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Figure 1. Optimizing human-to-human contacts in 3D pose. Our approach leverages the semantic priors of a Large Multimodal Model
(LMM) to infer meaningful information about physical contact from images. Instead of relying on human annotations or motion capture
data, we extract not only descriptive insights (“... engaged in a dance or embrace ...”) but also structured constraints between body
parts (underlined). By incorporating these LMM-derived constraints, we refine initial 3D human pose estimates, achieving realistic and
semantically consistent reconstructions of contact. This scalable approach opens up new possibilities for contact-aware pose estimation
without explicit contact annotations, making it a promising alternative to traditional methods.

Abstract

Language is often used to describe physical interaction, yet
most 3D human pose estimation methods overlook this rich
source of information. We bridge this gap by leveraging
large multimodal models (LMMs) as priors for reconstruct-
ing contact poses, offering a scalable alternative to tradi-
tional methods that rely on human annotations or motion
capture data. Our approach extracts contact-relevant de-
scriptors from an LMM and translates them into tractable
losses to constrain 3D human pose optimization. Despite its
simplicity, our method produces compelling reconstructions
for both two-person interactions and self-contact scenarios,
accurately capturing the semantics of physical and social
interactions. Our results demonstrate that LMMs can serve
as powerful tools for contact prediction and pose estimation,
offering an alternative to costly manual human annotations

or motion capture data. Our code is publicly available at
https://prosepose.github.io.

1. Introduction
Language, as a human artifact, encodes a rich set of social
and physical interactions. Over centuries, our vocabulary has
evolved to describe the nuances of touch, with words and
phrases capturing contexts as varied as hugs, handshakes,
or postures in sports and yoga. Perceiving physical contact
is essential for understanding human behavior: e.g. several
forms of parent-child contact are associated with affection
[3, 43], and some forms of self-contact signal stress [16].

Since written language discusses our physical interac-
tions at great length, can large multimodal models (LMMs)
trained on images and text correctly perceive physical con-
tact in human pose? This question has practical significance
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because scenes with contact are challenging for pose estima-
tion methods as some body parts are frequently occluded,
This particularly holds for methods solely relying on 2D
keypoints which do not convey contact information. Previ-
ously proposed approaches address these issues by curating
task-specific datasets via motion capture or human-annotated
points of contact between body parts [11, 33, 34]. However,
collecting these datasets is expensive, and existing publicly
available datasets include only tens of thousands of images
[10, 22, 33, 50]. If LMMs can accurately identify contact
points, they could decrease the cost of curating such datasets.

In this work, we study the efficacy of LMMs as tools
for contact prediction in pose estimation. Since LMMs out-
put language rather than pose parameters, answering this
question requires a way of eliciting the required information
from an LMM and operationalizing it in pose estimation. We
introduce a framework, called ProsePose, which prompts an
LMM for formatted constraints about physical contact in
the image, converts the constraints into a loss function, and
optimizes this loss function (jointly with losses from other
cues, such as 2D keypoints) to refine initial pose estimates.

We use ProsePose to evaluate LMMs on both 2-person
interaction datasets and a dataset of complex yoga poses.
Our framework improves pose estimates compared to strong
baselines that do not use contact supervision. In our exten-
sive analysis, we show that several components are impor-
tant: mitigating LMM hallucinations by aggregating predic-
tions from several LMM samples, careful construction of the
prompt and loss functions, and integrating losses from other
cues. Finally, we conduct an extensive analysis of LMM
predictions and their role in the optimization results. With re-
spect to LMM failures, we find that identifying the chirality
of limbs is a particular challenge for LMMs. While existing
supervised methods excel by training on large amounts of
supervised data with contact labels, we show that we can
extract useful priors for contact prediction from pretrained
LMMs without fine tuning.

In summary, our contributions are (1) we introduce a
framework for applying LMMs as contact prediction tools
in pose estimation, (2) we show that our framework can im-
prove the quality of pose estimates in 2-person and 1-person
settings, and (3) we provide an analysis of the components
of our framework and LMM failure modes.

