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Abstract

The task of video generation requires synthesizing visually
realistic and temporally coherent video frames. Existing
methods primarily use asynchronous auto-regressive mod-
els or synchronous diffusion models to address this chal-
lenge. However, asynchronous auto-regressive models often
suffer from inconsistencies between training and inference,
leading to issues such as error accumulation, while syn-
chronous diffusion models are limited by their reliance on
rigid sequence length. To address these issues, we introduce
Auto-Regressive Diffusion (AR-Diffusion), a novel model
that combines the strengths of auto-regressive and diffusion
models for flexible, asynchronous video generation. Specifi-
cally, our approach leverages diffusion to gradually corrupt
video frames in both training and inference, reducing the dis-
crepancy between these phases. Inspired by auto-regressive
generation, we incorporate a non-decreasing constraint on
the corruption timesteps of individual frames, ensuring that
earlier frames remain clearer than subsequent ones. This
setup, together with temporal causal attention, enables flex-
ible generation of videos with varying lengths while pre-
serving temporal coherence. In addition, we design two
specialized timestep schedulers: the FoPP scheduler for
balanced timestep sampling during training, and the AD
scheduler for flexible timestep differences during inference,
supporting both synchronous and asynchronous generation.
Extensive experiments demonstrate the superiority of our
proposed method, which achieves competitive and state-of-
the-art results across four challenging benchmarks. 1 2

1. Introduction
Video generation aims to create sequences of frames that
are both visually realistic and temporally consistent, en-
suring that objects in the video appear vivid and their
movements are smooth. Current video generation methods

* denotes equal contributions.
1This research was conducted during internship at bytedance.
2https://github.com/iva-mzsun/AR-Diffusion.
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Figure 1. Different generative models employ different constraints
on the timestep compositions and thus exhibit different properties.

[1, 9, 11, 13, 14, 17, 20, 21, 33, 43, 45, 51] can be divided
into two categories: synchronous and asynchronous models,
depending on how noise is applied during training. Syn-
chronous video generation models apply the same level of
noise across all video frames during training, ensuring that
each frame has the same signal-noise ratio. Video diffu-
sion models [1, 11, 13, 20, 21, 51] are common examples of
synchronous method, which apply a shared noise timestep
to all frames. These models have demonstrated promising
results, but their reliance on equal noise levels and fixed-
length sequences limits their ability to generate videos with
varied lengths. To address these limitations, some recent
studies have tried a “chunked” approach, where multiple
frames are generated simultaneously based on a few preced-
ing ones [2, 6, 19, 38]. While this approach helps to reduce
computational complexity, it often suffers from temporal
inconsistencies and motion discontinuities due to the limited
temporal context.

Asynchronous video generation models, in contrast, al-
low each frame to be corrupted by different noise levels,
making them more adaptable to frames with varying com-
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plexities. For example, auto-regressive video generative
models [9, 14, 17, 33, 43, 45] generate each frame based on
previous clear frames and add noise to future frames, which
helps create variable-length videos. However, they often
face inconsistencies between training and inference, causing
issues like error accumulation [34]. Asynchronous diffusion
models [4, 18], which apply independent noise to each frame,
offer more flexibility but face challenges in training stability
and convergence efficiency [18].

To overcome these challenges, we propose Auto-
Regressive Diffusion (AR-Diffusion). First, to make the
generation process more efficient, we introduce an Auto-
Regressive Video Auto-Encoder (AR-VAE), which com-
presses video frames into compact, continuous latent fea-
tures. AR-VAE consists of a time-agnostic video encoder
that extracts features without considering the temporal corre-
lations, and a temporal causal video decoder that reconstructs
the frames with temporal casual attention to maintain tempo-
ral consistency. We then propose the AR-Diffusion frame-
work, which combines the strengths of both auto-regressive
and diffusion methods. By applying diffusion to gradually
corrupt video frames during both training and inference, it
reduces discrepancies between these phases, which helps pre-
vent issues like error accumulation. Akin to auto-regressive
models, AR-Diffusion employs temporal causal attention
and allows earlier video frames to maintain clearer content
compared to later ones through asynchronous frame-wise
timesteps, thus supporting adaptive inference and facilitating
the generation of videos of varied lengths. Unlike previ-
ous methods, AR-Diffusion applies a unique non-decreasing
constraint on the noise levels: earlier frames remain clearer
while later frames get more noise. This helps maintain a
natural and coherent progression of generated content, re-
sulting in smoother videos. As illustrated in Fig. 1, compared
to existing asynchronous video diffusion models, our non-
decreasing constraint can significantly reduce the search
space of timestep compositions, thus improving training
stability and speeding up convergence.

