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Abstract

One of the roadblocks for instance segmentation today is
heavy computational overhead and model parameters. Pre-
vious methods based on Polar Representation made the ini-
tial mark to address this challenge by formulating instance
segmentation as polygon detection, but failed to align with
mainstream methods in performance. In this paper, we
highlight that Representation Errors, arising from the lim-
ited capacity of polygons to capture boundary details, have
long been overlooked, which results in severe performance
degradation. Observing that optimal starting point selec-
tion effectively alleviates this issue, we propose an Adaptive
Polygonal Sample Decision strategy to dynamically cap-
ture the positional variation of representation errors across
samples. Additionally, we design a Union-aligned Raster-
ization Module to incorporate these errors into polygonal
assessment, further advancing the proposed strategy. With
these components, our framework PolarNeXt achieves a re-
markable performance boost of over 4.8% AP compared to
other polar-based methods. PolarNeXt is markedly more
lightweight and efficient than state-of-the-art instance seg-
mentation methods, while achieving comparable segmen-
tation accuracy. We expect this work will open up a new
direction for instance segmentation in high-resolution im-
ages and resource-limited scenarios. Codes can be found
at https://github.com/Sun15194/PolarNeXt.

1. Introduction

Object detection and instance segmentation are fundamen-
tal tasks in computer vision, aiming at identifying specific
objects within images. Object detection [26, 27, 33], also
known as box detection, localizes objects using rectangular
boxes, which are efficient but coarse-grained. In compari-
son, instance segmentation offers additional geometric in-
formation, such as shape and boundary. Mainstream meth-
ods define instance segmentation as pixel-wise classifica-
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Figure 1. Illustration of the composition of prediction errors in
polar-based methods. Classification and Regression (Cls.&Reg.)
Errors are produced during network optimization, which reflects
the deviation from starting point classification (s → ŝ) and dense
distance regression (D → D̂). The ignored Representation (Rep.)
Error arises from the missing boundary details of instance contour
C in Polar Representation, as exemplified by the two cases below.
Obviously, the center point does not necessarily coincide with the
optimal point, from which the assembled polygon with minimal
Rep. Error can be predicted.

tion [7, 14, 34] or iterative deformation [9, 25, 39]. Despite
the finer granularity, these methods introduce heavy com-
putational overhead and model parameters, which restricts
their applicability in high-resolution images or resource-
limited scenarios [11].

To combine the efficiency of detection with the granu-
larity of segmentation, a pioneering attempt is Polar Rep-
resentation. As shown at the top of Fig. 1, Polar Repre-
sentation reconstructs the instance contour into a bounding
polygon, assembled by dense rays emitted uniformly from
a starting point. Building on this concept, typical polar-
based methods [36–38] formulate instance segmentation as
starting point classification and dense distance regression.
These methods can be instantiated on one-stage object de-
tectors [26, 33], directly inheriting their advantages in in-
ference speed and model complexity. However, Polar Rep-
resentation has not become a fundamental paradigm for in-
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Figure 2. An overview of the proposed Adaptive Polygonal Sample Decision (APSD). The three stages of APSD are labeled as: I.Sampling
Stage, II.Matching Stage, and III.Weighting Stage. The Union-aligned Rasterization Module (URM) takes the predicted polygons P̂ of the
candidates selected by Multi-layer Center Sampling (MCS) as input, and outputs their RMask IoU with the instance contours C. RMask
IoU functions in both matching costs and sample weighting.

stance segmentation, due to the significant performance gap
between polar-based methods and other advanced methods.

In this work, we highlight that an additional prediction
error has been ignored in Polar Representation, which re-
sults in the performance degradation of polar-based meth-
ods. As illustrated at the bottom of Fig. 1, from different
starting points, the assembled polygons exhibit varying de-
grees of deviation with their corresponding contours. This
deviation, termed Representation (Rep.) Error, inevitably
occurs in Polar Representation, where the boundary de-
tails of contours are complex for polygons to reflect, espe-
cially in disconnected or concave regions. However, exist-
ing training pipelines in polar-based methods only account
for the Classification and Regression (Cls.&Reg.) Errors
generated during network optimization. Their label assign-
ment and sample weighting, collectively referred to as sam-
ple decisions, rely entirely on the handcrafted center prior,
which fails to capture the positional variation of represen-
tation errors (as proven in Sec. 3.2(1)). Furthermore, even
though a natural idea is to dynamically select the optimal
starting point with minimal representation error, a reliable
metric to incorporate this error into polygonal assessment is
still lacking. As the only available metric, Polar IoU [36]
exhibits assessment blindness to representation errors (as
verified in Sec. 3.2(2)), which is too coarse-grained to sup-
port this idea.

