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Abstract

Large Vision-Language Models (LVLMs) have obtained
impressive performance in visual content understanding
and multi-modal reasoning. Unfortunately, these large
models suffer from serious hallucination problems and tend
to generate fabricated responses. Recently, several Con-
trastive Decoding (CD) strategies have been proposed to
alleviate hallucination by introducing disturbed inputs. Al-
though great progress has been made, these CD strategies
mostly apply a one-size-fits-all approach for all input con-
ditions. In this paper, we revisit this process through ex-
tensive experiments. Related results show that hallucina-
tion causes are hybrid and each generative step faces a
unique hallucination challenge. Leveraging these meaning-
ful insights, we introduce a simple yet effective Octopus-
like framework that enables the model to adaptively iden-
tify hallucination types and create a dynamic CD work-
flow. Our Octopus framework not only outperforms existing
methods across four benchmarks but also demonstrates ex-
cellent deployability and expansibility. Code is available at
https://github.com/LijunZhang01/Octopus.

1. Introduction
Large Vision-Language Models (LVLMs) have achieved
significant success over the past few years [4, 7, 25, 26, 61].
They have facilitated various Vision-and-Language (VL)
tasks [14, 22, 40, 41] by adapting to different input in-
structions. However, LVLMs are facing a grand challenge:
they often fail to accurately capture the visual content and
tend to generate fabricated responses (e.g., imaginary ob-
jects, incorrect attributes and inexistent relationship), which
is known as hallucination [13, 24]. The hallucination issue
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Figure 1. Paradigm comparison of different hallucination allevi-
ation methods. (a) Retraining method. Constructing high-quality
data to retrain these LVLMs. (b) Contrastive Decoding. Compar-
ing the output distributions from the original and distorted inputs.
(c) Octopus. Our method focuses on dynamically selecting suit-
able strategies to reduce hallucinations caused by various factors.

seriously affects user trust and confidence, especially in ap-
plications that require trustworthy outcomes such as medi-
cal reports [10, 52] and automatic driving [8].

To alleviate the hallucination issue, existing approaches
can be roughly categorized into two research lines. As
shown in Fig. 1 (a), the first paradigm relies on construct-
ing high-quality instruction tuning data and re-training the
models to suppress hallucinations [13, 24, 28, 44]. How-
ever, such a strategy requires a well-designed data construc-
tion process with complex verification and expensive costs.
In addition, additional training is strictly prohibited for de-
ployed models.

In contrast, as shown in Fig. 1 (b), Contrastive Decod-
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ing (CD) methods [11, 19, 29, 51] aim to contrast the logit
scores at each generative step from the original inputs (i.e.,
image input v and corresponding text q) with those derived
from the modified inputs (i.e., v∗ and q∗). As a post-hoc
corrective mechanism, such a methodology can effectively
eliminate hallucination without complex training. In prac-
tice, these CD methods focus on designing a new pair of
v∗ and q∗ to alleviate hallucination problems. For exam-
ple, [19] utilizes Gaussian noise to mask the original image
and overcome language priors. [51] employs enhanced vi-
sual input to mitigate attention bias.

Despite their strong performance, these CD methods
mostly apply the same disturbed manner for all samples and
generative steps. This motivates us to question: 1) Is a sin-
gle CD strategy suitable for different samples? 2) Do all
generative steps (i.e., predicted tokens) experience the same
type of hallucination? To answer the two questions, we con-
duct exploratory experiments to understand the causes of
hallucinations at both sample and token levels. Specifically,
we use a group of CD methods as off-the-shelf diagnostic
tools to investigate the pattern of hallucinations. Our analy-
sis reveals that each CD method is only effective on specific
hallucinated samples, and using a single CD strategy would
lead to sub-optimal results. Meanwhile, we thoroughly in-
vestigate the process of hallucination emergence at the to-
ken level. Through an enumeration method [5] and quali-
tative analysis, we find that fabricated responses are hybrid
and each generative step faces a unique hallucination issue.

The above results indicate that a one-size-fits-all ap-
proach struggles to correct different types of hallucinations
effectively. Thus a natural idea is to combine multiple
CD methods to reduce hallucinations from various sources.
However, without well-defined labels, identifying the opti-
mal strategy for different input samples is challenging. Ad-
ditionally, token generation is sequentially dependent and
involves a vast solution space, making it difficult to choose
the best CD approach at each generative step.