In addition, we introduce two specialized timestep sched-
ulers. During training, we employ the Frame-oriented Prob-
ability Propagation (FoPP) scheduler to balance the sam-
pling of timestep compositions and frame-specific timesteps,
ensuring that the model can be well generalized to dif-
ferent inference settings. During inference, we introduce
the Adaptive-Difference (AD) scheduler, which allows the
timestep difference between neighboring frames to vary
adaptively. This flexibility supports both auto-regressive
asynchronous and diffusion-based synchronous generation,
enhancing adaptability during the inference process.

We have conducted comprehensive experiments to vali-
date the effectiveness and efficiency of our proposed method.
The results shows that our method achieves competitive and
state-of-the-art (SOTA) performance on four challenging

benchmarks, including FaceForensics [26], Sky-Timelapse
[42], Taichi-HD [29], and UCF-101 [32]3. In particular, our
AR-Diffusion surpasses the previous SOTA asynchronous
video diffusion model [18] by 60.1% FVD score on the
UCF-101 dataset. Furthermore, we explore the impact of
varying timestep differences in video generation across mul-
tiple benchmarks, demonstrating that an appropriate timestep
difference can significantly enhance the generation perfor-
mance. Specifically, on the Taichi-HD dataset, an optimal
timestep difference can bring a 14.6 and 5.4 improvement in
the FVD score compared to synchronous and auto-regressive
video generation inference settings, respectively.

Our contributions are summarized as follows:
• We introduce AR-VAE and propose a novel video gen-

erative model called AR-Diffusion, which combines the
benefits of both asynchronous auto-regressive and syn-
chronous diffusion models.

• We introduce a novel FoPP timestep scheduler during train-
ing, which balances uniform sampling of timestep compo-
sitions and frame-specific timesteps.

• We propose an AD video scheduler for inference, which
allows the timestep difference between neighbor frames to
be adaptive.

• Extensive experiments demonstrate the effectiveness and
efficiency of our proposed method, validating the necessity
of allowing asynchronous timesteps and the importance of
finding an optimal timestep difference.

2. Related Works
2.1. Synchronous Video Generation
Synchronous video generation models apply consistent noise
or transformations across all video frames, maintaining uni-
form information entropy and temporal coherence through-
out the sequence. Diffusion-based video generative mod-
els [1, 5, 10–13, 20, 21, 23, 30, 39, 40, 44, 48–51], are
commonly used in this category, as they employ an equal
timestep scheduler during both training and inference to en-
sure consistency across frames. VDM [13] was the first to ap-
ply diffusion models to video generation, which introduced
a 3D U-Net architecture for video synthesis. Building upon
this, models such as LVDM [11] and FDM [10] adopted sim-
ilar strategies, using identity noise timesteps across different
video frames to ensure temporal consistency. Imagen Video
[12] and other subsequent works like Make-A-Video [30],
Magic Video [51] further improved upon these methods by
incorporating spatio-temporally factorized architectures. Re-
cent models such as Lavie [40], PixelDance [49], Open-Sora
[50] and Latte [20] have extended these techniques by utiliz-
ing larger training datasets and advanced model architectures
to enhance generalization and visual fidelity.

3Playable video samples: https://iva-mzsun.github.io/
AR-Diffusion.
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In addition to diffusion-based methods, GAN-based ap-
proaches have also significantly contributed to synchronous
video generation. A collection methods, such as MoCoGAN
[36], DIGAN [47], StyleVideoGAN [8], MoStGAN-V [28]
and LongVideoGAN [3], achieve temporal consistency by
synchronizing content representations across frames while
allowing motion-specific variations. Although these meth-
ods have shown promising results in capturing temporal
dynamics, GAN-based models face challenges such as mode
collapse and training instability, which makes it difficult to
maintain high-fidelity performance on challenging datasets.

To alleviate the limitations of the equal timestep scheduler,
recent researchers have investigated chunked autoregressive
generation based on diffusion models, which predict multiple
frames in parallel based on a few preceding ones. Methods
like MCVD [38], SEINE [6], and VideoFusion [19] reduce
computational complexity by generating frames in chunks.
However, the temporal context in this approach is limited,
thus resulting in inconsistent temporal dynamics.