To overcome these challenges, we propose PolarNeXt,
a highly lightweight yet effective polar-based framework
for real-time instance segmentation. The training pipeline
of this framework includes an Adaptive Polygonal Sample
Decision (APSD) strategy, enabling optimal starting point

selection during inference. APSD assigns positive labels
and higher weights to the candidate samples based on their
matching costs, which account for the comprehensive er-
rors between predictions and ground truths. To eliminate
the assessment blindness to representation errors, a Union-
aligned Rasterization Module (URM) is designed for more
accurate polygonal assessment. The paired polygon and
contour are aligned within their Union Box and then con-
verted into rasterized masks for RMask IoU measurement.
Here, RMask IoU serves as a new metric to evaluate the ac-
tual polygonal overlap, forming the core element of sample
decisions and loss functions. Benefitting from these com-
ponents, PolarNeXt achieves a remarkable improvement
of over 4.8% AP compared to other polar-based methods.
To the best of our knowledge, this is the first polar-based
method competitive with state-of-the-art instance segmen-
tation methods in performance. Notably, PolarNeXt re-
quires only half or even less of their computational cost and
inference time, which redemonstrates the superiority of Po-
lar Representation in instance segmentation. The main con-
tributions of this work can be summarized as follows:

• We conduct a thorough analysis of the implementation
challenges of Polar Representation in instance segmen-
tation, and reveal that the performance limitations of ex-
isting polar-based methods stem from their neglect of the
representation error.

• We propose a new polar-based instance segmentation
framework called PolarNeXt, including an APSD strat-
egy to dynamically account for representation errors
across samples and a URM module that eliminates the
assessment blindness to these errors using RMask IoU.
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• We fully leverage the advantages of Polar Representa-
tion in instance segmentation tasks. Without bells and
whistles, PolarNeXt is markedly more lightweight and
efficient than other mainstream methods, while aligning
with them in terms of segmentation performance.

2. Related Work

Instance Segmentation. Mainstream instance segmenta-
tion methods can be classified into two categories based on
their representation, i.e., mask-based methods and contour-
based methods. Mask-based methods treat instance seg-
mentation as pixel-wise classification, in which binary
masks are predicted within their Regions of Interest (RoIs).
As a pioneering work, Mask R-CNN [14] introduces a
detect-then-segment paradigm, built on the two-stage de-
tector [27], with box proposals serving as the RoIs for
pixel-by-pixel segmentation. Nowadays, state-of-the-art
benchmark results are still held by the mask-based two-
stage methods [2, 3, 15] constructed on strong detection
baselines. Additionally, to reduce reliance on bounding
boxes, one-stage methods [32, 34, 35] treat the entire im-
age as the RoI, predicting masks by the assembly of en-
coded mask vectors and mask kernels from dynamic con-
volutions. Other mask-based methods focus on the high-
quality boundary [17, 20], or the real-time inference [1, 7].
Contour-based methods take a different paradigm, formu-
lating instance segmentation as iterative deformation based
on the active contour mechanism of Snake [16]. Deep
Snake [25] establishes the first multi-stage deformation net-
work, which progressively refines the pre-predicted initial
contours using their vertex features. Based on this baseline,
further optimization strategies have been explored, such as
Segment-wise Matching Scheme [24], Dynamic matching
Loss [39], and Multi-scale Contour Refinement [9]. How-
ever, the high computational cost introduced by pixel-wise
classification and iterative deformation limits the applicabil-
ity and prevalence of these methods in high-resolution im-
ages or resource-limited scenarios [11]. To solve this prob-
lem, we bring back Polar Representation and redemonstrate
its superiority in instance segmentation. Building on Polar
Representation, our proposed PolarNeXt is markedly more
lightweight and efficient than the aforementioned methods,
while remaining competitive in segmentation performance.