2. Related Work
3D human pose reconstruction. Reconstructing 3D human
poses from single images is an active area of research. Prior
works have explored optimization-based approaches [13, 26,
35, 36, 39] or pure regression [2, 14, 20, 21, 25] to estimate
the 3D body pose given a single image. HMR2 [12] is a
recent state-of-the-art regression model in this line of work.
Building on these approaches, some methods have looked
into reconstructing multiple individuals jointly from a single

image. These methods [19, 41, 51] use deep networks to
reason about multiple people in a scene to directly output
multi-person 3D pose predictions. BEV [42] accounts for
the relative proximity of people explicitly using relative
depth annotations to reason about proxemics when placing
each individual in the scene (e.g. relative depth of people).
However, approaches in both categories generally do not
accurately capture physical contact between parts of a single
person or between people [33, 34].

Contact inference in 3D pose reconstruction. 3D pose
reconstruction is especially challenging when there is self-
contact or inter-person contact. This has motivated a line of
work on pose reconstruction approaches tailored for these
settings. [33] focuses on predicting self contact regions for
3D pose estimation by leveraging a dataset with contact
annotations to model complex poses such as crossed arms.
[10] introduces the first dataset with hand-annotated ground-
truth contact labels between two people. REMIPS [11] and
BUDDI [34] train models on the person-to-person contact
maps in this data in order to improve 3D pose estimation of
multiple people from a single image. CloseInt [17] trains a
physics-guided diffusion model on two-person motion cap-
ture data for this task. However, contact annotations, which
are crucial for these approaches, are expensive to acquire.
Our method does not require any training on such annota-
tions. Instead, we leverage an LMM’s implicit knowledge of
pose to constrain pose optimization to capture both self- and
person-to-person contact.

Language priors on human pose. There exists a plethora
of text to 3D human pose and motion datasets [15, 37, 38],
which have enabled work focused on generating 3D motion
sequences of a single person performing a general action [18,
44, 52]. This line of work has been extended to generating
the motion of two people conditioned on text [29, 40].

PoseScript [7] is a method for generating a single per-
son’s pose from fine-grained descriptions, which uses train-
ing data from motion capture annotated with detailed text.
PoseFix [8] introduces a labeled dataset for the task of modi-
fying a pose given a fine-grained description of the desired
change and trains a model on this data. PoseGPT [9] is a
pose regressor that uses language as part of its training data.
However, PoseGPT does not produce better pose estimates
than previous state-of-the-art regressors (i.e. regressors that
do not use language) and applies only to the one-person set-
ting. [46] uses a text-only LM to improve action-conditioned
human-object pose estimation. This method relies on a lim-
ited database of action-pose pairs to classify an input pose,
and uses an LM to improve pose estimates based on the
action retrieved from the database.

Our work differs from previous work on language and
pose in several ways. First, whereas all prior work relies
on training data with pairs of language and pose, which
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Arm, Waist (front)
Hand, Waist (front)
Waist(front), Butt
Leg, Butt

Constraint Generation

Constrained Optimization

Output:

Reference Image:

3D Pose Regressor

Initialization:

Prompt: “Identify all pairs of 
body parts of Person 1 and 
Person 2 that are touching.” def lmm_loss(...):

  shoulder_waist_loss = ...
  arm_waist_loss = ...
  hand_stomach_loss = ...
  total_loss = ...

(a) (b)

Figure 2. LMM-guided Pose Estimation. (a) Method overview: ProsePose takes as input an image of one or two people in contact. We
first obtain initial pose estimates for each person from a pose regressor. Then we use an LMM to generate contact constraints, each
of which is a pair of body parts that should be touching. This list of contacts is converted into a loss function LLMM. We optimize the
pose estimates using LLMM and other losses to produce a refined estimate of each person’s pose that respects the predicted contacts.
(b) Defining contact constraints: Given an image I , we can lift each individual into corresponding 3D meshes V . A contact constraint c is a
pair of regions (Ra,Rb) in contact. The loss is defined in terms of the distance between the vertices (va,vb) on the mesh.

is expensive to collect, our method leverages the existing
knowledge in an LMM to reason about pose from a given
image. Second, prior work in this area focuses on either
the one-person or the two-person setting. In contrast, our
work presents a single framework to reason about physical
contacts within or between poses. Finally, in scenes with
physical contact, we show that our method improves the
pose estimates of state-of-the-art regressors.

3. Guiding Pose Optimization with an LMM

Given an image, our goal is to estimate the 3D body pose of
individuals in the image while capturing the self and cross-
person contact points. While we cannot trivially use natural
language responses (hug, kiss) to directly optimize 3D body
poses, we leverage the key insight that LMMs understand
how to articulate a given pose (arms around waist, lips touch-
ing). We propose a method to structure these articulations
into constraints and convert them into loss functions.