2.2. Asynchronous Video Generation
Asynchronous video generation methods allow each video
frame to be processed with distinct noise levels, offering
greater adaptivity in handling varying information entropy
across frames. These methods are particularly well-suited for
generating videos with variable lengths, as they can be natu-
rally extended to longer tokens or generate subsequent video
frames in a first-in-first-out manner[15, 16]. Auto-regressive
video generative methods is a representative asynchronous
approach [9, 14, 17, 33, 43, 45] , which generate each frame
sequentially by conditioning on the previously generated
ones. This approach allows for flexible, variable-length gen-
eration but often introduces inconsistencies between training
and inference, leading to issues such as error accumulation
and degraded quality in long sequences [34].

Asynchronous diffusion models offer a more flexible ap-
proach by applying independent noise timesteps to each
video frame[18, 27, 41]. For example, Rolling Diffusion
[27] employs a sliding window denoising process for better
temporal dynamics. Diffusion Forcing [4] and FVDM [18]
use frame-specific noise levels, which enhances sampling
flexibility and enables better handling of temporal variability.
However, these models still face challenges in achieving sta-
ble training [18] and are often outperformed by synchronous
methods due to the expanded search space introduced by the
independent noise timesteps for each frame.

3. Methods
In this section, we provide a detailed explanation of our pro-
posed method. An overview of the entire framework is illus-
trated in Fig. 2. We represent a video as x ∈ RF×H×W×C ,
where F is the number of video frames, H is the height, W
is the width, and C is the number of channels. Our AR-VAE

encodes a video x into features z ∈ RF×L×D, where L and
D are the length and dimension of latent tokens, respectively.
zi represents the latent feature of the i-th video frame xi.
We employ T diffusion timesteps, and the noise timestep for
the i-th video frame is denoted as ti. A possible timestep
composition for all F video frames can be represented as
⟨t1, t2, ...tF ⟩, 1 ≤ ti ≤ T, 1 ≤ i ≤ F . Different diffu-
sion models employ different constraints on these timestep
compositions, which will be detailed in Sec. 3.2.

3.1. AR-VAE

Our AR-VAE model is built upon on a Transformer-based
1-Dimensional Tokenizer (Titok) [46], which encodes an im-
age into L discrete tokens. TiTok provides a more compact
latent representation, resulting in substantially more efficient
and effective encoding compared to conventional techniques.
Therefore, our AR-VAE extends Titok’s framework to video
sequences. As illustrated in Fig. 2(a), we first divide each
video frame into frame patches. These frame patches are
then concatenated with L learnable video token embeddings
into the Transformer-based video encoder. Through cross-
attention, these token embeddings can effectively capture the
video content, thereby serving as visual tokens that represent
each video frame. In the original Titok, a vector-quantization
module was used to quantize and discretize the image tokens.
However, in AR-VAE, we remove this module and instead
use the features output by the first normalization layer of
the video decoder to represent videos, allowing continuous
representation of video features.

During decoding, learnable patch tokens are used as place-
holders for the patches of each video frame, and these tokens
are shared across different frames. This mechanism ensures
that each patch token can interact with others within the
same frame to maintain consistency during reconstruction.
As shown in the gray solid lines in the video decoder in
Fig. 2(a), each patch token is capable of interacting with
other patch tokens and visual tokens of the current frame
via full attention. Here, we further modify the video de-
coder to be temporally causal, enhancing temporal coher-
ence and facilitating potential future applications in image
auto-encoding. Specifically, patch tokens from subsequent
video frames can refer to latent tokens from previous frames,
which strengthens their temporal correlations and improves
temporal consistency. We represent such reference with
dotted and directed lines in Fig. 2(a), indicating that the
reference is unidirectional; In other words, video tokens in
preceding frames cannot access patch tokens from subse-
quent video frames. Finally, the video encoder and decoder
are together optimized to reconstruct the frame patches. To
enhance the clarity of reconstructed video frames, we incor-
porate an additional adversarial training loss [7]. Moreover,
the dimensionality of the video features D is reduced to fa-
cilitate the optimization of the follow-up AR-Diffusion by
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Figure 2. The overall framework of our proposed (a) AR-VAE and (b) AR-Diffusion. AR-VAE encodes videos into latent video tokens and
AR-Diffusion models asynchronous video generation in the latent space.

removing parameters associated with later dimensions.