To tackle the above problems, as shown in Fig.1 (c), we
introduce a simple yet effective framework, called Octo-
pus. Different from previous works, our method focuses on
guiding the model to dynamically organize the contrastive
decoding workflow and selecting the appropriate CD strat-
egy based on different inputs. In particular, we first build a
transformer-based block and a learnable token to adaptively
recognize the type of hallucination, similar to the Octopus’s
eyes. According to different decisions, each CD strategy is
regarded as a “tentacle” to perform a specific contrastive op-
eration. Finally, leveraging Direct Preference Optimization
(DPO) [34] or reinforcement learning [37, 49], Octopus can
be easily optimized. Benefiting from the above designs, the
proposed method not only effectively reduces hallucinated
content, but also scales well for deployments due to avoid-
ing retraining weights of LVLMs. More importantly, as a

general framework, subsequent CD methods can be seam-
lessly integrated without additional adjustments. In sum-
mary, we make the following contributions:

1) Our work reveals that the mechanism of hallucination
occurrence is a complex hybrid and different samples (or to-
kens) suffer from various forms of hallucination challenges.

2) We develop a new framework Octopus that can adap-
tively recognize the types of hallucination and build a dy-
namically contrastive decoding workflow to correct fabri-
cated content.

3) Octopus achieves state-of-the-art performance across
four benchmarks for both generative and discriminative
tasks, while also demonstrating excellent deployability and
expansibility.

2. Related work
2.1. Large Visual-Language Models
Large Visual-Language Models (LVLMs) [4, 7, 25, 26, 61]
usually consist of three key components: a visual en-
coder like CLIP [33], a Large Language Model (LLM)
such as LLAMA [42] and a cross-modal alignment mod-
ule that connects the visual encoder’s output to the LLM.
LVLMs have obtained impressive performance in visual
content understanding and multi-modal reasoning such as
image captioning [14, 61], referring expression compre-
hension [27, 56], human-object interaction [58], and visual
question answering [9, 46].

2.2. Hallucination in LVLMs
To alleviate the hallucinations in LVLMs, both data-driven
retraining and Contrastive Decoding (CD) methods have
been proposed. Data-driven methods aim to enhance data
quality to reduce the hallucinations [13, 24, 28, 44]. For ex-
ample, some works introduce negative data [24] and coun-
terfactual data [54] to mitigate hallucination issues. [48]
cleans the dataset to minimize noise and errors. [50, 55]
annotates a high-quality hallucination dataset to suppress
the occurrence of hallucinations by fine-tuning. In contrast,
CD methods tackle hallucinations by comparing output dis-
tributions from original and distorted input without altering
the model’s weights. For instance, [19] alleviates hallucina-
tions by counteracting language priors, while [11] tackles
them through refined visual prompts. Different from the
above methods, our work focuses on adaptively selecting
the most suitable CD strategies to alleviate different hallu-
cination issues.

3. Preliminary
3.1. Large Vision Language Models
Given a Large Vision-Language Model (LVLM) with pa-
rameters θ, the model can effectively perform various multi-
modal tasks using a visual input v and a textual instruction
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q. Specifically, at each generative step t, the auto-regressive
LVLM conducts the following calculations:

ℓt = log p(yt|v, q, y<t; θ), (1)

yt ∼ Softmax(ℓt), (2)

where ℓt is the logit score for the next token yt, while y<t

represents the response generated before time step t. After
extensive training, well-designed LVLMs demonstrate im-
pressive understanding ability across a wide range of multi-
modal tasks. However, these models suffer from serious
hallucination issues [13, 24, 28, 44]. They often produce
inaccurate answers or fabricated descriptions that may not
align with the visual input.

