanDIFT probe, it still achieves significantly better re-
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Input Ours SD 2.1t“299 Ground Truth

Figure 7. Qualitative results for depth estimation using a linear
probe on diffusion features on NYUv2 [40]. Our CleanDIFT fea-
tures enable substantially better depth estimation than standard
diffusion features. Note how the CleanDIFT features are far less
noisy when compared to the standard diffusion features.

Method Backbone RMSE (Ó)

Self-Supervised Methods
OpenCLIP [28] ViT-G/14 0.541
MAE [20] ViT-H/14 0.517
DINO [6] ViT-B/8 0.555
iBOT [68] ViT-L/16 0.417
DINOv2 [43] ViT-g/14 0.344
Diffusion Features

DIFT-like [62]
SD 2.1 [51] 0.469
Ours 0.444"0.025
+ Probes from noisy features 0.453"0.016

Table 2. Monocular Depth Estimation. Following [43], we evalu-
ate metric depth prediction on NYUv2 [40] using a linear probe.
Our clean features outperform the noisy features by a significant
margin. Probes trained on the noisy features can be reused for the
clean features, but incur a smaller performance gain.

sults when compared to using standard diffusion features.
This indicates that our features can be used as a drop-in
replacement for the original diffusion features and offer im-
proved performance on downstream applications.

4.4. Semantic Segmentation
To further investigate the difference between standard noisy
diffusion features and our CleanDIFT features, we evaluate
on the semantic segmentation task by training linear probes
on our CleanDIFT features and on standard diffusion fea-
tures. We utilize SD2.1 as the diffusion backbone and ex-
tract features at the same location as [62]. This procedure
yields feature maps of size 482. We train our linear probe
on the 482 feature maps and upscale the obtained segmen-
tation masks using nearest neighbor upsampling. We train
and evaluate on the PASCAL VOC dataset [16]. Follow-
ing common practice [39], we use mean Intersection over
Union (mIOU) as the evaluation metric. Qualitative re-

Input Ours SD 2.1 Input Ours SD 2.1

Figure 8. Qualitative results for semantic segmentation from dif-
fusion features on Pascal VOC [16]. Standard SD features use
t “ 100 as the timestep, which we found to perform best quantita-
tively (cf. Figure 9). Note how the CleanDIFT segmentation maps
are far less noisy than those of the standard diffusion features.

Figure 9. Performance on semantic segmentation using linear
probes. Our clean features outperform the noisy diffusion features
for the best noising timestep t. Semantic segmentation perfor-
mance of a standard diffusion model heavily depends on the used
noising timestep. Unlike for semantic correspondence matching,
the optimal t value appears to be around t “ 100.

sults are shown in Figure 8. Using our features, we ob-
serve significantly less noisy segmentations than with stan-
dard diffusion features. We show a quantitative comparison
of our CleanDIFT feature’s performance against standard
diffusion features across timesteps in Figure 9. Notably,
the optimal timestep appears to be around t “ 100, in con-
trast to the optimal timestep for semantic correspondences,
which [62] found to be t “ 261. This highlights the need
for tuning a timestep individually per downstream task. Our
method both alleviates the need for such a timestep tuning
and outperforms the standard diffusion features for the op-
timal timestep.

4.5. Classification
To assess the impact of our method on non-spatial tasks,
we evaluate classification performance using pooled fea-
tures. Pooling mitigates the influence of localized noise,
so we anticipate classification performance to remain on
par with standard diffusion features unless our setup intro-
duces detrimental effects. We perform k-Nearest Neighbor
(kNN) classification with k “ 10 on ImageNet1k [11], us-
ing SD 1.5 as the diffusion backbone. We sweep across fea-
ture maps and timesteps t for the base model, with results
presented in Figure 10. Our analysis shows that the fea-
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Figure 10. Classification performance on ImageNet1k [11], using
kNN classifier with k “ 10 and cosine similarity as the distance
metric. We sweep over different timesteps and feature maps. We
find that the feature map with the lowest spatial resolution (feature
map #0) yields the highest classification accuracy.

ture map with the lowest spatial resolution, i.e., feature map
#0 (see Figure 11), achieves the highest classification accu-
racy. Furthermore, the optimal timestep t for the base model
varies between feature maps. For the best-performing fea-
ture map, t “ 100 yields the highest classification accuracy.