3.2. AR-Diffusion
As illustrated in Fig. 2, AR-Diffusion employs a Transformer
with temporal causal attention as its backbone. The AR-
Diffusion model takes noisy tokens as input and is optimized
to output clean tokens. During training, clean video tokens
are corrupted according to a sampled timestep composition,
and x0 prediction loss is used to optimize AR-Diffusion.
During inference, AR-Diffusion transforms a pure noise
into a realistic video sample by iteratively performing the
following steps: 1) Predict a clean sample based on the noisy
input; 2) Recorrupt the predicted clean sample based on the
corresponding timestep composition; 3) Feed the corrupted
result into the model for next-step prediction. We discuss
the necessity of temporal casual attention and x0 prediction
loss in the appendix.
Diffusion Theory Following [25], each frame feature z0i
(i.e. zi) is corrupted by T steps during the forward diffusion
process using the transition kernel:

q(ztii |zti−1
i ) = N (ztii ;

√
1− βtiz

ti−1
i , βtiI) (1)

q(ztii |z0i ) = N (ztii ;
√
ᾱtiz

0
i , (1− ᾱti)I) (2)

where {βt ∈ (0, 1)}Tt=1 is a set of hyper-parameters, αt =
1− βt and ᾱt =

∏t
i=1 αi. Based on Eq. (2), we can obtain

the corrupted feature ztii directly given the timestep ti during
the training and inference phases as follows:

ztii =
√
ᾱtiz

0
i + (1− ᾱti)ϵti (3)

where ϵti is a noise feature sampled from an isotropic
Gauss distribution N (0, I). The reverse diffusion process
q(zti−1

i |ztii , z0i ) has a traceable distribution:

q(zti−1
i |ztii , z0i ) = N (zti−1

i |µ̃ti(z
ti
i , z0i ), β̃tiI) (4)

where µ̃ti(z
ti
i , z0i ) =

1√
αti

(ztii − βti√
1−ᾱti

ϵti), ϵti ∼ N (0, I),

and β̃ti =
1−ᾱti−1

1−ᾱti
βti .

During training, x0 prediction optimizes the model to
predict z0i based on ztii . During inference, we can obtain
zti−1
i based on input ztii and predicted z0i using Eq. 4.

Non-decreasing Timestep Constraint. In synchronous dif-
fusion models [13], a shared noise timestep is applied to all
video frames during each training and inference step. This
constraint can be formulated as t1 = t2 = ... = tF . In a
typical scenario with F = 16 and T = 1000, the number
of possible timestep compositions satisfying this constraint
is O(1e3), which significantly limits the flexibility of the
model. Conversely, recent asynchronous diffusion models
[4] allow each video frame to have an independently sampled
noise timestep, expanding the number of possible timestep
compositions to O(1e48). However, this vast search space
introduces redundancy, as many timestep combinations are
never utilized during inference, leading to training instability
[18], as discussed in the appendix.

To overcome these challenges, we propose a non-
decreasing timestep constraint, which can be formulated
as t1 ≤ t2 ≤ ... ≤ tF . Intuitively, this constraint ensures
that earlier video frames remains as clear or clearer than
subsequent frames. Under this constraint, the number of
valid timestep compositions in the above-mentioned typical
scenario becomes O(1e32), providing greater diversity than
the equal constraint while being significantly more stable
than the independent sampling approach.

3.3. FoPP Timestep Scheduler
A significant challenge in training our AR-Diffusion is the
demand for an appropriate timestep scheduler. During train-
ing, the timestep scheduler determines the specific timestep
composition utilized to corrupt video frames. It is crucial
since it determines how generative models can be general-
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ized to different inference settings. Existing synchronous
and asynchronous diffusion models employ timestep sched-
ulers that either equally or independently sample timesteps
for video frames. Specifically, synchronous diffusion mod-
els adopt an equal timestep scheduler, which first selects a
random t from the range of 1 to T and then applies this t
as the noise timestep across all video frames. Conversely,
asynchronous diffusion models implement a frame-wise in-
dependent timestep scheduler. This involves independently
sampling a noise timestep ti ∼ U(1, T ) for each video frame
sequentially, where i ranges from 1 to F . Both equal and
independent timestep schedulers naturally enable both uni-
formly sampling of timestep compositions and uniformly
sampling of frame-specific timesteps, as illustrated in Fig. 3.
However, the imposition of the non-decreasing constraint
brings conflict between these two sampling uniformity in our
AR-Diffusion, as it leads to varying frequencies of frame-
specific timesteps visited by all possible timestep composi-
tions. To this end, a novel timestep scheduler is required that
achieves a balance between these two sampling uniformity
when training our AR-Diffusion.