3.2. Contrastive Decoding
To mitigate cross-modal hallucinations, Contrastive Decod-
ing (CD) offers a promising approach by contrasting output
distributions between original and distorted inputs. In par-
ticular, CD methods first generate two output distributions:
one from the original visual image v and textual query q,
and another from the perturbed inputs v∗ and q∗. Then, by
examining the difference between two distributions, a con-
trastive response ℓcd can be formulated as follows:

ℓcd = mlog p(yt|v, q, y<t; θ)−
nlog p(yt|v∗, q∗, y<t; θ),

(3)

yt ∼ Softmax(ℓcd), (4)

where m and n are hyperparameters, and yt represents the
predicted token based on the contrastive decoding. Al-
though CD methods are effective in mitigating hallucina-
tions, they generally apply the same disturbed manner to all
samples and generative steps. In this paper, we rethink the
above operations with extensive experiments. Considering
that existing CD methods are often tailored to specific types
of hallucinations, we select three well-received CD methods
as diagnostic tools to further investigate the mechanisms un-
derlying hallucination occurrence. We will introduce them
in detail.

Strategy-1: VCD [19]. VCD focuses on overcoming
language priors. It employs a Gaussian noise mask to gen-
erate the distorted visual input v∗, while the query text q is
unchanged.

Strategy-2: M3ID [11]. M3ID relieves hallucinations by
reducing visual information loss. It masks the query text to
build q∗ and independently supplies the visual input v into
the LVLMs as the distorted input.

Strategy-3: AVISC [51]. AVISC alleviates hallucina-
tions by minimize attention bias. It constructs a new visual
input v∗ using blind tokens that do not contain information
relevant to the query.

These three strategies correspond to different causes of
hallucinations: language priors, vision information loss
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Figure 2. The proportion of effective samples using different CD
methods for (a) Generative Task and (b) Discriminative Task. We
observe that each CD strategy can only address part of the samples.

and attention bias. Next, we conduct related experiments
on the popular VL model LLaVA-1.5-7B [25] to explore the
two key questions: 1) Is a single CD strategy effective for
all multi-modal samples? 2) Does each time step experience
the same cause of hallucination?

3.3. Sample-Level Hallucination
In this section, we conduct two kinds of experiments (i.e.,
generative and discriminative tasks) to answer the first ques-
tion. For generative task, we establish experiments on
the three widely used datasets: AMBER [47], Object-
HalBench [35] with the language prompt “Please describe
this image in detail”, as well as MMHalbench [39] with the
original instructions as the prompts. Following [45], both
the AMBER and Object-HalBench use CHAIR score [35]
as metrics to evaluate the degree of hallucination, while the
MMHalbench uses the GPT-4V score [39]. In addition,
we use these three strategies in Sec. 3.2 to interfere with
the output distributions of LLaVA for each sample, respec-
tively. By utilizing the above metrics, this strategy is iden-
tified as effective when it attains better performance com-
pared to the original LLaVA output. As shown in Fig. 2 (a),
we report the corresponding percentages, where the orange,
green and blue denote “Only One CD strategy is effective”,
“Both CD strategies are effective” and “All three CD strate-
gies are effective”, respectively. By comparing these re-
sults, we observe that a large number of samples (∼60%)
can only be addressed by certain specific CD strategies and
their overlap is relatively small (∼10%).

For discriminative task, we conduct similar experiments
on the three POPE datasets [21] (i.e., GQA [16], A-
OKVQA [38] and COCO [23]) with the language template
“Q + Please answer this question in one word”, where Q
represents the textual question. Different from the genera-
tive task, we directly apply strategies 1-3 to each question
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Figure 3. Token-level hallucination quantitative evaluation. We
enumerate different CD strategies at each time step. The results
show that using multiple CD strategies obtains better performance.

and count the number of samples whose answers are cor-
rected. As shown in Fig. 2 (b), we report the corresponding
percentages and observe that each CD strategy addresses a
subset of the samples, and only ∼10% of cases are effective
across all three methods. Based on the above results, we
conclude that each CD method is only effective on specific
hallucinated samples, and using a single strategy for all
cases would inevitably lead to sub-optimal results.

3.4. Token-Level Hallucination

The above sample-level analyses demonstrate that each
sample needs to adopt a specific CD strategy. In this sec-
tion, we focus on a more fine-grained scenario: whether
each time step in the generative process suffers from the
same hallucination causes.

