
Quaffure: Real-Time Quasi-Static Neural Hair Simulation

Tuur Stuyck∗ Gene Wei-Chin Lin∗ Egor Larionov Hsiao-yu Chen
Aljaz Bozic Nikolaos Sarafianos Doug Roble

Meta Reality Labs
∗equal contributions

Figure 1. We present Quaffure, a real-time quasi-static neural hair simulator, which produces naturally draped hair in only a few millisec-
onds on commodity hardware, taking the hairstyle, body shape and pose into account. Our method scales to predicting the drape of 1000
hair grooms in just 0.3 seconds. Quaffure is trained using a physics-based self-supervised loss, eliminating the need for simulated training
data that is costly and cumbersome to obtain. We show that our method works for a wide variety of body shapes and poses with a range of
hairstyles varying from straight to curly, short to long.

Abstract

Realistic hair motion is crucial for high-quality avatars, but
it is often limited by the computational resources available
for real-time applications. To address this challenge, we
propose a novel neural approach to predict physically plau-
sible hair deformations that generalizes to various body
poses, shapes, and hairstyles. Our model is trained using
a self-supervised loss, eliminating the need for expensive
data generation and storage. We demonstrate our method’s
effectiveness through numerous results across a wide range
of pose and shape variations, showcasing its robust gener-
alization capabilities and temporally smooth results. Our
approach is highly suitable for real-time applications with
an inference time of only a few milliseconds on consumer
hardware and its ability to scale to predicting the drape of
1000 grooms in 0.3 seconds.

1. Introduction

Hair is a crucial aspect of realistic avatars, playing a vi-
tal role in real-time applications such as games and telep-
resence, as well as offline generation of digital characters
for film. Over the past decades, computer graphics re-
search has devoted significant attention to the topic of hair,
in order to create believable and engaging virtual charac-
ters. Hair modeling is a complex process that involves mul-
tiple stages, including grooming, simulation, and render-
ing. Previous research has explored various approaches to
hair motion modeling, including physics-based simulations
[7, 15, 43] and data-driven methods [11, 39, 40]. However,
hair remains a challenging phenomenon to model due to the
high number of degrees of freedom required to represent a
full head of hair, which typically consists of hundreds of
thousands of strands. To make hair motion modeling more
tractable, it is common practice to model a full groom with a
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limited number of strands, often referred to as guide strands.
This approach involves modeling a subset of strands to rep-
resent the full groom, and then recovering the full resolution
hair groom from these guide strands for rendering [13].

Simulating the dynamics of hair motions has received
significant attention in the field. Several approaches have
been developed to model the behavior of hair strands rang-
ing from efficient mass-spring systems [33] to rod mod-
els [2, 21, 38] able to model bending and twisting, pro-
ducing complex coiling motions to volumetric approaches
[1, 26, 29]. Despite impressive visual results, these mod-
els still require large computational resources making them
ill-suited for real-time applications. Many advances in the
field of physics-based simulation has resulted in efficient
algorithms that are able to exploit parallelism of GPU hard-
ware, resulting in real-time simulations [5, 25, 27]. How-
ever, these still require dedicated hardware resources [7, 43]
and compute time might vary based on the resolution and
number of the hair strands as well as the number of colli-
sions occurring in the scene. Additionally, physics-based
simulation can often be unstable and require significant pa-
rameter tuning, often leading to unpredictable or undesir-
able results. To address this, subspace simulation has been
applied to hair dynamics but this remains limited to mod-
els that overfit to a single groom only [6]. Learned simu-
lators [24, 51] have shown promise for modeling real-time
hair dynamics but require large data sets, which are cum-
bersome to obtain. In general, supervised learning requires
training data, which needs to be generated using physics-
based simulation. This is both expensive in terms of time
and storage required but also requires expert knowledge and
access to specialized tools to produce. There is no publicly
available data set that could be leveraged.