Given previous timestep schedulers, we intuitively de-
sign our timestep scheduler by uniformly sampling the noise
timestep t1 ∼ U(1, T ) for the first video frame, followed
by t2 ∼ U(t1, T ) for the second frame, and continuing in
this manner for subsequent frames. However, this approach
results in significantly unbalanced probabilities for different
timestep compositions. For instance, if the timestep for the
first frame is sampled at T , which occurs with a probability
of 1

1000 , then all subsequent frame timesteps must also be
T , due to our non-decreasing timestep constraint. Conse-
quently, the composition ⟨t1 = T, t2 = T, ..., tF = T ⟩ is
sampled with a probability of 1

1000 . Given that there are ap-
proximately O(1e32) possible timestep compositions in the
typical setting, this probability is excessively high, leading
to severe bias in the training process.

To tackle this issue, we introduce the Frame-oriented
Probability Propagation (FoPP) timestep scheduler. Firstly,
we uniformly sample a frame index f ∼ U(1, F ) and a

Algorithm 1 Algorithm of the FoPP timestep scheduler
Input: T (Total timesteps), F (Total frames)
Output: ⟨t1, t2, ..., tF ⟩

Initializing matrixes ds, de ∈ NF xT

Randomly select f ∼ U(1, F ) and tf ∼ U(1, T )
1: // Sample timesteps for previous video frames
2: for i = f − 1 to 1 do

P e = de[i, 1 : ti+1 + 1]/sum(de[i, 1 : ti+1 + 1])
Sample tf from {1, ..., ti+1} based on probability P e

3: end for
4: // Sample timesteps for subsequent video frames
5: for i = f + 1 to F do

P s = ds[i, ti−1 : T + 1]/sum(ds[i, ti−1 : T + 1])
Sample tf from {ti−1, ..., T} based on P s

6: end for

corresponding timestep t ∼ U(1, T ), ensuring a uniform
distribution of timesteps across all video frames.

Then, we utilize the methodology of dynamic program-
ming to calculate and propagate the probability of each
timestep for previous and subsequent video frames that can
be visited by all possible timestep compositions. In this
way, we uniformly sample a timestep composition condi-
tioned on tf = t. In particular, we first use dsi,j , 1 ≤ i ≤
F, 1 ≤ j ≤ T to represent the total number of timestep
compositions that satisfies ⟨ti = j, ti+1, ..., tF ⟩ and the non-
decreasing constraint. Here, ⟨ti = j, ti+1, ..., tF ⟩ means
that each timestep composition is starting with the i-th video
frame at timestep ti = j. Then, we calculate dsi,j with i
from F to 1 and j from T to 1 using dynamic program-
ming, where d∗,T = 1, dF,∗ = 1, and the transition equa-
tion being di,j = di,j−1 + di−1,j . Then the visit proba-
bility of the timestep k ∈ [K,T ] of the subsequent video
frame i, given i > f and ti−1 = K, is

ds
i,k∑T

j=K ds
i,j

. Simi-

larly, we calculate dei,j , which represents the total number of
timestep compositions that satisfies ⟨t1, t2, ..., ti = j⟩ and
the non-decreasing constraint. Then the visit probability of
the timestep k ∈ [1,K] of the previous video frame i, given
i < f and ti+1 = K, is

de
i,k∑K

j=1 de
i,j

.

Finally, the timesteps of previous or subsequent video
frames are sampled one by one based on corresponding
probabilities. The methodology is detailed in Algorithm 1.

3.4. AD Timestep Scheduler
During inference, a timestep scheduler is utilized to regulate
a sequence of timestep compositions that starts from ⟨t1 =
T, t2 = T, ..., tF = T ⟩ to ⟨t1 = 0, t2 = 0, ..., tF = 0⟩.
In other words, it determines which timestep composition
is used in each sampling step. Here, we introduce an AD
timestep scheduler, which supports adaptive video genera-
tion and accommodates both asynchronous auto-regressive
and synchronous generation. Specifically, the AD timestep
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scheduler makes the timestep difference between neighbor-
ing video frames as an adaptive variable s. For timesteps
ti and ti−1 of consecutive video frames, we ensure that the
following condition holds:

ti =

{
ti + 1, if i = 1 or ti−1 = 0,
min(ti−1 + s, T ), if ti−1 > 0

(5)

Specifically, when the previous video frame is none or clean,
the current video frame focuses on the denoising of itself;
Otherwise, it keeps denoising with a timestep difference of
s than its previous video frame. Notably, the synchronous
diffusion model and the auto-regressive generative model
represent two distinct cases within our variable difference
timestep scheduler, corresponding to s = 0 and s = T ,
respectively. Intuitively, a smaller s results in neighboring
video frames having more similar content, whereas a larger s
introduces greater content variability. Importantly, we apply
a mask to those frame latents for which the noise timesteps
remain unchanged.