Polar Representation. Polar Representation initially ap-
pears in some interdisciplinary fields, such as automatic
building segmentation [6] and medical cell detection [30].
Subsequently, ESE-Seg [38] migrates Polar Representation
into instance segmentation tasks, introducing Chebyshev
polynomial fitting to shorten the distance vectors and re-
sist noise. PolarMask [36] and its variant [37] make the
initial mark of polar-based methods on instance segmen-
tation benchmarks. They maximize the advantage of the

center prior by modified Center Sampling and Polar Center-
ness, along with a proposed Polar IoU metric for polygonal
assessment. However, the representation error introduced
by Polar Representation has been ignored in these polar-
based methods, which results in severe performance degra-
dation. To address this, we propose an APSD strategy to
dynamically balance representation errors across samples,
in conjunction with a URM module that incorporates these
errors into polygonal assessment. Together, these compo-
nents bring a notable performance boost to PolarNeXt.

3. Methods

In this work, PolarMask [36], a representative polar-based
method, is used as a case study for Polar Representation.
The design principle and training pipeline of PolarMask are
reviewed in Sec. 3.1. Under this pipeline, the effectiveness
of its sample decisions and polygonal assessment is inves-
tigated in Sec. 3.2. Finally, a novel polar-based framework
called PolarNeXt is detailed in Sec. 3.3 to advance Polar
Representation in instance segmentation tasks.

3.1. Preliminary

PolarMask defines instance segmentation as starting point
classification and dense distance regression. As illustrated
in Fig. 1, for a given instance contour C, bounding poly-
gon P = ψ(s,D) can be constructed through Polar Repre-
sentation ψ, using a distance set D = {di| i = 1, ...,m}
from a starting point s. The starting point s and distance
set D serve as supervision signals for the network, which
then classifies a starting point ŝ and regresses an equal-size
set D̂ = { d̂i

∣∣∣ i = 1, ...,m} to construct predicted poly-

gon P̂ = ψ(ŝ, D̂). In the training pipeline of PolarMask,
the center prior fully dictates label assignment and sample
weighting, given that samples closer to the center tend to
have richer receptive field and lower regression difficulty
[19]. First, Center Sampling is applied on a single FPN
[22] layer, directly assigning positive labels to the samples
around instance centers. Second, Polar Centerness, which
quantifies the proximity to the center, weights these posi-
tive samples to modulate their contribution to loss functions.
Furthermore, due to the lack of polygon-specific IoUs, Po-
lar IoU is proposed as a metric for polygonal assessment.
It compares the consistency between target distance set D
and predicted distance set D̂ to approximate the overlap be-
tween P and P̂ . Additionally, Polar IoU is transformed into
Polar IoU Loss to supervise distance regression. More de-
tails are provided in supplementary materials.

3.2. Investigation

In this section, we identify that two challenges lie in imple-
menting Polar Representation for instance segmentation:
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Figure 3. Illustration of the divergence between Polarness and
Centerness. On the left, heatmaps of these two attributes are vi-
sualized to reveal the distributional divergence, with positive sam-
ples (9 white points) selected by Center Sampling marked. Then,
attribute values of these samples are plotted to verify the quantita-
tive divergence on the right, where samples are sorted by ascend-
ing Polarness.

(1) Diminished Effectiveness of Center Prior. The cen-
ter prior plays a diminished role in sample decisions, which
fails to capture the positional variation of representation er-
rors. To validate this, a comparative experiment is con-
ducted in Fig. 3, illustrating the divergence between the cen-
ter prior and representation error. For a clear comparison,
we define Polarness (Plr) as an inverse measure of Repre-
sentation Error (RE), where Plr = 1 − RE. Likewise,
normalized Polar Centerness is introduced to quantify the
influence of the center prior. Experimental results show that
Polarness presents no observable correlation with the dis-
tribution pattern of Centerness, while Centerness does not
increase monotonically on these samples sorted by ascend-
ing Polarness. Accordingly, the samples selected by center
sampling do not necessarily correspond to lower representa-
tion errors, and Centerness also fails to accurately modulate
the weights of high-quality samples. Based on these ob-
servations, we conclude that the sample decisions entirely
reliant on the center prior are less applicable in polar-based
methods, as some suboptimal samples in center regions re-
ceive excessive attention.