Importantly, CleanDIFT features slightly outperform the
standard diffusion features even when using an optimal
timestep t for the base model showing that it does not in-
troduce any detrimental effects.

4.6. Ablation Studies
For simplicity, we perform our ablation studies using DIFT
[62] and evaluate the performance for unsupervised zero-
shot semantic correspondence matching on a subset of the
SPair71k [37] test split.

Training Objective During training, we maximize the
cosine similarity between projected outputs of our feature
extraction model and standard diffusion features to align
them. To investigate the influence of the employed simi-
larity metric, we compare feature extraction models trained
on three different alignment objectives commonly used in
similar contexts: mean absolute error (L1), mean squared
error (L2), and cosine similarity. Quantitative results are
provided in Tab. 3. While all objectives result in feature
extraction models that outperform standard diffusion fea-
tures, cosine similarity consistently performs the best across
the alignment objectives by a significant margin, confirming
our choice of similarity metric.

Projection Heads We investigate the influence of our
proposed projection heads that are used to project Clean-
DIFT features onto standard diffusion features. The align-
ment of feature extraction model and diffusion model is
determined by the utilized similarity metric and the pro-

Objective
Projection

Heads
PCK@ω pÒq

ωimg “ 0.1 ωbbox “ 0.1

Cosine Sim. ✂ 68.32 61.43
✁ 68.16 61.29

L2
✂ 66.23 59.13
✁ 66.49 59.43

L1
✂ 66.91 60.00
✁ 66.87 59.91

SD 2.1 - 63.41 55.92

Table 3. Ablation Study Results. We evaluate the feature extrac-
tion models’ performance for zero-shot semantic correspondence
matching on the SPair71k test split. PCK is aggregated per point.

jection heads. Therefore, we evaluate our feature extrac-
tion model’s performance with and without the projection
heads in combination with all three similarity metrics. An
overview of the comparison is given in Tab. 3. In our main
configuration that uses cosine similarity, using the projec-
tion heads yields slight performance improvements of 0.24
percentage points for PCKimg and 0.06 percentage points
for PCKbbox compared to fine-tuning without the projec-
tion heads. As the projection heads are typically not used
for inference, they add computational overhead only during
the lightweight fine-tuning. Therefore, we argue that it is
worthwhile to include them and leverage the small perfor-
mance gain. Additionally, they can be reused to efficiently
obtain feature maps for specific timesteps.

5. Conclusion
In this paper, we introduced CleanDIFT, a novel approach
for extracting diffusion features. CleanDIFT produces
noise-free, timestep-independent, general-purpose diffu-
sion features by consolidating timestep-dependent repre-
sentations from a pre-trained diffusion backbone into a uni-
fied feature representation. We achieve this alignment be-
tween our feature extraction model and the pre-trained dif-
fusion backbone through a lightweight fine-tuning proce-
dure that takes approximately 30 minutes on a single A100
GPU. Operating directly on clean images, our method elim-
inates the information loss associated with adding noise to
input images. Furthermore, CleanDIFT removes the re-
quirement for tuning timesteps for each downstream task
and avoids the computational overhead of ensembling over
noise levels or timesteps. Instead, our method efficiently
extracts features with just a single forward pass at infer-
ence time, substantially reducing inference costs compared
to methods relying on ensembling or inversion. Exten-
sive evaluations of CleanDIFT across diverse downstream
tasks demonstrate significant performance improvements
over conventional diffusion features.
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Mézard. Dynamical regimes of diffusion models. arXiv
preprint arXiv:2402.18491, 2024. 2, 3

[5] Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun
Lee, Woonhyuk Baek, and Saehoon Kim. Coyo-700m:
Image-text pair dataset. https://github.com/
kakaobrain/coyo-dataset, 2022. 5

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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