More concretely, our framework, illustrated by Figure 2a,
takes as input the image I and the bounding boxes B of the
subjects of interest. In the first stage, a pose regressor takes
the image and produces a rough estimate of the 3D pose Xp

for each individual p in the image. In the second stage, an
LMM takes the image and a set of instructions and generates
a list of self- or inter-person contact constraints, which we
then convert into a loss function (Sec. 3.2). Finally, in the
third stage, we jointly optimize the generated loss function
with several other pre-defined loss terms (Sec. 3.3). We refer
to our framework as ProsePose.

3.1. Preliminaries

We focus our description on the two-person case to keep the
exposition simple. We also demonstrate results on the one-
person case, which is simply an extension of the two-person
case. In particular, we apply our method to the one-person
case by setting X0 = X1. Please see Appendix § 7 for
details on the differences between the two cases.

Large Multimodal Models. An LMM is a model that takes
as input an image and a text prompt and produces text output
that answers the prompt based on the image. Our frame-
work is agnostic to the architecture of the LMM. LMMs
are typically trained to respond to a wide variety of instruc-
tions [6, 30]. However, LMMs are prone to hallucination
[27, 28]. Handling cases of hallucination is a key challenge
when using LMMs. We mitigate this issue by aggregating
information across several samples from the LMM.

Pose representation. We use a human body model [36]
to represent each person p ∈ {0, 1}. The body model is
composed of a pose parameter that defines the joint rotations
θ ∈ Rdθ×3, where dθ is the number of joints, and a shape
parameter β ∈ Rdβ , where dβ is the dimensions of the
shape parameter. We can apply a global rotation Φ ∈ R3

and translation t ∈ R3 to place each person in the world
coordinate space. The full set of parameters for each person
is denoted by Xp = [θp,βp,Φp, tp]. For simplicity, we
refer to the parameter set (X0,X1) as X .

These parameters can be plugged into a differentiable
function that maps to a mesh consisting of dv vertices V ∈
Rdv×3. From the mesh, we can obtain the 3D locations of the
body’s joints J ∈ Rdj×3. From these joints, we can calculate
the 2D keypoints Kproj by projecting the 3D joints to 2D
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using the camera intrinsics Π predicted from [36].

Kproj = Π(J) ∈ Rdj×2. (1)

Vertex regions. In order to define contact constraints be-
tween body parts, we define a set of regions of vertices. Prior
work on contact has partitioned the body into fine-grained
regions [10]. However, since our constraints are specified
by a LMM trained on natural language, the referenced body
parts are often coarser in granularity. We therefore update
the set of regions to reflect this language bias by combining
these fine-grained regions into larger, more commonly refer-
enced body parts such as arm, shoulder (front&back), back,
and waist (front&back). Some regions, e.g. back and waist
(back), overlap. Please see Appendix § 7.2 for a visualiza-
tion of the coarse regions. Formally, we write R ∈ Rdr×3

to denote a region with dr vertices, which is part of the full
mesh (R ⊂ V ).

Constraint definition. A contact constraint specifies which
body parts from two meshes should touch. We define contact
constraints as pairs of coarse regions c = (Ra,Rb) between
a region Ra of one mesh and Rb of the other mesh, as shown
in Figure 2b. For instance, (“hand”, “arm”) indicates a hand
should touch an arm.

3.2. Constraint generation with a LMM

Our key insight is to leverage a LMM to identify regions
of contact between different body parts on the human body
surface. As shown in Figure 2a, we prompt the LMM with
an image and ask it to output a list of all region pairs that are
in contact. However, we cannot simply use its output natural
language descriptions to directly optimize a 3D mesh. As
such, we convert these constraints into a loss function.

LMM-based constraint generation. Given the image I , we
first use the bounding boxes B to crop the part containing
the subjects. We then use an image segmentation model
to mask any extraneous individuals. While cropping and
masking the image may remove information, we find the
LMMs are relatively robust to missing context, and more
importantly, this allows us to indicate which individuals to
focus on. Given the segmented image, we ask the LMM to
generate a set C = {c1, ...cm} of all pairs of body parts that
are touching, where m is the total number of constraints the
LMM generates for the image.

In the prompt, we specify the full set of coarse regions to
pick from. We find that LMMs fail to reliably reference the
left and right limbs correctly or consistently, so the prompt
instructs the LMM not to specify chirality for each limb (see
Appendix 8.2 for prompt analysis). If the LMM uses “left”
or “right” to reference a region, despite an instruction to not
do so, we directly use the part of the region with the specified
chirality rather than considering both possibilities.