In this paper, we propose a novel and efficient neural
hair simulation approach to model hair quasi-statics. Our
method leverages a learning-based method to predict phys-
ically plausible hair deformations, while also generalizing
to various body poses and shapes. We opted for training in
a self-supervised manner, eliminating the need for expen-
sive data generation and storage. Our approach achieves an
inference performance of just a few milliseconds on stan-
dard consumer hardware, without requiring elaborate code
optimizations or specialized hardware features. In contrast
to physics-based simulation methods, the inference time of
our approach is fixed and is independent of the number of
strands in the groom or number of collisions in the scene.
Our results are stable and the method scales to predicting
hundreds of grooms simultaneously at interactive rates. In
summary, our contributions are
• A hair decomposition strategy consisting of a hair pose

module and a learned corrector, which enables the use
of an efficient neural decoder able to produce quasi-static
hair results in milliseconds and scales to running a thou-

sand grooms at interactive rates.
• We are the first to propose a self-supervised learning ap-

proach for hair that completely eliminates the necessity of
computing and storing large amounts training data, which
would require expert knowledge and access to specialized
tools to produce.

• A modified formulation of the Cosserat energy for mod-
eling hair. Our formulation is efficient in its evaluation
and we demonstrate that it is well-suited for neural net-
work training. Our proposed model is able to preserve
hair strand shape for a wide range of hairstyles including
very curly hair.

• We demonstrate how a single trained network efficiently
models different hairstyles, generalizing to body poses
and shapes.

2. Related work
Strand-based Hair Reconstruction. In recent years there
has been significant progress in hair reconstruction re-
search. Recovering hair strands has been especially sought
after, since hair reconstructed as strands can easily be inte-
grated into existing game engines, to be animated and ren-
dered with physics-based simulation and rendering. Neural
Strands [31] represent the hair groom as a neural texture on
the head scalp, where each texel feature can be decoded into
an explicit strand. This representation was later trained on
a dataset of synthetic grooms, to provide prior for strand-
based hair fitting to multi-view images [36]. Zhou et al.
[52] proposes a prior-free reconstruction approach. It was
extended to support text-guided hair generation in HAAR
[37]. The fitting quality was further improved in [23, 45, 48]
by additionally decoding Gaussian splats [18] along the
strands, representing hair appearance. Instead of requiring
multi-view capture, several works explored strand-based
hair reconstruction from a dynamic monocular video [46]
or just a single image [44, 50], where volumetric 3D hair
orientations were used to model hair geometry. To achieve
the highest reconstruction quality, Shen et al. [35] captured
volumetric CT scans to reconstruct strand-based grooms.
Learning-based Hair Models. To either accelerate or im-
prove the realism of physics-based simulation or rendering
methods, many learning-based hair models have been intro-
duced. Wang et al. [40] use a hybrid representation, with
volumetric primitives aligned along guide strands to model
hair appearance under motion. To simplify fitting to real
observations, Wang et al. [39] used a mixture of volumetric
primitives that jointly represent hair geometry and appear-
ance. A unified latent representation for diverse hairstyles
has been explored in [12, 51], where explicit strand ge-
ometry is encoded into a latent space using a variational
autoencoder (VAE) [51] or a generative adversarial net-
work (GAN) [12], enabling hair generation and interpola-
tion across hairstyles. To accelerate hair simulation, Guan
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Figure 2. Quaffure Overview: Our method takes a code as input, consisting of a latent code for the rest hair shape, body shape parameters,
and full skeleton pose. The output is naturally draped hair produced as the sum of posed hair given the body pose and shape parameters,
combined with learned corrections which are produced by the groom deformation decoder. We train our method in two stages: i) an
autoencoder is trained on all hairstyles to obtain a groom latent code, and ii) the groom deformation decoder is trained in a physics-based
self-supervised fashion. The hair strands are encoded in a 2D texture representation (left) where strands are encoded in the pixel in which
the root particle is located. The figure shows how the 3D scalp geometry (bottom) is mapped to a high dimensional 2D texture map (top).