4. Experiments
4.1. Setups
Datasets. Following previous video generation methods
[33, 34], we conduct our experiments on four challenging
datasets: FaceForensics [26], Sky-Timelapse [42], Taichi-
HD [29], and UCF-101 [32].
Evaluation metrics. For quantitative evaluation, we use
FID-img, FID-vid, and FVD [37] to measure the realism of
generated videos. For all metrics, the lower the score, the
better the effect. We consider two different clip lengths (16
and 128) for FVD, where we denote FV D16 and FV D128

as the FVD score measured on video clips of lengths 16 and
128, respectively.
Implementation Details. Our experiments were conducted
on videos with a resolution of 2562 and on 8 NVIDIA A800-
40G GPUs. For the AR-VAE training, we configured the
length and dimension of the video latent features at L = 32
and D = 4, respectively. We initialized our AR-VAE using
the publicly available checkpoint from Titok [46]. Initially,
each AR-VAE was trained for 50,000 steps on individual
video frames using typical reconstruction loss [24]. Sub-
sequently, the adversarial loss was incorporated for an ad-
ditional 450,000 training steps to further refine the model.
Finally, we integrated temporal causal attention into our
video decoder within the AR-VAE and conducted optimiza-
tion across all parameters over an additional 100,000 steps.
The batch size is 16 per GPU and the learning rate is 1e-4.
We developed our AR-Diffusion using a Transformer-based
diffusion model, specifically DiT [22]. Initially, video la-
tent features are rescaled by a factor of 0.5 before input into
AR-Diffusion. The training configuration includes a batch
size of 16 per GPU, with gradient accumulation over 8 steps.

The learning rate is set at 2e-4 for the initial 100,000 train-
ing steps, followed by a fine-tuning phase for an additional
50,000 steps at a reduced rate of 1e-5. Techniques such as
exponential moving average over all paramerters, gradient
clipping, and noise clipping are also utilized.

4.2. Quantitaive Comparison

We compare our proposed AR-Diffusion with other methods
on four challenging datasets, including FaceForensics [26],
Sky-Timelapse [42], Taichi-HD [29] and UCF-101 [32]. As
shown in Table 1, our AR-Diffusion model achieves lower
FV D16 and FV D128 scores compared to other generative
methods, which indicates better video quality and temporal
consistency. For example, on the FaceForensics dataset, AR-
Diffusion achieves an FV D16 of 71.9 and an FV D128 of
265.7, respectively, outperforming most of the other mod-
els, including PVDM and Diffusion Forcing. On the Sky-
Timelapse dataset, AR-Diffusion achieves an FV D16 of
40.8, which is lower than all the other methods, showcasing
its superior performance in generating high-quality tempo-
ral sequences. On the Taichi-HD dataset, AR-Diffusion
achieves an FV D16 of 66.3 and an FV D128 of 376.3, out-
performing all the other models including synchronous and
asynchronous diffusion-based models, as well as generative
adversarial models. On the more complex UCF-101 dataset,
AR-Diffusion achieves an FV D16 of 186.6 and an FV D128

score of 572.3, which significantly outperforms all the other
models. These results clearly demonstrate the superiority
of AR-Diffusion across diverse datasets, establishing a new
benchmark in video generation quality and consistency.

Table 2 presents quantitative results for AR-Diffusion
with different settings of the timestep difference s, which
controls the generation process and provides a trade-off
between generation performance and efficiency. Notably,
s = 0 corresponds to synchronous diffusion generation,
while s = 50 represents auto-regressive generation. The ta-
ble reports performance on three metrics: FID-img, FID-vid,
and FVD for both 16-frame and 128-frame video genera-
tion. For 16-frame video generation, AR-Diffusion generally
achieves competitive FVD scores with s values between 0
and 15, depending on the dataset. For example, on the Face-
Forensics and Sky-Timelapse datasets, the best FVD scores
are achieved when s = 0, indicating that synchronous gener-
ation provides optimal quality in this context. On Taichi-HD,
s = 10 provides the lowest FVD scores 66.3, suggesting that
a moderate combination of synchronous and auto-regressive
steps yields improved performance for this dataset. On UCF-
101, the lowest FVD score of 186.6 is obtained with s = 15,
showing the effectiveness of moderate timestep values in bal-
ancing temporal coherence and quality for complex datasets.
As s increases beyond 15, FVD scores tend to increase,
which suggests a reduction in the temporal quality of gener-
ated videos. In addition, inference time also increases with
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Table 1. Quantitative comparison on four challenging datasets: Taichi-HD [29], Sky-Timelapse [42], FaceForensics [26], and UCF-101 [32].