To counteract this, we construct experiments on the AM-
BER [47] dataset with three metrics: CHAIR [35], Cog [47]
and Hal [47]. Because these CD strategies in Sec. 3.2
can be regarded as three types of diagnostic tools, we ap-
ply the enumeration method [5] to evaluate the hallucina-
tory causes in the generative process. Moreover, we are
aware that even though there are just three CD candidates,
the combination space is still enormous due to the lengthy
outputs. To reduce the number of combinations, the enu-
merating space would only consider the first three halluci-
nated nouns in each description. As shown in Fig.3, we
use “strategy-1”, “strategy-2” and “strategy-3” to denote the
hallucination mitigation strategies introduced by Sec. 3.2
(i.e., VCD [19], M3ID [11] and AVISC [51]). Meanwhile,
we exhibit the best scores from these combinations. Take
“strategy 1+3” as an example, each of the three tokens
has two selectable hallucination elimination strategies (i.e.,
strategy-1 and strategy-3), thus there are a total of 6 com-
binations. For simplicity, we only report the best results

Strategy-3: 
Attention Bias

Strategy-2: Visual 
Information Loss

Strategy-1: 
Language Priors

The scene features a small
baby boy who appears to
be having fun while sitting
in the grass. The child is
lying in the green field,
and possibly playing or
pretending. Apart from the
little boy, there is another
person standing further
back on the left side of the
image.

Figure 4. Token-level hallucination qualitative analysis. For sim-
plicity, we only present the attention map across the top 5 visual
tokens and corresponding keywords. The results show that hallu-
cination causes are hybrid in a sample.

among these combinations. By comparing these scores, we
find that leveraging multiple CD strategies can better sup-
press hallucinations.

To investigate the nature of hallucination occurrence, we
also conduct a qualitative analysis to examin the attention
distribution for each predicted token. As shown in Fig. 4, it
can be found that hallucinated words include “sitting, lying,
and person” in this sentence, where each token corresponds
to different causes of hallucination. For example, the “sit-
ting” focused on the visual blind token “IM3”, indicating
that the current step is affected by attention bias [51]. The
occurrence of “lying” is primarily due to insufficient atten-
tion to visual information [11]. While the “person” concen-
trates solely on language tokens, suggesting that it is influ-
enced by language priors [19]. Therefore, we conclude that
the hallucination causes are hybrid and each generative
step faces different forms of challenge.

3.5. Discussion
Based on the above experiments, it can be found that vari-
ous hallucination factors collectively lead to falsity outputs
across the sample and token levels. Therefore, a natural idea
is to combine these off-the-shelf CD strategies as correc-
tive approaches and tackle different types of hallucinations.
However, due to lacking pre-defined labels, it is difficult to
select the most suitable strategy for each sample. Mean-
while, since the textual generation process is sequentially
dependent, the choice of hallucination elimination strategy
for each token would be influenced by the previous selec-
tion. Considering the vast solution space, deciding which
CD strategy to use is challenging at each generative step.
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hallucination issues at each generative step. Finally, our model would be optimized by DPO or other reinforcement learning methods.

4. Our Method

To alleviate the above challenges, we propose a simple yet
effective framework Octopus, which can adaptively select
the proper CD strategy and organize the contrastive de-
coding workflow based on different input conditions. As
shown in Fig.5, instead of relying on just one technology,
our method focuses on leveraging an Octopus-like struc-
ture to detect hallucination types and perform correspond-
ing contrastive actions. Considering that the discriminative
task can be viewed as a generation sequence with a response
length of 1, we will take the more complex generative task
as an example to introduce our method.

4.1. Model Structure

Given a vision input v and a textual instruction q (e.g.,
“Please describe this image in detail”), we utilize the Oc-
topus’s eye to recognize the type of hallucination at each
generative step. Then these Octopus’s tentacles are used to
perform specific strategies by contrastive decoding.