Motivated by the chain-of-thought technique, which has
been shown to improve language model performance on
reasoning tasks [48], we ask the LMM to write its reasoning
or describe the pose before listing the constraints. For the full
prompt used in each setting, please refer to Appendix § 7.

We sample N responses from the LMM. Below we de-
scribe (1) how we convert these natural language responses
into N sets of constraints {C1,C2, ...,CN} and (2) how we
convert each constraint set Cj into a loss.

Canonicalizing Region Names and Assigning Chirality.
Given the LMM’s output, we must map the mentioned region
names to our fixed set of coarse regions. Since the LMM
may deviate from the names in the prompt, we check for
some additional names (see Appendix 7.2). We then filter out
contact pairs that occur fewer than f times across constraint
sets, where f is a hyperparameter.

Next, we assign a chirality (left/right) to each hand/arm/-
foot/leg/shoulder region in cases when the LMM does not
itself specify the chirality. We enumerate all possible assign-
ments of left/right to these regions and take the one resulting
in the minimum loss. In the two-person setting, we only
consider assignments satisfying a condition designed for the
case in which a region type occurs in multiple constraint
pairs (see Appendix 7.3).

Loss function generation. We compute a loss for each con-
straint by mapping the relevant regions to sets of vertices and
calculating the minimum distance between vertices in the
two sets. In particular, we first specify a mapping between
each of the coarse region names and the fine-grained regions
from [10]. We then use a mapping from fine-grained regions
to SMPL-X vertices (provided by [34]) to obtain a set of
vertices for each coarse region. Then for each contact pair
of coarse regions c = (Ra,Rb) in Cj , we define dist(c) as
the minimum distance between the two regions:

dist(c) = min ∥va − vb∥2 ∀va ∈ Ra,∀vb ∈ Rb (2)

where {va,vb} ∈ R3. In practice, the number of vertices
in each region can be very large. To make this computation
tractable, we first take a random sample of vertices from Ra

and from Rb before computing distances between pairs of
vertices in these samples.

Furthermore, since the ordering of the people in the LMM
constraints is unknown (i.e. does Ra come from the mesh
defined by parameter X0 or X1), we compute the overall
loss for both possibilities and take the minimum. We use
c⊤ = (Rb,Ra) to denote the flipped ordering. We then sum
over all constraints in the list Cj :

distsum(Cj) = min

 ∑
c∈Cj

dist(c),
∑
c∈Cj

dist(c⊤)

 (3)
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Each constraint set sampled from the LMM is likely to con-
tain noise or hallucination. To mitigate this issue, we average
over all N losses corresponding to each constraint set to
obtain the overall LMM loss. This technique is similar to
self-consistency [47], which is commononly used for code
generation. Concretely, the overall LMM loss is defined as

LLMM =
1

N

N∑
j=1

distsum(Cj) (4)

If a constraint set Cj is empty (i.e. the LMM does not sug-
gest any contact pairs), then we set distsum(Cj) = 0. If
there are several such constraint sets, we infer that the LMM
has low confidence about the contact points (if any) in the
image. Consequently, we set a threshold t and if the number
of empty constraint sets is at least t, we gracefully backoff to
the appropriate baseline optimization procedure (described
in Sections 4.1 and 4.2 for each setting). We also backoff to
the baseline if the LMM-based optimization diverges.

3.3. Constrained pose optimization

Drawing from previous optimization-based approaches [4,
34, 35], we employ several additional losses in the optimiza-
tion. We then minimize the joint loss to obtain a refined
subset of the body model parameters X ′ = [θ′,β′, t′]:

[θ′,β′, t′] = argmin(λLMMLLMM + λGMMLGMM + λβLβ

+ λθLθ + λ2DL2D + λPLP )

Following [34], we divide the optimization into two stages.
In the first stage, we optimize all three parameters. In the
second stage, we optimize only θ and t, keeping the shape
β fixed. We detail the remaining losses below.

Pose and shape priors. We compute a loss LGMM based
on the Gaussian Mixture pose prior of [4] and a shape loss
Lβ = ∥β∥22, which penalizes extreme deviations from the
body model’s mean shape.

Initial pose loss. To ensure we do not stray too far from the
initialization, we penalize large deviations from the initial
pose Lθ = ||θ′ − θ||22.