et al. [11] proposed a multi-linear model for representing
hair dynamics, and Lyu et al. [24] introduced a neural up-
sampler to efficiently convert a low number of guide strands
into dense hair.
Physics-based Hair Models. Realistic hair simulation [41,
42] has been an active area of research in computer graph-
ics for decades. To achieve high-fidelity results, it is nec-
essary to simulate every individual strand and their inter-
actions with each other. Common elastic models used for
strand-based hair include mass-spring models [33] and elas-
tic rods [2, 21, 38]. In addition, complex hair-hair interac-
tions such as self-collision [26] and friction forces [17] are
also important for realistic behavior. Several reduced mod-
els have been developed to lower the computational budget
for real-time hair simulation. One idea is to simulate the
hair as layered elastic bodies [4, 47], while another sug-
gests representing a group of hairs as strips [19, 20]. The
most popular approach is to simulate a subset of the over-
all hair as guide strands and interpolate between the guides
for individual strand detail [6, 13]. Hu et al. [14] propose
a method to automatically determine simulation parameters
from video footage.
Physics-based Self-supervised Learning. Data-driven
methods have been successful in the field of simula-
tion [9, 30, 49]. However, data-driven methods do not
ensure that the simulated system adheres to physical con-
straints, which can result in non-physical states. To ad-
dress this, researchers have proposed incorporating physics
energy loss directly into the training process to eliminate
the need for generating large amounts of data and to en-
able better generalization. Physics-based self-supervised
methods have shown promise in learning a reduced latent
space for quasi-static states of rigid motion [34] and cloth
drapes [8], which has been expanded to dynamic motions
of cloth [3, 10, 16, 32]. However, there is limited research
on hair simulation. The neural simulator of GroomGen [51]

only demonstrated hair deformation for varying gravity di-
rections, while our method is the first to apply a physics-
supervised method for hair that generalizes to full motions
and incorporates collision under different poses and body
shapes.

3. Methodology
Our approach shown in Figure 2, enables real-time estima-
tion of posed quasi-static hair xhair based on hairstyle, body
shape and pose. We achieve this by splitting the problem at
hand in two parts. First, a simple and efficient groom trans-
formation model transforms the hair groom rigidly with
body pose and shape variations expressed as xposed. Sec-
ond, to model the groom specific pose and shape dependent
variations xdeformation, we train a network to produce defor-
mation fields, which when added to the posed hair, result in
a physically plausible quasi-static drape that takes physical
effects such as gravity and collisions into account. The final
hair drape is simply obtained as xhair = xposed + xdeformation.

3.1. Representation

We encode all hair geometry into a texture based represen-
tation based on the UV map of the scalp geometry as shown
in the left of Figure 2. Where a hair strand root particle
falls into a pixel in the map, we encode a high dimensional
feature, which represents the strand geometry. For a texture
with height and width T and a groom with N vertices per
strand, the encoding is of dimension RT×T×N×3.
Body Model: Our body model consists of body geometry
rigged with a skeleton model, which enables the body ge-
ometry to change pose using linear blend skinning. The
skeleton pose is represented using a set of pose parameters
θ ∈ R81. To model variations in body shape, we leverage
a statistical body model. This model has been constructed
from a large data set of human body scans, to which our
body geometry has been registered. Body shape variations
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Figure 3. Pose & Shape-based Deformations: Example of posed
groom (top) which accounts for rigid rotations and translations of
the rest shape only and the combined posed groom with learned
deformations (bottom), which accounts for physical effects such
as strand material model, gravity and collisions. Despite body
intersections incurred by the rigid transformation applied by the
groom transformation module, our proposed network resolves all
collisions with the body after applying the learned deformations
(bottom). Note the significant change resulting in a natural drape.

are modeled as variations on top of an average shape and
are parameterized using body shape coefficients β ∈ R10.

3.2. Groom Autoencoder

We leverage an autoencoder to obtain a compact represen-
tation for all the different grooms in their rest shape. This
model is trained separately and produces compact latent
codes in R16 to distinguish different hairstyles. The au-
toencoder input and output are grooms encoded on the scalp
as high dimensional texture maps. The autoencoder struc-
ture is made up of 2D convolutional down and up sampling
layers for the encoder and decoder respectively. Once the
groom autoencoder is fully-trained, we discard its decoder
since we are only interested in the latent groom codes pro-
duced by the encoder. The weights of the encoder are frozen
for the follow-up training of the groom deformation decoder
discussed in Section 3.4.

3.3. Pose-based Groom Transformation

Our pose-based transformation module rigidly transforms
the groom in rest shape to account for any rotation and
translation changes of the head motion based on the skele-
ton pose. Every individual hair strand is attached to a scalp
triangle at the root. Given the rest configuration, we com-
pute a local coordinate system based on the triangle edges
and compute embedding of the hair strand vertices in this
local axis. This allows us to efficiently update the strand
geometry to move rigidly with the head motion and shape
deformations. The top row of Figure 3 shows example re-
sults of the pose-based groom transformation.