Taichi-HD [29] Sky-Timelapse [42] FaceForensics [26] UCF-101 [32]

FVD16 FVD128 FVD16 FVD128 FVD16 FVD128 FVD16 FVD128

Generative Adversarial Models
MoCoGAN [36] - - 206.6 575.9 124.7 257.3 2886.9 3679.0
+ StyleGAN2 backbone - - 85.9 272.8 55.6 309.3 1821.4 2311.3
MoCoGAN-HD [35] - - 164.1 878.1 111.8 653.0 1729.6 2606.5
DIGAN [47] 128.1 748.0 83.11 196.7 62.5 1824.7 1630.2 2293.7
StyleGAN-V [31] 143.5 691.1 79.5 197.0 47.4 89.3 1431.0 1773.4
MoStGAN-V [28] - - 65.3 162.4 39.7 72.6 - -

Auto-regressive Generative Models
VideoGPT [43] - - 222.7 - 185.9 - 2880.6 -
TATS [9] 94.6 - 132.6 - - - 420 -

Synchronous Diffusion Generative Models
Latte [20] 159.6 - 59.8 - 34.0 - 478.0 -
PVDM [48] 540.2 - 55.4 125.2 355.9 - 343.6 648.4
LVDM [11] 99.0 - 95.2 - - - 372.9 -
VIDM [21] 121.9 563.6 57.4 140.9 - - 294.7 1531.9

Asynchronous Diffusion Generative Models
FVDM [18] 194.6 - 106.1 - 55.0 - 468.2 -
Diffusion Forcing [4] 202.0 738.5 251.9 895.3 99.5 555.2 274.5 836.3
AR-Diffusion (ours) 66.3 376.3 40.8 175.5 71.9 265.7 186.6 572.3

Table 2. Quantitative results with different values of timestep s. We utilize a DDIM sampler with 50 sampling steps in total.

s
FaceForensics [26] Sky-Timelapse [42] Taichi-HD [29] UCF-101 [32] Inference

Time (s)FID-img FID-vid FVD FID-img FID-vid FVD FID-img FID-vid FVD FID-img FID-vid FVD

16-frame Video Generation
0 14.0 6.9 71.9 10.0 9.2 40.8 13.8 9.2 80.9 30.3 17.6 194.4 2.4
5 14.0 6.2 78.1 11.1 11.6 55.2 13.0 5.9 66.3 30.0 17.7 194.0 5.2

10 13.6 6.1 84.4 10.3 11.2 57.6 12.4 5.8 70.9 30.1 18.8 212.2 7.9
15 14.3 6.6 83.5 9.4 11.4 55.6 12.2 5.8 69.4 30.0 16.3 186.6 10.8
20 14.8 6.3 83.3 9.2 10.9 56.3 12.7 6.0 67.0 31.0 17.4 201.1 13.6
25 14.1 6.1 79.0 9.7 10.5 48.4 12.9 6.5 75.1 29.6 17.3 191.6 16.4
50 14.2 6.1 82.8 10.1 10.7 50.6 13.1 5.9 71.7 29.5 17.1 192.6 30.5

128-frame Video Generation
5 14.7 9.5 265.7 12.2 25.2 185.1 8.9 10.8 376.3 32.5 24.4 592.7 42.1

10 15.2 8.9 278.1 12.1 23.9 182.6 8.8 12.2 401.9 31.5 24.9 605.3 78.0
25 15.4 9.3 348.6 12.2 22.8 175.5 8.8 12.3 402.5 31.8 23.3 572.3 184.8

larger s values, indicating a trade-off between efficiency
and the use of auto-regressive steps. For 128-frame video
generation, s = 5 achieves relatively lower FVD scores,
demonstrating that a smaller s value is beneficial for gen-
erating longer sequences while maintaining visual quality.
Overall, the analysis indicates that a moderate value of s
(e.g., s = 10 for 16-frame generation and s = 5 for 128-
frame generation) often strikes an effective balance between
quality and inference efficiency across different datasets.