(2) Assessment Blindness of Polar IoU. As the only avail-
able metric, Polar IoU exhibits assessment blindness to rep-
resentation errors. This limitation arises because Polar IoU
evaluates the consistency between target polygon P and
predicted polygon P̂ by comparing their distance sets, en-
tirely independent of instance contour C. To explore the
impact of this blindness on polygonal assessment, a scat-
ter plot is drawn to examine the effectiveness of Polar IoU.
As shown in Fig. 4(a), the scatter points show a significant
departure from the expected linear trend, with substantial
noise introduced. For example, when Real IoU reaches 0.4,
Polar IoU fluctuates substantially, ranging irregularly from
0.4 to 0.9. Based on these observations, we conclude that

Figure 4. Comparison between Polar IoU and our proposed
RMask IoU. The green solid lines denote the curves fitted by scat-
ter points, while the red dashed lines indicate the desired linear
correlation trend. Real IoU is the polygon-specific IoU between
the predicted polygon and its corresponding instance contour, cal-
culated using Weiler-Atherton algorithm [10].

Polar IoU fails to function as a reliable metric for polygonal
assessment.

3.3. PolarNeXt
To overcome these two challenges, a new framework named
PolarNeXt is proposed, which is expected to become the
next level of polar-based methods for instance segmen-
tation. The training pipeline of PolarNeXt includes two
tailored components for Polar Representation: Adaptive
Polygonal Sample Decision (APSD) and Union-aligned
Rasterization Module (URM). As illustrated in Fig. 2,
APSD samples a wide range of candidates around instances
on the input image. Then, those candidates with minimal
matching costs are assigned positive labels and weighted by
the quality scores of their predicted polygons. For polygo-
nal assessment, URM aligns the paired polygon and contour
within their Union Box, and converts them into rasterized
masks for overlap measurement. The RMask IoU output by
URM incorporates representation errors, serving as precise
guidance in both label assignment and sample weighting.
The detailed design principles of our proposed methods are
outlined below.

Union-aligned Rasterization Module. To eliminate the as-
sessment blindness to representation errors, a straightfor-
ward idea is to bridge the predicted polygon P̂ with its
instance contour C and measure their polygonal overlap.
However, traditional polygon-specific IoU algorithms, such
as Weiler-Atherton [10], are impractical for parallel pro-
cessing, due to uncertain vertex counts and inevitable re-
cursive operations. Inspired by 3D renderers [12, 18, 23],
our solution is to convert P̂ and C from vertex-set format
into rasterized-mask format for mask-level overlap mea-
surement, but an additional challenge lies in their alignment
at a fixed resolution, given that no pre-predicted RoIs are
available in one-stage detectors.
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As shown in Fig. 2, we propose a Union-aligned Rasteri-
zation Module (URM) which employs Union Box, the min-
imal bounding box enclosing all the vertices of P̂ and C,
as a reference for coordinate alignment. Concretely, assum-
ing the vertex sets of P̂ and C are symbolized by VP̂ and
VC , with a desired mask resolution for rasterization speci-
fied as H ×W . The coordinate (vx, vy) of a vertex v can
be adjusted by the union set U = VP̂ ∪ VC as follows:

(
vx

vy

)
=


vx−min

u∈U
ux

max
u∈U

ux−min
u∈U

ux
×W

vy−min
u∈U

uy

max
u∈U

uy−min
u∈U

uy
×H

 . (1)

Then, the differentiable rasterizer in [18] is introduced to
transform the aligned vertex sets into rasterized masks.
For pixel p(x, y) of a mask, where 0 ≤ x ≤ W and
0 ≤ y ≤ H , two attributes are used to model its contribu-
tion valueM [x, y] to the mask: (1) the binary inside-outside
state IO(V, p) of pixel p relative to vertex set V , and (2) the
closest distance CD(V, p) from pixel p to vertex set V . The
contribution value M [x, y] is formulated as shown below:

M [x, y] = sigmoid(
IO(V, p)× CD(V, p)

τ
), (2)

where τ is a hyperparameter for sharpness. Finally, two
rasterized masksMP̂ andMC with the same resolutionH×
W are produced, and their mask-level IoU, called RMask
IoU, can be calculated as follows:

RMask IoU =

2
H∑
i=1

W∑
j=1

MC [i, j] ·MP̂ [i, j]

H∑
i=1

W∑
j=1

MC [i, j]+
H∑
i=1

W∑
j=1

MP̂ [i, j]

. (3)

As shown in Fig. 4(b), RMask IoU accurately reflects the
actual overlap between polygons and contours. Further, we
perform a simple deformation on RMask IoU to obtain a
new loss function, RMask IoU Loss, for polygonal external
constraints:

RMask IoU Loss = 1− RMask IoU. (4)

Adaptive Polygonal Sample Decision. The essence of
sample decisions is to focus more attention on high-quality
samples in each iteration. However, as an additional error
introduced in Polar Representation, the representation error
is susceptible to multiple factors, such as contour connectiv-
ity and convexity, which makes it challenging to be captured
using the fixed priors. As shown in Fig. 2, our solution is
to construct an optimal matching problem, in which posi-
tive labels and higher weights are assigned to those sam-
ples with lower matching costs. Specifically, we propose an
Adaptive Polygonal Sample Decision (APSD) strategy to

dynamically balance and minimize various types of errors
across samples during training. For clarity, we divide this
strategy into three stages:
(1) Sampling Stage. In this stage, a group of candidates
is sampled from the multi-scale grids of FPN layers. Here,
Center Sampling is still adopted to maintain the strong re-
ceptive field for candidates, with a slight adjustment. To
expand the range of candidate selection, we put forward
Multi-layer Center Sampling (MCS), which applies Center
Sampling across all FPN layers, rather than sampling with
an increasing radius on a single layer (as proven ineffective
in Sec. 4.3).
(2) Matching Stage. The purpose of this stage is to se-
lect positive or negative labels for candidates based on their
matching costs. The Matching cost is defined as a weighted
summation of classification loss Lcls, regression loss Lreg,
and polygon loss Lpoly, which together evaluate the opti-
mized cost from the prediction to ground truth. In this work,
we employ Focal Loss [28], Polar IoU Loss [36], and the
proposed RMask IoU Loss as classification loss, regression
loss, and polygon loss, respectively. For a given instance,
the matrix of matching costs Cost = {ci|i = 1, ..., n} for
n candidates can be formulated as follows:

Cost = λclsLcls + λregLreg + λpolyLpoly, (5)

where λcls, λreg and λpoly stand for the loss coefficients.
Afterward, a fixed number k of positive labels are assigned
to the candidates with minimal costs, and the others are neg-
ative:

Xi =

{
Positive, ci ∈ top-kmin(c1, c2, ..., cn)
Negative, ci /∈ top-kmin(c1, c2, ..., cn),

(6)

where Xi refers to the label assigned to the i-th candidates.
Notably, if a sample is matched by two instances simultane-
ously, the one with the largest area will be chosen.
(3) Weighting Stage. In the final stage, each positive
sample is provided with a quality score, which modulates
its contribution to loss functions. Our approach here is
straightforward but effective, replacing the heuristic Cen-
terness with the RMask IoU output by URM. Compared to
Centerness, RMask IoU treats each positive sample equally,
especially those high-quality samples located outside the
contour, whose weights are zeroed out by Centerness (e.g.,
samples 5 and 6 in Fig. 3).
Loss Function. The overall loss function L consists of four
parts:

L = λclsLcls + λregLreg + λpolyLpoly + λsreLsre, (7)

where Lsre denotes the Cross-Entropy Loss in PolarMask
used to supervise the Centerness head. In this case, we re-
place the original supervision signals with RMask IoU in
the Centerness head.
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Type Method Backbone Epoch Size AP AP50 AP75 FPS Parms↓ FLOPs↓