3.4. Groom Deformation Decoder

While the pose-based transformation moves the groom
rigidly with the scalp, accounting for global rotation and
translation effects, it does not include any deformation as
a result of varying external forces resulting from changing
body pose and shape. The pose-dependent draping effects
are accounted for by the groom deformation decoder that
produces deformations that, when added to the transforma-
tion module’s output, produce a physical drape that reacts
naturally to gravity and collisions with the underlying body.
This module is implemented using a 2D convolutional neu-
ral network that takes a vector in R107, which encodes
the groom latent code, the body shape parameters and the
body pose parameters. This input vector is transformed by
the network into a texture map of dimension RT×T×N×3,
which encodes the displacements for the vertices along the
hair strands. This decoder is trained using a self-supervised
loss. Visual results of adding posed based correctives to the
rigid groom transformation are shown in Figure 3.

3.5. Physics-Based Self-Supervision

We formulate a physics-based loss in order to guide the
network to produce physically plausible quasi-static drapes
for different grooms under different pose and body varia-
tions without the need to pre-compute any simulation data.
The proposed loss function is designed to capture the dif-
ferent components that enable the hair to settle in a phys-
ically plausible way. This includes the elastic potential of
the strands, which limits stretching, bending and twisting of
the individual strands, the gravitational pull, the collisions
with the underlying body, and the collisions between the
hair strands themselves. Additionally, we add a pose reg-
ularizer to produce smoothly varying results for smoothly
varying skeleton motion sequences. Thus the total consist
of the following terms:

L = Lelastic potential + Lgravity + Lbody collision

+ Lself collision + Lpose reg
(1)

Elastic Potentials: The elastic potentials allow hair defor-
mation while preserving the length and curvature of each
strand. To better preserve the natural curliness of a hairstyle,
We first incorporated the Cosserat rod model [21] into our
system by introducing additional orientation information
(stored as unit quaternions q = (q0,qT )T ∈ H with the
scalar part q0 and the vector part q) for each hair segment
and optimizing for the additional orientation offsets. Our
elastic potential is in the form:

Lelastic potential = Lstretch shear + Lbend twist + Lunit quaternion,
(2)

where the Cosserat stretch-shear energy:

Lstretch shear =
1

2

∑
edges

kstretch shearΓ
TΓ, (3)
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is computed from the discrete stretch-shear strain measure
Γ = xi+1−xi

lrest
− ℑ(qie3q̄i) for a hair segment i, with rest

length lrest, end points xi+1 and xi, orientation qi and fixed
coordinate basis {e1, e2, e3}, where ℑ() is the imaginary
part of the quaternion product. Similarly, the Cosserat bend-
twist energy:

Lbend twist =
1

2

∑
edge pairs

kbend twistΩ
TΩ, (4)

is computed from the discrete bend-twist strain measure
Ω = 2

lrest
(ℑ(q̄iqi+1)−ℑ(q̄0i q0i+1)) for each consecutive hair

orientation pair qi and qi+1, with rest orientations q0i and
q0i+1. An additional unit quaternion constraint is needed for
correct bend-twist strain measure, this is enforced for each
orientation q:

Lunit quaternion =
1

2

∑
edges

kunit quaternion(||q|| − 1)2. (5)

Although this full Cosserat rod model, which optimizes for
both position and orientation offsets, can enable realistic
modeling of hair, we observed impractically slow training
times and in combination with slow convergence, this ap-
proach was deemed infeasible. Instead, we propose an al-
ternative formulation, which optimizes for position offsets
only with the following modified Cosserat potential:

LCosserat =
1

2

∑
edges

kCosseratΓ̃
T Γ̃, (6)

where Γ̃ = xi+1−xi
lrest

− d3, with d3 being the unit di-
rector along the edge, computed from the rigidly trans-
formed groom. As the modified Cosserat potential penal-
izes stretching and shearing simultaneously, we observed
that hair would become overly rigid when a large stiffness
value kCosserat is used (which is common as hair is almost
inextensible). Therefore, to relax kCosserat for more natural
hair deformation, we model resistance to stretching explic-
itly by adding a Hookean potential to penalize the length l
of each hair segment to be close to lrest:

Lstretch =
kstretch

2

∑
edges

(l − lrest)
2. (7)