2D keypoint loss. Similar to BUDDI [34], for each person
in the image, we obtain pseudo ground truth 2D keypoints
and their confidences from OpenPose [5] and ViTPose [49].
Given this pseudo ground truth, we merge all the keypoints
into K ∈ Rdj×2, and their corresponding confidences into
γ ∈ Rdj . From the predicted X ′, we can compute the 2D
projection of each 3D joint location using Equation 3.1.
Then, the 2D keypoint loss is defined as:

L2D =

dj∑
j=1

γ(Kproj −K)2 (5)

Interpenetration loss. To prevent parts of one mesh from
being in the interior of the other, we add an interpenetration
loss. Generically, given two sets of vertices V0 and V1, we
use winding numbers to compute the subset of V0 that in-
tersects V1, which we denote as V0,1. Similarly, V1,0 is the
subset of V1 that intersects V0. The interpenetration loss is
then defined as

LP =
∑

x∈V0,1

min
v1∈V1

∥x− v1∥22 +
∑

y∈V1,0

min
v0∈V0

∥y − v0∥22

(6)

For efficiency, this loss is computed on low-resolution ver-
sions of the two meshes (roughly 1000 vertices per mesh).

4. Experiments

Implementation details. Following prior work on two-
person pose estimation [34], we use BEV [42] to initialize
the poses since it was trained to predict both the body pose
parameters and the placement of each person in the scene.
However, on the single person yoga poses, we find that the
pose parameter estimates of HMR2 [12] are much higher
quality, so we initialize the body pose using HMR2.
We use the SMPL-X [36] body model and (unless spec-
ified otherwise) GPT4-V [1] as the LMM with tempera-
ture = 0.7 when sampling from it. GPT4-V refers to the
gpt-4-vision-preview model in the OpenAI API:
platform.openai.com. In the OpenAI API, we use the “high”
detail setting for image input. Appendix 8.2 provides results
using other prompts and other LMMs (LLaVA [31], GPT-4o)
and a running time analysis. Unless otherwise specified, we
set N = 20 samples. For all of our 2-person experiments,
f = 1, while f = 10 in the 1-person setting. We set t = 2
for the experiment on the CHI3D dataset and t = N for all
other experiments. The hyperparameters and our prompts
were chosen based on experiments on the validation sets. For
other implementation details refer to Appendix § 7.

Metrics. As is standard in the pose estimation literature, we
report Procrustes-aligned Mean Per Joint Position Error (PA-
MPJPE) in millimeters. This metric finds the best alignment
between the estimated and ground-truth pose before com-
puting the joint error. In the two-person setting, we focus
on the joint PA-MPJPE, as this evaluation incorporates the
relative translation and orientation of the two people. See
Appendix § 8.2 for the per-person PA-MPJPE.

We also include the percentage of correct contact points
(PCC) metric introduced by [34]. This metric captures the
fraction of ground-truth contact pairs that are accurately
predicted. For a given radius r, a pair is classified as “in
contact” if the two regions are both within the specified
radius. We use the set of fine-grained regions defined in
[10] to compute PCC. The metric is averaged over r ∈
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Hi4D FlickrCI3D CHI3D
PM↓ F1↑ PM↓ PCC↑ F1↑ PM↓ PCC↑ F1↑

w/o contact sup.
BEV [42] 144 – 106 64.8 – 96 71.4 –
Heuristic 116 – 67 77.8 – 105 74.1 –
ProsePose 93 24 58 79.9 13 100 75.8 23

w. contact sup.
BUDDI [34] 89 – 66 81.9 – 68 78.0 –
BUDDI+ProsePose 88 – 65 83.2 – 69 78.8 –

Coarse GT contacts
Oracle 81 100 43 86 100 83 83.8 100

Table 1. Two-person Results. Joint PA-MPJPE (abbreviated PM)
(lower is better), Avg. PCC (higher is better), and F1 (higher is
better). For FlickrCI3D, PA-MPJPE is computed using the pseudo-
ground-truth fits. F1 measures the accuracy of coarse contacts
predicted by the LMM, while the other two metrics evaluate the
quality of the estimated 3D pose. Last line shows results using
ground-truth contact pairs of coarse regions (heuristic is still used
as the backoff method when needed). Bold indicates best method
without/with contact supervision in each column.

0, 5, 10, 15, ..., 95 mm. Since these regions are defined on the
SMPL-X mesh topology, we convert the regression baselines–
BEV and HMR2– from the SMPL mesh topology to SMPL-
X to compute this metric. Please see the Appendix § 8.1 for
more details on the regions and on the mesh conversion.