Contour

DeepSnake [25] DLA-34 160 512 30.3 - - 24 - -
E2EC [39] DLA-34 150 512 33.8 52.9 32.8 35 29.80 121

PolySnake [9] DLA-34 250 512 34.4 - - 18 - -
DANCE [24] R50-FPN 36 800 36.8 58.5 39.0 16 44.60 274

Mask

Mask R-CNN [14] R50-FPN 36 800 37.5 59.1 40.2 33 44.40 240
Cascade R-CNN [2] R50-FPN 36 800 38.4 59.7 41.5 23 77.33 1804

HTC [3] R50-FPN 20 800 38.7 60.1 41.9 17 80.26 1735
MS R-CNN [15] R50-FPN 24 800 36.8 56.7 39.7 30 60.74 279
PointRend [17] R50-FPN 36 800 38.4 59.5 41.5 22 60.22 266
CondInst [32] R50-FPN 36 800 36.2 57.2 38.7 29 34.17 308

SOLO [34] R50-FPN 36 800 36.4 57.9 38.9 25 36.31 332
SOLOv2 [35] R50-FPN 36 800 38.4 59.5 41.2 35 46.60 227
YOLACT [1] R50-FPN 55 800 29.0 48.7 29.8 47 35.30 237
SparseInst [7] R50-FPN 146 800 33.2 53.4 34.7 59 32.80 201

Polar

ESE-Seg [38] R50-FPN 300 800 21.6 48.7 22.4 38 - -
PolarMask [36] R50-FPN 36 800 31.3 52.5 32.3 42 34.74 264

PolarNeXt (ours) R50-FPN 36 800 36.1 59.7 37.3 49 32.36 186

Table 1. Experimental results on COCO test-dev. ”Size” refers to the length of the shortest edge of input images. ”↓” means smaller values
are preferred.

Figure 5. Comparison of Memory Usage (MB) for inference. Dur-
ing inference on COCO test-dev images, the peak memory usage
is recorded as the final result of each method.

4. Experiments
4.1. Experiments and Implementation Details
Experiment Settings. The experiments are conducted on
MS COCO [21] benchmark and Cityscapes [8] dataset. MS
COCO contains 80 classes with 115k training, 5k valida-
tion, and 20k testing images. Cityscapes has 2795 train-
ing images from 8 classes and another 500 images with
high-quality annotations for validation. In terms of eval-
uation metrics, the accuracy of segmentation is evaluated
by the standard AP metric, denoted as mask AP. Further-
more, mask AP can be divided into AP50/AP75 based on
different IoU thresholds, as well as APS /APM /APL for
small/medium/large objects. All inference experiments are
conducted on a single NVIDIA 4090D GPU, where FPS,

Method AP AP50 FPS Mems↓
Mask R-CNN [14] 31.5 58.6 16 1968

SOLOv2 [35] 27.2 48.5 17 2076
CondInst [32] 33.3 59.1 15 2319

PolarMask [36] 27.4 52.3 28 575
PolarNeXt (ours) 30.7 58.8 31 566

Table 2. Experimental results on Cityscapes val set. ”Mems”
stands for the memory usage (MB).

Parms, and FLOPs are calculated separately for inference
speed, model complexity, and computational overhead. No-
tably, in all our experiments, TensorRT or FP16 is not used
for acceleration.
Implementation Details. PolarNeXt is instantiated on the
PolarMask network, using a backbone ResNet-50 [13] pre-
trained on ImageNet [29], and removed the auxiliary box
branch. All models are implemented on the MMDetection
toolbox [4], trained on 2 GPUs with 2 images per GPU,
and optimized with SGD. Weight decay and momentum are
configured to 0.0001 and 0.9, respectively. The base learn-
ing rate is set to 0.01 without any decay scheme. For a
fair comparison, following common practice, data augmen-
tation only contains random flip and scale jitter unless spec-
ified. In APSD, the radius of Center Sampling for candidate
selection at each FPN layer is set to 1.5 and the number k
of assigned positive labels is set to 9 for each instance. Loss
coefficients λcls, λreg , λpoly, and λsre are all empirically
set to 1.0. Following the rasterizer configuration in [18], we
set the desired mask resolution to 64× 64 and the rasteriza-
tion sharpness to τ = 0.1.
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URM APSD APweight loss cost
29.1

✓ 30.3 (+1.2)
✓ ✓ 31.0 (+1.9)

✓ 28.6 (−0.5)
✓ ✓ ✓ 30.7 (+1.6)
✓ ✓ ✓ ✓ 33.9 (+4.8)

Table 3. Ablation studies on URM and APSD. ”weight” means
whether Centerness is replaced by RMask IoU for sample weight-
ing. ”loss” refers to the use of RMask IoU Loss in loss functions.
”cost” indicates the incorporation of RMask IoU Loss into match-
ing costs.