Alternatively, one can choose to use the potential that penal-
izes shearing only: Γ̃ = xi+1−xi

l − d3, with l being the seg-
ment length. In practice, we observed similar results from
both potentials. Our final elastic potential include only two
terms and we observe orders of magnitude faster training
time when compared with the full Cosserat rod model

Lelastic potential = Lstretch + LCosserat. (8)

Gravity: The gravity potential is modeled using the poten-
tial energy of the hair nodes with positions x as:

Lgravity =
∑

vertices

−mg⊤x, (9)

where g is the gravitational acceleration and m is the parti-

cle point mass.
Body Collision: To prevent the hair strands from intersect-
ing with the body geometry, we implement a vertex-triangle
based collision model to maintain a minimal distance D
between the predicted hair and the outward facing side of
the body geometry. We exploit the face normal information
to ensure the collision response is pointing outwards of the
body. The loss is formulated as follows:

Lbody collision = kbc

∑
vertices

max (D − d (x) , 0)
3
, (10)

where d computes the signed distance along the body trian-
gle normal direction and kbc is the collision stiffness. Body
triangle normals are facing outwards by convention.
Self-Collision: Inspired by work on volumetric methods
for hair [1, 26, 29], we model hair self-collisions using
Smoothed Particle Hydrodynamics (SPH) density estima-
tion. Our energy potential is designed to push vertices apart
when they exceed the reference density computed from the
rest shape in a smooth and differentiable way:

Lself collision = ksc

∑
vertices

max (ρ(x)− ρrest, 0)
3
, (11)

ρ(x) =
∑
j

mjW (||x− xj ||, h) , (12)

using the smoothing kernel proposed by Bando et al. [1]:

W (r, h) =


4− 6

(
r
h

)2
+ 3

(
r
h

)3
0 ≤ r ≤ h(

2− r
h

)3
h ≤ r ≤ 2h

0 2h ≤ r

(13)

where ρrest is the density computed from the rest groom and
h is the SPH smoothing length.
Pose Regularization: We add a final loss to encourage the
groom deformation decoder to predict smoothly varying de-
formations for smoothly varying input pose signals. During
training, for every randomly sampled pose from our motion
capture data set, we include Npose reg continuous frames and
penalize the difference with respect to the average deforma-
tion in predicted outputs for consecutive frames as:

Lpose reg = kpr

Npose reg∑
i=0

||x̄deformation − xi
deformation||2 (14)

where x̄deformation is the average of xi
deformation over all

Npose reg continuous frames per randomly selected pose.

4. Experiments
Dataset: We train our networks using the CT-groom data
set [35] complemented with additional grooms made by
technical artists to showcase a wider variety of hairstyles
our method is capable of simulating.
Metrics: To evaluate our approach we opted for three key
metrics: i) the length preservation of the hair strands mea-
sured on the segment lengths, ii) the percentage of intersec-
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Figure 4. Modeling Diverse Hairstyles: We showcase the versatility of our method in modeling the quasi-static behavior of a plethora
of hairstyles and lengths for different body shapes and poses where all results are obtained using the same settings without any manual
parameter tuning. Our results cover short/medium/long hair, with various levels of curliness, including straight, wavy, curly, and kinky.

Figure 5. Resolving Collisions: Our method is conditioned on the
body shape parameters, enabling it to efficiently resolve collisions
with body shape variations. Here we show a static pose and groom
under quasi-statically draped under varying body shapes.

tions between the hair and the body, and iii) the preservation
of the hair shape measured from the segment orientations.

Baselines: We compare our method against two
optimization-based approaches (Adam, L-BFGS) and one
simulation (XPBD [25]) baseline. We additionally compare
to a recent related work GroomGen [51], which presented
a neural quasi-static simulator using supervised training.
GroomGen only showed results for varying gravity direc-
tions for a single fixed pose and shape, whereas our method
generalizes to different shapes and poses. All images show
the predicted strands directly without any hair interpolation
to provide a fair assessment. When rendering hair for the
final application, hair interpolation [13] can be leveraged to
obtain the full set of hair strands.

Implementation Details: In all of our results, strands con-
sist of N = 24 vertices, which are encoded into 64 × 64
texture maps. This choice of texture dimensions provides us
with the ability to model several thousands of hair strands,
which is sufficient for guide hair simulation. We implement
our method with PyTorch [28], with training and inference
measurements performed on an AMD Ryzen Threadrip-
per PRO 3975WX CPU and a single NVIDIA RTX A6000
GPU. We refer the reader to the supplementary material for
additional details.