Specifically, we first construct a vanilla transformer-
based block Oϕ, where ϕ denotes the parameters of the
transformer structure [43]. Based on Eq.1, it can be found
that each time step yt would be influenced by v, q, and y<t

together. Therefore, these hidden states from LVLMs (i.e.,
v, q and y<t) would be fed into the Oϕ with a decision to-
ken eye ∈ Rd, where d is the dimension of hidden state. For
simplicity, we use Ht = {hi}ti=1 to represent the sequence
before t-th generation step, where hi ∈ Rd is hidden state of
each token. While the learnable token eye can be regarded
as “Octopus’s eye”. Formally, the above computations can
be formulated as:

[ht
eye;H

′

t ] = Oϕ (concat[eye;Ht] + Epos), (5)

where ht
eye and H

′

t are corresponding outputs from eye and
Ht sequence, respectively. While Epos and concat denote
position embedding and concatenate operation. Benefiting
from the self-attention mechanism [43], the ht

eye can adap-
tively aggregate the information from other hidden states.

Then, a light and simple Multi-Layer Perceptron (MLP)
is utilized to map the ht

eye into action vector ht
act ∈ Rk,

where the k is the number of candidate strategies. In this
paper, we build four action spaces at each step including
strategies 1-3 in the Sec. 3.2 (i.e., VCD [19], M3ID [11]
and AVISC [51]) and a null action (i.e., no CD strategy is
performed). Here, we use “tentacles” to represent these can-
didate CD actions. For each ht

act, the action vector at is
obtained by:

ht
act = MLP(ht

eye), (6)

at = argmax(Softmax(ht
act)), (7)

where argmax refers to the operation of selecting the in-
dex of the maximum value, while Softmax is the active
function. Based on the one-hot vector at, our Octopus can
conveniently choose the corresponding CD strategies to im-
plement. Finally, we would obtain a contrastive decoding
workflow A = {at}Nt=1, where N is the length of response.

4.2. Model Optimizing
It can be noted that there is a non-differentiable opera-
tion in the above computations (i.e., Eq.7), and the op-
timization process is also challenging due to the lack of
explicit decision labels and serious curse of dimensional-
ity [1]. Therefore, we introduce Direct Preference Opti-
mization (DPO) [34] to alleviate this problem. In fact, our
Octopus can also be optimized using other Reinforcement
Learning (RL) methods such as Monte-Carlo sampling [49]
or PPO [37] (more discussion can be found in Sec. 5.4).
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Due to its simplicity and stability compared to other ap-
proaches [37, 49], we will only introduce the DPO opti-
mization approach in this section.
Data Construction. The DPO method is designed to re-
place the typical RLHF procedure [31] and it can directly
fit the human preference by building positive and negative
samples. Inspired by this, we reformulate the above action
choice process as a preference problem, which encourages
our Octopus Oϕ to produce the action sequences that can ef-
fectively mitigate hallucinations. For constructing the posi-
tive workflow A+ and negative workflow A−, we generate
10 sequences for each sample by randomly selecting four
actions at each generative step. Next, we divide them into
A+ and A− from these responses according to the CHAIR
metric [35]. In practice, this metric is also flexible and can
be adjusted for different fields. For the discrimination task,
we separately use four “tentacles” to build A, while the pos-
itive and negative samples are split by the answer’s con-
fidence scores. Finally, following [20], we use balanced
positive and negative samples to construct the preference
dataset.
Training Process. To guide the policy model output pre-
ferred sequences A+, the traditional RL-based methods
have to depend on a complex sampling process [49] or an
additional reward model [37]. Conversely, the DPO re-
places the reward process with a policy model and a refer-
ence model, which can straightforwardly increase the like-
lihood of positive sequences. Therefore, given the above
preference dataset D = {A+,A−}, we apply the DPO
to directly optimize our Octopus. In addition, previous
works have proved that removing the reference model can
obtain better or comparable performance than the original
DPO [30, 53]. Based on this, our optimization objective is
defined as follows:

max
Oϕ

E(x,A+,A−)∼D log σ
(
β logOϕ

(
A+ | x

)
−β logOϕ

(
A− | x

))
,

(8)

where x = (v, q) is the input sequence, σ denote sigmoid
function. Following [20], we set the β to 1. Based on the
above training process, our Octopus can adaptively learn
to construct a suitable workflow without human labeling.
Moreover, note that our method would only optimize the
parameters ϕ of the Octopus, the weights of LVLMs would
remain frozen.