Finally, we report the F1 of the LMM’s predicted coarse
region pairs. Specifically, we compute precision as the pro-
portion of predicted pairs (Ra,Rb) such that there is some
ground-truth pair (R∗

a,R
∗
b) for which Ra overlaps with R∗

a

and Rb overlaps with R∗
b . We compute recall similarly as a

proportion of ground-truth pairs. For datasets that do not pro-
vide contact maps, we define the ground-truth pairs from the
ground-truth meshes, using a threshold on the minimum dis-
tance between regions (0.01 and 0.02 for Hi4D and MOYO,
respectively). We ignore chirality when computing these. For
a pair of people we take the maximum F1 of the two possible
orderings. This metric serves to evaluate the raw output of
the LMMs without 3D optimization.

4.1. Two-person Pose Refinement

Datasets. We evaluate on three datasets, and our dataset pro-
cessing largely follows [34]. Hi4D [50] is a motion capture
dataset of pairs of people interacting. Each sequence has a
subset of frames marked as contact frames, and we take every
fifth contact frame. We use the images from a single cam-
era, resulting in 241 images. Flickr Close Interactions 3D
(FlickrCI3D) [10] is a collection of Flickr images of multi-
ple people in close interaction. The dataset includes manual
annotations of the contact maps between pairs of people.
[34] used these contact maps to create pseudo-ground truth
3D meshes and curated a version of the test set to exclude
noisy annotations, which has 1403 images. CHI3D [10] is

FlickrCI3D PCC↑ CHI3D PCC↑
@ radius[mm] 5 10 15 5 10 15

W/o contact sup.
BEV [42] 3.6 6.3 10.8 5.8 17.4 32.5
Heuristic 14.6 33.9 49.3 11.1 28.0 45.3
ProsePose 15.6 39.9 57.1 13.5 35.2 52.5

W/ contact sup.
BUDDI [34] 18.5 44.2 61.8 15.5 39.0 56.6
BUDDI+ProsePose 21.8 49.3 66.4 19.5 43.9 58.8

Table 2. Two-person PCC. Percent of correct contact points (PCC)
for three different radii r in mm. Bold indicates the best score
without/with contact supervision in each column. At the ground-
truth contact points, our method brings the meshes closer together
than the baselines.

a motion capture dataset of pairs of people interacting. We
present results on the validation set. There are 431 images,
distributed across 4 cameras. The images come from 126
video sequences, each of which has a single “contact frame.”

To develop our method, we experimented on the valida-
tion sets of FlickrCI3D and Hi4D, and a sample of the train-
ing set from CHI3D. For our experiments, we can compute
the PCC on FlickrCI3D and CHI3D, which have annotated
ground-truth contact maps. Following [34], we exclude from
evaluation images where BEV or the keypoint detectors,
which are used by the baselines as well, fail to detect one of
the subjects in the interaction pair.

Baselines We compare our estimated poses to the following:
• BEV [42] Multi-person 3D pose estimation method. Uses

relative depth to reason about spatial placement of individ-
uals in the scene. ProsePose , Heuristic, and BUDDI use
BEV to initialize pose estimates.

• Heuristic A contact heuristic which includes the auxiliary
losses in Section 3.3 as well as a term that minimizes the
minimum distance between the two meshes. Introduced
by [34]. We use their hyperparameters for this heuristic.
This baseline is also used as the backoff method for Prose-
Pose when the number of empty constraint sets is at least
the threshold t or when the optimization diverges.

• BUDDI [34] This method uses a learned diffusion prior
to constrain the optimization. We stress that BUDDI re-
quires a large amount of annotated training data on pairs
of interacting bodies, which is not used in our method.