4.1. Qualitative Comparisons

Body Pose and Shape Generalization: Our deformation
decoder network is able to ingest body shape parameters di-
rectly and effectively learns to adapt the deformations of the
hair strands to produce intersection free results for a large
variety of body shapes. Figure 4 showcases a large sample
of pose variations for a diverse set of grooms while in Fig-
ure 5 we demonstrate body shape generalization. Implausi-
ble deformations are possible when deforming the body in
non-physical ways, e.g. when bending the neck backwards
beyond limits feasible in real-life and thus absent from our
training data set.
Temporal Stability: Our method demonstrates excellent
temporal stability in its predictions when the pose parame-
ters are smoothly varied. This is evident in Figure 6, where
the hair smoothly slides over the shoulder as the head turns,
avoiding any self-penetration with the body. The supple-
mental material shows video results.
Groom Generalization: We prioritize real-time perfor-
mance for our approach, therefore opting for a smaller net-
work structure that enables real-time inference results. We
show that our model can handle at least 10 distinct grooms.
In the supplemental material, we demonstrate that the net-
work already shows some generalization properties for un-
seen grooms when they are similar to the training set.

4.2. Quantitative Comparisons

Comparisons: The quantitative results are listed in Table 1.
As expected, directly modifying the simulated hair posi-
tions, either using Adam, L-BFGS or XPBD simulation to
minimize the loss produces the highest quality results but
at a high computational cost. Neural methods like Groom-
Gen and ours are orders of magnitude faster. Our method
produces significantly better quantitative results when com-
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Table 1. Quantitative Comparisons. We compare our method
to several optimization and simulation baselines as well as related
work. Our method displays comparable metrics to directly opti-
mizing for the positions but does so orders of magnitude faster.
Compared to the state-of-the-art method GroomGen, our method
produces better quality metrics while being generalizable to body
shape and pose, with comparable compute performance, providing
the best trade-off between speed and quality. Gravity potentials are
provided for reference.

Method
(↓) Time (↓) % body (↓) Length (↓) Orientation Gravity

in seconds Intersection Preservation Preservation Potential

Adam 179.38 0.22 103.53 76.15 3011.33
L-BFGS 281.18 0.22 89.53 70.22 3047.53
XPBD (GPU) [25] 63.26 0.01 57.96 18.10 3507.53
GroomGen [51] 0.00249 0.39 1319.74 1281.96 3889.78
Ours 0.00286 0.26 175.42 286.13 3399.95

Figure 6. Temporal Stability: To demonstrate how predicted re-
sults are smoothly varying with pose changes, we gradually mod-
ify the neck rotation. Starting from looking to the right to looking
left. Note how the results are smoothly varying where every pose
produces a natural drape. Note especially the hair sliding over the
shoulders with minimal body intersections.

Figure 7. Qualitative Comparisons: Our method produces visu-
ally comparable results to directly minimizing the energies or to
quasi-static simulation with XPBD while being orders of magni-
tude faster at inference by memorizing body pose and shape de-
pendent groom deformations.

pared to GroomGen at preserving strand lengths as well as
the preservation of the hair shape measured from the seg-
ment orientations. Furthermore, it is important to note that,
unlike GroomGen, our method handles arbitrary motion and
generalizes to body shape. Figure 8 shows that GroomGen
results display frequent intersections of the hair strands with
the body. These results demonstrate that our method pro-
vides the best trade-offs in terms of performance and quan-
titative results with the significant added benefit that we do
not require any simulated training data.

Figure 8. Comparisons with GroomGen: We compare our re-
sults (bottom) to those obtained with the neural simulator proposed
in GroomGen [51] (top). The inset figure highlights that Groom-
Gen produces results where strands intersect with the head geome-
try. In contrast, our method produces much fewer body-collisions
producing better visual results. See the supplemental video for the
full animated comparison.