5. Experiment
5.1. Experimental Setting
Datasets. We conducted experiments on both genera-
tive and discriminative tasks to study the hallucinations of
LVLMs. Following previous methods [11, 19, 45, 51],
we mainly build the experiments for the generative task

on the AMBER [47], Object-HalBench [35], and MMHal-
Bench [39] datasets. For the discriminative task, we evalu-
ate the results on the AMBER [47] and POPE [21] datasets.
Evaluation Metric. Following [35, 39, 51], we use
four metrics to evaluate generative hallucinations on the
AMBER and Object-HalBench including CHAIR [35],
Cover [47], Hal [47], and Cog [47]. While for the MMHal-
Bench dataset, we use GPT-4 [2] to evaluate the quality of
responses. For the discrimination task, we follow [51] and
use Accuracy and F1 to measure hallucinations.
Implementation Details. To train our model, we construct
two datasets for the generation and discrimination tasks.
For the generation task, we build 10,000 preference data
on MSCOCO [23] with a language prompt “Please De-
scribe this image in detail.”. For the discrimination task,
we follow [21] to build 7,000 hallucinated data from the
MSCOCO [23] training set. The Adam [18] is used as our
optimizer. We train all models on the four 3090 GPUs and
the batch size is set to 4.

5.2. Quantitative Evaluation
Generative Task. In Table 1, we show a performance com-
parison on the generative task, related results from [45,
51]. Two general LVLMs (i.e., LLaVA [25] and Instruct-
BLIP [7]) are applied to evaluate the results across three
datasets including AMBER [47], Object-HalBench [35] and
MMHalBench [39]. In particular, we observe that our Oc-
topus can significantly boost performance on all datasets
compared with previous CD methods [11, 19, 51]. Mean-
while, compared to the original LLaVA model (referred to
as “Base”), our approach achieves ∼40% performance im-
provement on the CHAIR metric of the AMBER dataset.
Moreover, we also report the results for approaches that re-
quire retraining the entire model [36, 57, 59], it can be found
that Octopus still outperforms them by a large margin.
Discriminative Task. To verify the effectiveness of our
method on the discriminative task, we conduct experi-
ments on the AMBER and POPE datasets. As shown in
Tabel 2, our model achieves significant performance gains
and boosts the baseline model 9.7/11.6 and 3.75/3.02 in ac-
curacy and F1 score for two benchmarks, respectively.

Finally, note that the purpose of our work is not to sur-
pass all methods across every benchmark, and we believe
there remains significant room for improvement in the fu-
ture by integrating more effective CD strategies.

5.3. Ablation Study
As shown in Table 3, we conduct several ablation stud-
ies on the AMBER to demonstrate the effectiveness of our
method. In the first two rows, we report the scores of the
original LLaVA and corresponding results based on ran-
domly using three CD strategies at each generative step.
The results show that the randomly selected CD strategy
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Table 1. Comparison with the state-of-the-art methods for the generative task across three datasets. For reference, we also provide the
results of fine-tuning LVLMs. † signifies results reproduced with the official implementation codes.

LVLMs Method
MMHalBench Object HalBench AMBER

Score ↑ HalRate ↓ CHAIRs ↓ CHAIRi ↓ CHAIR ↓ Cover. ↑ HalRate ↓ Cog. ↓

Referenced Results (Not Directly Comparable)

GPT-4V [2] Base 3.49 0.28 13.6 7.3 4.6 67.1 30.7 2.6

LLaVA-v1.5
-7B[25]

HACL [17] 2.13 0.50 - - - - - -
POVID [60] 2.08 0.56 48.1 24.4 - - - -

EOS [57] 2.03 0.59 40.3 17.8 5.1 49.1 22.7 2.0
HA-DPO [59] 1.97 0.60 39.9 19.9 6.7 49.8 30.9 3.3
HALVA [36] 2.25 0.54 - - 6.6 53.0 32.2 3.4

Comparable Results

LLaVA-v1.5
-7B [25]

Base 1.59 0.72 25.0 9.2 8.0 44.5 31.0 2.2
+ LCD [29] - - 61.0 16.1 - - - -
+ ICD [48] - - 47.4 13.9 - - - -

+ OPERA [15] 2.15 0.54 45.1 22.3 - - - -
+ VCD [19] 1.96† 0.64† 23.6† 8.4† 6.7 46.5 27.8 2.0
+ M3ID [11] 2.14† 0.61† 23.2† 7.3† 6.0 48.9 26.0 1.5
+ AVISC [51] 2.19† 0.59† 22.1† 7.8† 6.3 46.6 25.6 2.0