Quantitative Results Table 1 provides quantitative results
on the three datasets. Across datasets, ProsePose consis-
tently improves over the strongest baseline, Heuristic. On
the Hi4D dataset, ProsePose reduces 85% of the gap in PA-
MPJPE between Heuristic and the fully supervised BUDDI.
On the FlickrCI3D and CHI3D datasets, ProsePose narrows
the gap in the average PCC between Heuristic and BUDDI
by more than one-third. (While ProsePose achieves a better
PA-MPJPE than BUDDI on FlickrCI3D, for this dataset,
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Input ProsePose BUDDI Heuristic

Hand, Hand ×20

Hand, Shoulder (front) ×21

Hand, Hand × 17
Arm, Shoulder (front) × 4

Arm, Waist (front) × 15
Back, Shoulder (front) × 13

Back, Head × 4

Hand, Shoulder (front) × 12
Hand, Shoulder (back) × 2

Hand, Leg × 1

Figure 3. Two-person examples We show qualitative results from
ProsePose , BUDDI [34], and the contact heuristic. For each exam-
ple, we show GPT4-V’s top 3 constraints and the number of times
each constraint was predicted across all 20 samples. Our method
correctly reconstructs people in a variety of interactions, and the
predicted constraints generally align with each interaction type.

we rely primarily on PCC since PA-MPJPE is computed on
pseudo-ground-truth fits.)

On CHI3D, ProsePose outperforms Heuristic but under-
performs BEV in terms of PA-MPJPE. On the subset of
images where we do not default to the heuristic (i.e. on im-
ages where GPT4-V predicts enough non-empty constraint
sets), the PA-MPJPE for ProsePose and BEV is 86 and 87,
respectively. In other words, in the cases where our method
is actually used, the joint error is slightly less than that of
BEV. As a result, we can attribute the worse overall error to
the poorer performance of the heuristic. The backoff method
(which is the heuristic) is used in 13/241 Hi4D examples,
106/1403 Flickr examples, and 224/431 CHI3D examples.

Input ProsePose HMR2-optHMR2

Hand, Foot 
×21

Hand, Foot 
×21

Hand, Hand 
×14

Hand, Foot 
×18

Figure 4. Single-person examples We show qualitative results
from ProsePose , HMR2 [12], and HMR2-optim on complex yoga
poses. Each example also shows the constraints that are predicted
by the LMM at least f = 10 times (and are thus used to compute
LLMM) with their counts. ProsePose correctly identifies self-contact
points and optimizes the poses to respect these contacts.

Overall, our method improves over the other methods that do
not use contact supervision in terms of both joint error and
PCC. While not the focus of this work, Table 1 also shows
that adding ProsePose , specifically LLMM, to BUDDI leads
to improved PCC. The F1 scores show that LMMs’ raw out-
put is often flawed/incomplete, but our approach mitigates
hallucinations in various ways (see the ablation study below).
The last row in Table 1 shows the performance when the
ground-truth coarse contacts (with correct left/right labels)
are used in optimization. These results show the benefit of
correct coarse contacts and the clear room for improvement
from better LMM predictions.

Table 2 shows the PCC for each method at various radii.
The results show that ProsePose brings the meshes closer to-
gether at the correct contact points. On both the FlickrCI3D
and CHI3D datasets, ProsePose outperforms the other base-
lines that do not use contact supervision. Next, we ablate im-
portant aspects of ProsePose . In Figure 5, we show that aver-
aging the loss over several samples from the LMM improves
performance, mitigating the effect of LMM hallucination.
Finally, ablating the various losses in optimization indicates
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Figure 5. More samples improve pose estimation. On the Flick-
rCI3D validation set, taking more samples from the LMM and
averaging the resulting loss functions improves joint PA-MPJPE
(left) and average PCC (right).

.
PCC↑ @ r

PA-MPJPE↓ PCC↑ 5 10 15 F1↑

HMR2 [12] 84 83.0 34.2 55.2 69.5 –
HMR2+opt 81 85.2 47.7 65.5 74.6 –
ProsePose 82 87.8 54.2 73.8 81.4 25

Table 3. One-person Results. PA-MPJPE (lower is better) and
Avg. PCC and F1 (higher is better). ProsePose captures ground-
truth contacts better than the baselines, as shown by the PCC.

that our LMM-based loss and the 2D keypoint loss have the
greatest impact on joint error: Using all losses results in a
PA-MPJPE of 81. Removing LLMM/LGMM/Lβ /Lθ/L2D/LP

results in a PA-MPJPE of 138/85/91/84/130/78.

Qualitative Results Figure 3 shows examples of reconstruc-
tions from ProsePose, Heuristic, and BUDDI. Below each
of our predictions, we list the most common constraints
predicted by GPT4-V for the image. The predicted con-
straints correctly capture the semantics of each interaction.
For instance, in tango, one person’s arm should touch the
other’s back. In a rugby tackle, a player’s arms are usually
wrapped around the other player. Using these constraints,
ProsePose correctly reconstructs a variety of interactions,
such as tackling, dancing, and holding hands. In contrast,
Heuristic struggles to accurately position individuals and/or
predict limb placements, often resulting in awkward dis-
tances.