Adam & L-BFGS - Energy Minimization: We compare
against quasi-static simulation results by minimizing the
loss energy with respect to the hair vertex positions directly
using Adam and L-BFGS. The results are computed with
the highest learning rate that produces stable results. The
use of L-BFGS in simulation research has been applied for
generating simulations at interactive rates [22]. Visual re-
sults in Figure 7 show that our method is visually com-
parable with the quasi-static energy minimization results,
but at real-time rates that are independent of groom resolu-
tion. This demonstrates that our method is highly effective
at learning the mapping that positions deformed hair ver-
tices near the energy minimum.
XPBD - Physics-based Simulation: The XPBD
method [25] effectively exploits GPU parallelism, which
results in fast computation times. Simulation has been the
de facto solution to hair animation for years due to the high
realism, albeit at a high computational cost. Additionally,
time integration of the system can often lead to instabilities,
which will result in failures or undesirable results. In
contrast, our method does not display any time integration
instabilities. In our comparison, we model hair using the
same energy as described in Subsection 3.5. To obtain
quasi-static simulation results, we reset the velocities
for each time step in the XPBD simulation loop, before
applying gravity. We integrate the positions and use 10000
iterations to minimize the loss. We run 30 time steps to
obtain results close to convergence.
GroomGen: We additionally compare our method to
GroomGen [51]. Code is not publicly available so we
compare to our own re-implementation. Instead of train-
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Figure 9. Performance & Scaling: Our method takes less than 3
ms on average to predict a single groom and the time complexity
scales linearly with the number of grooms. The method is able to
predict a thousand hairstyles in 0.3 seconds.

Figure 10. Ablation Study: We perform an ablation of our pro-
posed optimization-friendly Cosserat model against the commonly
used mass-spring energy for modeling hair. Our model excels at
maintaining the desired hairstyle whereas the mass-spring model
struggles with maintaining curliness and volume.

ing the neural simulator with different gravity directions,
we stochastically sample 1000 body poses with different
neck rotations within 30 degrees along (x, y, z) axes, and
run quasi-static hair simulation to obtain the training data.
In Figure 8 provides a qualitative comparison between our
approach and GroomGen for a groom that consists of 1919
strands. Both methods provide visually pleasing results but
our approach results in significantly fewer intersections of
hair with the body. This is highlighted in the inset figure
where you can see several hair strands intersect for Groom-
Gen whereas ours remains intersection free.

4.3. Performance

Predicting a single groom takes 2.86 ms and predicting a
thousand at once requires 0.3 seconds. The performance is
independent of the number of strands due to the fixed size
of the representation. Performance for a varying number of
groom and pose variations is shown in Figure 9. Strand
count for the varying grooms used in training varies be-
tween 1500 and 2500.

4.4. Ablations & Discussion

We perform an ablation experiment on the importance of
our proposed Cosserat energy. Figure 10 shows that our
model is highly effective at maintaining hairstyle and curli-

Figure 11. Ablation Study on Cosserat stiffness: Results ob-
tained by varying the Cosserat stiffness in our proposed physics-
based loss that enables artistic control. A higher stiffness results
in strands that maintain their rest shape better (left) compared to a
lower value (right). The images are mirrored and a few strand hair
tip locations are highlighted for an easier comparison.

ness. We compare our results to those using a mass-spring
energy [33]. Our model maintains the intended hairstyle
well without manual intervention whereas the mass-spring
model requires extensive parameter tuning to obtain satis-
factory results and the hair still falls mostly flat under grav-
ity. Our model provides artistic control by manipulating the
stiffness parameters. Figure 11 demonstrates the effect of
varying material stiffness.
Limitations and Future Work: Our pose-based groom
transformation module can produce hair where strands are
partially initialized inside the body. A better model which
results in fewer intersections would make it easier for the
model to learn the required deformations. Nonetheless, we
observe that our network is able to robustly handle this.
Current results use a single set of physical parameters for
the hair material properties. This shows that parameter
tuning is not required to produce visually pleasing results.
However, we plan to condition the network on material pa-
rameters to enable artistic control at inference.

5. Conclusion
We present the first self-supervised neural approach to real-
time quasi-static hair simulation. Our method enables ef-
ficient drape generation for various hairstyles on different
body poses and shapes, which varies smoothly with pose
variations. Our model leverages a hair deformation decom-
position based on a transformation module and a learned de-
formation decoder, which is trained using self-supervision.
We demonstrate complex behavior such as hair sliding over
shoulders, maintaining complex hairstyles such as curly
grooms and natural draping results due to the effects of
gravity. To validate the method, we demonstrate that our
decoder is effective and efficient at posing hair strands near
the quasi-static energy minimum with better qualitative and
quantitative results compared to related work.
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