+ Octopus(Ours) 2.61 0.50 20.8 6.6 4.8 49.2 23.4 1.2

Instruct-
BLIP [7]

Base 1.84 0.64 0.7 9.1 8.4 46.4 31.1 2.6
+ LCD [29] - - 17.4 10.7 - - - -
+ ICD [48] - - 15.2 8.0 - - - -

+ OPERA [15] - - 16.6 6.8 - - - -
+ VCD [19] 1.75† 0.64† 0.8† 8.9† 7.6 47.7 29.9 2.2
+ M3ID [11] 1.70† 0.65† 0.9† 7.6† 6.9 47.2 27.5 2.2
+ AVISC [51] 2.03† 0.59† 0.7† 8.3† 6.7 46.7 28.0 2.6

Octopus (Ours) 2.31 0.49 0.5 6.8 6.1 48.5 22.2 1.3

Table 2. Comparison with the state-of-the-art methods for the discriminative tasks across two datasets. † signifies results reproduced with
the official implementation codes.

AMBER POPE MSCOCO

Discrimination Random Popular Adversarial ALL

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

LLaVA-1.5-7B[25] 67.00 71.10 83.77 81.94 82.57 80.86 79.77 78.47 82.04 80.42
+ICD [48] - - 87.51 83.28 83.15 83.91 79.13 80.41 83.26 82.53
+ConVis [32] - - 84.70 - 83.20 - 81.10 - 83.00 -
+OPERA [15] - - 84.40 - 83.40 - 81.20 - 83.00 -
+VCD [19] 67.30 71.10 85.43 83.99 83.17 81.94 80.27 79.49 82.96 81.81
+M3ID [11] † 67.25 70.90 86.13 81.85 82.07 80.77 79.50 78.15 82.57 80.26
+AVISC [51] 70.70 75.45 84.67 82.21 83.67 81.27 81.83 79.55 83.39 81.01
+Octopus (Ours) 76.70 82.70 87.51 85.40 85.20 84.19 82.22 81.44 85.79 83.44

InstructBLIP [7] 68.20 74.60 81.53 81.19 78.47 78.75 77.43 78.00 79.14 79.31
+ICD [48] - - 84.36 83.82 77.88 78.70 75.17 77.23 79.14 79.92
+OPERA [15] - - 84.57 83.74 78.24 79.15 74.59 76.33 79.13 79.74
+VCD [19] 69.65 75.90 82.03 81.56 79.13 79.20 77.23 77.72 79.46 79.49
+M3ID [11] † 69.05 75.25 82.33 81.53 80.90 80.42 78.53 78.49 80.59 80.15
+AVISC [51] 72.60 78.60 86.03 84.41 84.27 82.77 81.83 80.67 84.04 82.62
+Octopus (Ours) 74.00 79.70 86.63 85.30 84.90 83.55 82.83 81.43 84.79 83.43
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Table 3. Ablation study. We select different numbers of con-
trastive decoding methods as candidates to demonstrate the effec-
tiveness of our approach. “Str1, Str2, Str3” indicate CD strategy
VCD [19], M3ID [11] and AVISC [51] in Sec. 3.2, respectively.

Str1 Str2 Str3 Octopus CHAIR ↓ Cover. ↑ Hal. ↓ Cog. ↓

1 8.0 44.5 31.0 2.2
2 ✓ ✓ ✓ 6.9 46.2 26.1 2.2

3 ✓ ✓ ✓ 5.5 48.7 25.8 1.5
4 ✓ ✓ ✓ 5.7 48.2 25.3 1.5
5 ✓ ✓ ✓ 5.5 48.4 26.2 1.6
6 ✓ ✓ ✓ ✓ 4.8 49.2 23.4 1.2

Table 4. The effects of different settings for our method.