4.2. One-person pose refinement

Datasets Next, we evaluate ProsePose on a single-person set-
ting. For this setting, we evaluate on MOYO [45], a motion
capture dataset with videos of a single person performing
various yoga poses. In total, our test set is composed of 76
examples from a single camera angle (side view). See Ap-
pendix 7.6 for further dataset details. Since this dataset does
not have annotated region contact pairs, we compute the
pesudo-ground-truth contact maps using the Euclidean and
geodesic distance following [33] and report PCC for the sub-
set of 67 examples where the ground-truth has self-contact.

Baselines We compare against the following baselines:

• HMR2 [12] State-of-the-art pose regression method. We
use HMR2 to initialize our pose estimates for optimization.

• HMR2+opt Optimization procedure that is identical to
ours without LLMM. It is the default method when the
number of empty constraint sets is at least the threshold t.

Both the quantitative and qualitative results echo the trends
discussed in the 2-person setting. Table 3 provides the quan-
titative results. The PCC metrics show that our LMM loss
improves the predicted self-contact in complex yoga poses
relative to the two baselines. The backoff method is used in
43/76 examples. Figure 4 provides a qualitative comparison
of poses predicted by ProsePose versus the two baselines.
Below each of our predictions, we list the corresponding
constraints predicted by GPT4-V. In each case, the predicted
constraint captures the correct self-contact, which is reflected
in the final pose estimates. Using the semantically guided
loss, ProsePose effectively refines the pose to ensure proper
contact between hand-foot or hand-hand, an important detail
consistently overlooked by the baselines.

4.3. Limitations

While ProsePose consistently improves contact across set-
tings and datasets, it has limitations which are related to
failures of LMMs. First, as shown in Table 5 (in Appendix),
prompting the LMM for left/right labels sometimes leads
to worse results, suggesting that LMMs struggle with dis-
ambiguating chirality. Improving this approach depends in
large part on correctly identifying limbs as left/right. Another
limitation is the use of coarse regions. Future work could
improve by eliciting more fine-grained constraints from an
LMM. Finally, LMM accuracy varies moderately across cam-
era angles (quantified in Appendix 8.2). In Appendix § 8.3,
we provide examples of LMM failures.

5. Conclusion

We present ProsePose, a framework for refining 3D pose
estimates to capture touch accurately using the implicit se-
mantic knowledge of poses in LMMs. Our key novelty is
that we generate structured pose descriptions from LMMs
and convert them into loss functions used to optimize the
pose. Our experiments show that in both one-person and two-
person settings, ProsePose improves over previous baselines
that do not use contact supervision. These results suggest
that LMMs may be useful in creating larger datasets with
contact annotations, which are otherwise expensive but are
crucial for training state-of-the-art priors for pose estimation
in situations with physical contact. More broadly, this work
provides evidence that LMMs are promising tools for 3D
pose estimation, which likely has implications beyond touch.
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Jie Song, and Otmar Hilliges. Hi4d: 4d instance segmentation
of close human interaction. 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
17016–17027, 2023. 2, 6

[51] Andrei Zanfir, Elisabeta Marinoiu, and Cristian Sminchisescu.
Monocular 3d pose and shape estimation of multiple people
in natural scenes-the importance of multiple scene constraints.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2148–2157, 2018. 2

[52] Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Shaoli
Huang, Yong Zhang, Hongwei Zhao, Hongtao Lu, and Xi
Shen. T2m-gpt: Generating human motion from textual de-
scriptions with discrete representations. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023. 2

7135


	. Introduction
	. Related Work
	. Guiding Pose Optimization with an LMM
	. Preliminaries
	. Constraint generation with a LMM
	. Constrained pose optimization

	. Experiments
	. Two-person Pose Refinement
	. One-person pose refinement
	. Limitations

	. Conclusion
	. Acknowledgements
	. Additional Method Details
	. LMM Prompts
	Ablation Prompts

	. Coarse Regions
	. Chirality Condition
	. Bounding Boxes and Cropping
	. Loss Coefficients and Optimization Details
	. MOYO Dataset Processing Details

	. Experiments
	. PCC Calculation
	. Additional Quantitative Results
	Per-person PA-MPJPE
	LMM Analysis
	Running Time
	Variance across Camera Angles

	. Failure cases
	. LLaVA Results
	. Additional Qualitative Results