4.3. Qualitative Comparison

We qualitatively compare our method with prior works as
in Figure 4. Samples of prior methods are obtained from
[19, 21] or generated with their released codes and param-
eters [20]. On UCF-101, the GAN-based method DIGAN
tends to produce video samples that lack distinctiveness.
In contrast, TATS, which leverages a Transformer architec-
ture and an interpolation strategy, creates more recognizable
video samples. VIDM results in overly simplistic object
motions. The asynchronous diffusion model Diffusion Forc-
ing [4] yields videos with minimal motion, while our AR-
Diffusion method produces samples that showcase both clear

appearances and notable movements. On the Sky Time-lapse
dataset, samples from DIGAN and TATS exhibit minimal
motion and simplistic object representations. Conversely,
Latte and VIDM enhance the detail and clarity of object
boundaries, though their motion effects are still limited. In
contrast, our AR-Diffusion method creates video samples
characterized by dynamic movements and significantly en-
hanced visual details. Similarly, for the TaiChi-HD dataset,
video samples from DIGAN and TATS show noticeable dis-
tortions in human appearances. While Latte, VIDM, and
Diffusion Forcing [4] improve the depiction of human fig-
ures, their movements remain minimal. In contrast, samples
produced by our AR-Diffusion method display significant
movements and clearly defined object appearances.

4.4. Ablation Study

To systematically evaluate the contributions of different
model components in our proposed AR-Diffusion model, we
design various ablation models as shown in Table 3. Each ab-
lation experiment is conducted on the Sky-timelapse dataset
using 8 A800 GPUs without the fine-tuning stage. The base-
line AR-Diffusion model achieves an FID of 12.2, an FVD-

7370



TATS

DIGAN

VIDM

AR-Diffusion 
(ours)

Latte

(a) UCF-101 (b) Sky-Timelapse (c) TaiChi-HD

Diffusion
Forcing

Figure 4. Qualitative comparison of existing video generative methods and our AR-Diffusion.

Table 3. Ablation study on our AR-Diffusion.

FID FVD-img FVD

AR-Diffusion 12.2 13.4 62.8
-FoPP Timestep Scheduler 11.0 16.8 101.0
-Improved VAE 13.1 29.6 148.3
-Temporal Causal Attention 15.9 50.2 209.8
-x0 Prediction Loss 27.9 58.0 257.6
-Non-decreasing Constraint 32.2 87.9 272.5

img of 13.4 and an FVD of 62.8, indicating high video qual-
ity and temporal consistency. Removing the FoPP timestep
scheduler leads to an increase in FVD to 101.0, demon-
strating the necessity of appropriately sampling timestep
composition during training. Our AR-VAE is improved
by reducing the latent dimension from 12 to 4, employing
temporal causal attention, and incorporating the adversar-
ial training loss. Removing these improvements, the FVD
score further increases to 148.3, illustrating their significant
impact on generating high-quality video content. Eliminat-
ing temporal causal attention in the AR-Diffusion causes a
substantial performance drop, with FID increasing to 15.9
and FVD rising to 209.8, underscoring its importance in
maintaining temporal dependencies between frames. Re-
placing x0 prediction with ϵ prediction has a particularly
drastic effect, with FID increasing to 27.9 and FVD reach-
ing 257.6, suggesting that this loss function is crucial for
stable and consistent video generation. Finally, the absence
of the non-decreasing constraint leads to the worst perfor-
mance, with FID-img and FID-vid increasing to 32.2 and
87.9, respectively, and FVD reaching 272.5, indicating that

this constraint is essential for maintaining quality during
diffusion steps. Overall, the ablation study demonstrates that
each component significantly contributes to the performance
of AR-Diffusion, particularly the temporal causal attention,
improved VAE, and x0 prediction loss.

5. Conclusion
In this paper, we present a novel auto-regressive video diffu-
sion model, which is called AR-Diffusion. Targeting asyn-
chronous video generation, AR-Diffusion introduces a novel
non-decreasing timestep constraint, which significantly re-
duces the search space and thus stabilizes the training pro-
cedure. During training, the FoPP timestep scheduler is
used to optimize AR-Diffusion with a balanced sampling of
timestep compositions. During inference, the AD timestep
scheduler is employed to regulate a sequence of timestep
compositions for AR-Diffusion to produce a video sample.
In conclusion, AR-Diffusion combines the advantages of
both auto-regressive generative models and synchronous
video diffusion models, obtaining competitive or SOTA re-
sults on four challenging benchmarks.
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