CHAIR ↓ Cover. ↑ Hal. ↓ Cog. ↓

1 Cover 5.4 50.1 26.1 1.2
2 Average 5.0 49.8 23.0 1.4

3 Monte Carlo [49] 5.1 48.1 23.9 1.3
4 PPO [37] 5.8 47.5 23.0 1.5

5 Pooling [6] 6.2 44.8 25.0 1.6
6 Cross-atteition [43] 5.1 49.0 24.2 1.3

7 Ours 4.8 49.2 23.4 1.2

can mitigate hallucinations to some extent. In 3-5 rows, we
show the results of using two different contrastive decod-
ing methods with our Octopus. We find that our Octopus
can provide more accurate outputs compared to the random
selection. Finally, when we apply three CD strategies to-
gether, the hallucination contents are eliminated to a great
extent. More importantly, the above experiments demon-
strate that our framework has high expansibility and the per-
formance can be improved by introducing more “tentacles”.

5.4. Different Model Settings

In Table 4, we explore several alternative settings to further
discuss the proposed method on the AMBER dataset.
Different Criterion. Considering that different fields pri-
oritize distinct metrics. For instance, the recommendation
domain emphasizes recall [12], while factual precision is
more critical in the medical field [3]. Therefore, we focus
on verifying the flexibility of our method in the first two
rows. In particular, we utilize the Cover score [47] and av-
erage score (i.e., averaged by Cover and CHAIR) as metrics
to divide the workflow A, respectively. The results show
that our Octopus can be easily modified to adapt to the spe-
cific needs of different domains.
Different Reinforcement Learning Algorithms. In rows
3-4, we apply different RL-based algorithms to optimize our
model. Specifically, we employ Monte-Carlo sampling [49]
and PPO [37] to train our Octopus, respectively. It can be
seen that these alternative reinforcement learning methods
can also achieve satisfactory performance.

Q：Please Describe 
this image in detail.

LLaVA-1.5: The image features a woman wearing a green 
uniform playing soccer, kicking the ball with great skill. The 
soccer ball is visible just in front of her, with her foot 
hovering over it. There are three other people visible in the 
scene. One person can be seen on the left side.

VCD: The image captures a soccer game in action, with a woman playing the 
position of the soccer ball kicker. She is skillfully kicking the ball towards the goal, 
while the soccer referee closely watches her play. There are a few other people in 
the scene, possibly team.

M3ID: The image features a soccer field with several people engaged in a game. 
A young female player, number 14, is kicking a soccer ball, while an official 
stands behind her, watching her play. Another person, likely another referee or an 
observer, is also present in the scene.

AVISC: The scene features a soccer field with several people present. At the 
center, a woman dressed in green is preparing to kick a soccer ball, possibly 
warming up or practicing her skills. Another woman can be seen standing nearby, 
likely observing or providing guidance.

Octopus: The image captures a soccer game in progress, with a woman in green 
kicking a soccer ball in the grass. A yellow flag is present nearby, indicating the 
sidelines or boundaries of the field. An official or referee, standing next to the 
woman.

Figure 6. Comparison of generated description with different CD
strategies and our method. The hallucination contents are depicted
by red text color.

Different Model Architectures. In rows 5-6, we con-
duct experiments with different model architectures. We
replace the vanilla self-attention structure with max pool-
ing [6] and cross-attention [43], respectively. The results
show that these transformer-based structures achieve better
performance due to their enhanced modeling capabilities.

5.5. Qualitative Evaluation.
To further analyze and verify the proposed method, we
visualize the qualitative results on AMBER dataset. As
shown in Fig. 6, given an image and a language instruc-
tion, we present the responses of our Octopus and other
methods including LLaVA-1.5 [25], VCD [19], M3ID [11],
AVISC [51]. The red color is used to highlight these hal-
lucinated words. Compared to the original outputs or sin-
gle CD methods, our Octopus can better eliminate halluci-
nations and provide a more accurate understanding of the
given image.

6. Conclusion
In this paper, we first explore the mechanism behind hallu-
cination occurrences. Extensive experiments show that hal-
lucination causes are hybrid and each generative step suf-
fers from different challenges. Based on the above insights,
we propose a new framework Octopus that can adaptively
classify hallucination types and build dynamic workflows
for different inputs. More importantly, the Octopus has ex-
cellent deployability and expansibility, making it a versatile
tool for various fields. We expect that this work can provide
a general framework to alleviate hallucination challenges
across different scenarios.
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