Polar IoU Loss AP APS APM APL

w/o. 32.8 14.3 35.1 48.5
w/. 33.9 16.4 35.9 49.4

Table 4. Feasibility analysis of removing Polar IoU Loss. The
symbols ”w/o.” and ”w/.” indicate whether the Polar IoU Loss is
employed.

4.2. Main Results
MS COCO. Following common practice, we evaluate Po-
larNeXt on the MS COCO benchmark and compare test-dev
results to some state-of-the-art models in Tab. 1. In terms of
computational cost, PolarNeXt is more lightweight than the
other models with R50-FPN backbone, only requiring 32.8
MB Parameters and 186 GB FLOPs. Even when compared
to the contour-based methods using DLA-34 backbone, it
remains on par. In terms of inference speed, PolarNeXt
is second only to the prevalent SpareInst, but it achieves
higher accuracy (36.1% vs. 33.2% AP) with a shorter train-
ing schedule (36 vs. 146 epochs). In terms of segmenta-
tion accuracy, PolarNeXt delivers competitive results com-
pared to other more complex methods. Particularly, without
bells and whistles, PolarNeXt achieves a 4.8% mask AP im-
provement over PolarMask, redemonstrating the potential
of Polar Representation in instance segmentation. More-
over, we visualize the memory usage of some representa-
tive methods during inference in Fig. 5. Obviously, Po-
larNeXt shows its consistency with the classical object de-
tector FCOS, with memory usage significantly lower than
other instance segmentation methods, only half or even less.
Cityscapes. As an extended comparative experiment in
Tab. 2, Cityscapes dataset, characterized by high-resolution
images, is utilized to examine the robustness and general-
ization ability of our model. Notably, all models are directly
trained on the Cityscapes training set under 64 epochs, with-
out COCO initialization. Since fragmented instances fre-
quently occur in Cityscapes, the Multi-component Detec-
tion Strategy suggested in [25] is applied to PolarNeXt and

Candidate Selection Layer AP T.T.
Center Sampling (s.r.=1.5)

single
31.0 13h

Center Sampling (s.r.=2.0) 30.6 (−0.4) 14h
All Grid Points

multi

- -
Points within Boxes 33.1 (+2.1) 28h

Points within Contours 33.0 (+2.0) 25h
Center Sampling (s.r.=1.5) 33.9 (+2.9) 16h

Table 5. The effectiveness of some approaches for candidate selec-
tion. ”single” denotes selecting candidates on a specific FPN layer
based on the instance size, and ”multi” refers to selecting candi-
dates across all FPN layers. ”T.T.” and ”s.r.” are abbreviations for
training time and sampling radius, respectively.

Method AP b AP b
50 AP b

S AP b
M AP b

L

PolarMask 16.3 38.3 16.0 28.4 13.2
PolarNeXt 19.8 46.7 20.2 32.2 15.9

Table 6. Comparison of boundary quality between PolarMask and
PolarNeXt.

PolarMask, leading to approximately a 1.5% AP improve-
ment. Under the increased resolution of input images (from
800 × 1333 to 1024 × 2048), mask-based methods suffer
from the heavy memory usage introduced by dense pixel
classification, which is nearly four times greater than that
of polar-based methods. Meanwhile, the speed advantage
of polar-based methods becomes more apparent, requiring
only half the inference time compared to mask-based meth-
ods. As expected, PolarNeXt maintains a 3.3% AP im-
provement over PolarMask, further demonstrating the ef-
fectiveness of our proposed method.

4.3. Ablation Studies
In this section, we conduct ablations to assess the influence
of the proposed components on instance segmentation per-
formance, and then analyze their details in the following.
All experiments are conducted on MS COCO val under a
1x training schedule.

Component Impact and Correlation. The effectiveness
of URM and APSD is reported in Tab. 3. Using URM alone
brings a 1.9% AP improvement on the baseline, while com-
bining it with APSD further boosts the performance by an
additional 2.9% AP. It is worth noting that APSD fails to
function independently of URM, the absence of which re-
sults in a decrease in performance. To be specific, without
APSD, URM contributes to the sample weighting and loss
function, leading to a 1.2% and 0.7% AP increase, respec-
tively. Conversely, when APSD is applied, the matching
costs have to incorporate RMask IoU Loss; otherwise, this
strategy will fail or even backfire. In view of this, we con-
clude that the effectiveness of our adaptive strategy hinges
on reliable polygonal assessment for support.
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Figure 6. Visualization with Rays for PolarMask and PolarNeXt.

Candidate Selection. In Tab. 5, we compare some ap-
proaches to expand the range of candidate selection. On
the one hand, Center Sampling on multiple FPN layers is
more effective and efficient than the dense point selection
within boxes or contours. In particular, the approach sug-
gested in [31], which selects all grid points of FPN, results
in unacceptable training time and GPU memory overflow.
On the other hand, directly expanding the radius of Center
Sampling on a single layer causes a 0.4% drop in AP, as the
additional selected samples tend to fall outside the recep-
tive field. Accordingly, the center prior still has a positive
influence on sample decisions.

RMask IoU vs. Polar IoU. In Fig. 4, two scatter plots are
drawn to compare Polar IoU and RMask IoU in polygo-
nal assessment. These scatter points denote all the poly-
gons predicted during inference on MS COCO val images.
The fitted curve in Fig. 4(b) is almost aligned with the ideal
curve, whereas the one in Fig. 4(a) shows significant de-
viation. This indicates that RMask IoU better reflects the
actual polygonal quality compared to Polar IoU.

The necessity of Polar IoU Loss. In Tab. 4, we explore the
feasibility of directly removing Polar IoU Loss in our pro-
posed training pipeline. Experimental results indicate that
this operation results in a 1.1% AP degradation in perfor-
mance. The impact on small objects is more notable, with
APS decreased by 2.1%. We analyze that there may be a
slight granularity missing as well as feature misalignment
during the conversion from vertex sets to rasterized masks.
Moreover, as mentioned in [18], aliasing occurs in the de-
convolutional process of FPN when pre-predicted RoIs are
unavailable in one-stage detectors. Fortunately, the com-
bination of Polar IoU Loss and RMask IoU Loss brings a
notable boost, with the two complementing each other. We
believe that Polar IoU Loss serves as a polygonal internal
constraint for dense distance regression, while RMask IoU

Loss provides a polygonal external constraint to incorporate
the representation deviation.

4.4. Boundary Quality Analysis
In Tab. 6, we introduce Boundary AP [5] (AP b for short) to
evaluate the boundary quality of predicted polygons. Exper-
imental results show that PolarNeXt achieves a significant
improvement in boundary quality compared to PolarMask,
boosting AP b by 3.5%. Furthermore, we present some
segmentation results with differences in starting points in
Fig. 6. Obviously, compared to the center-fixed start-
ing points in PolarMask, the dynamically selected starting
points in PolarNeXt are more flexible, which enhances the
representation capability of bounding polygons.

5. Conclusion
In this paper, we introduce a novel polar-based framework,
PolarNeXt, which redemonstrates the superiority of Polar
Representation in instance segmentation. To account for
the previously ignored representation error, tailored train-
ing strategy APSD and assessment module URM are pro-
posed. Together, these components significantly enhance
PolarNeXt, yielding notable performance improvements
over other polar-based methods. By fully leveraging the ad-
vantages of Polar Representation, PolarNeXt achieves com-
parable segmentation accuracy while requiring only half or
even less of the computational cost and inference time com-
pared to mainstream mask-based and contour-based meth-
ods. We anticipate that PolarNeXt will set a new standard
for polar-based methods in instance segmentation.
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