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Abstract

We propose novel fast algorithms for the Gromov–
Wasserstein problem (GW) with cyclic symmetry of input
data. This problem naturally appears as an object-matching
task, which underlies various real-world computer vision
applications, e.g., image registration, point cloud registra-
tion, stereo matching, and 3D reconstruction. Gradient-
based algorithms have been widely used to solve GW, and
our main idea is to utilize the following remarkable prop-
erty that emerges in GW with cyclic symmetry: By setting
the initial solution to have cyclic symmetry, all intermediate
solutions and matrices that appear in the gradient-based al-
gorithms have the same cyclic symmetry until convergence.
Based on this property, our gradient-based algorithms re-
strict the solution space to have cyclic symmetry and update
only one symmetric part of solutions and matrices at each
iteration, resulting in faster computation. Moreover, our al-
gorithms solve the optimal transport problem at each itera-
tion, which also exhibits cyclic symmetry. This problem can
be solved efficiently, and as a result, our algorithms perform
significantly faster. Experiments showed the effectiveness of
our algorithms in synthetic and real-world data with strict
and approximate cyclic symmetry.

1. Introduction
Given a discrete probability measure and a metric matrix
on each of two discrete metric-measure spaces, the discrete
Gromov–Wasserstein problem (GW) finds a coupling that
is as close to an isometry between the two measures as pos-
sible. The coupling distortion from isometry is quantifi-
able and is called Gromov–Wasserstein distance (GWD).
The GWD is an effective tool that compares or matches two
metric-measure spaces, and thus GW has been studied in
various research areas, e.g., object matching [25, 28, 42],
generative modeling [10], and domain adaptation [12].

Existing approaches to solve GW include gradient-based
algorithms, and the conditional gradient method (CG) was
proposed recently [41]. This algorithm iterates the follow-
ing three processes until convergence: (i) it computes the

gradient of the objective function in GW at the current so-
lution, (ii) solves the optimal transport problem (OT) [20]
with the computed gradient as the cost to obtain the update
direction, and (iii) updates the current solution in that di-
rection. In addition, the entropy-regularized GW (EGW)
has attracted much attention [28, 31, 49] because it offers a
concise and fast projected gradient method (PG). This algo-
rithm iterates the same processes as CG until convergence
but solves the entropy-regularized OT (EOT) [13] instead
of OT. As another line of work to solve GW faster, algo-
rithms using special structures of input data have been pro-
posed, e.g., algorithms for GW with low-rank [29] or hier-
archical [48] structures of input data. Besides, several al-
gorithms provide closed-form solutions to GW with some
special structures of input data, such as 1-dimensional input
data [42] and tree metric structure [23].

In this paper, we propose novel fast algorithms for GW
with a new and ubiquitous special structure, cyclic symme-
try, of input data. Specifically, we assume K-order cyclic
symmetry of input data; the input m- and n-dimensional
probability measures are given as concatenations of K
copies of m′(:= m/K)- and n′(:= n/K)-dimensional vec-
tors, respectively, and the input m×m and n×n metric ma-
trices are block circulant matrices consisting of K matrices
with size m′ ×m′ and n′ × n′, respectively (see Assump-
tion 1). Such GW with cyclic symmetry naturally appears
as an object-matching task, which underlies various real-
world computer vision applications (see Sec. 4). To solve
this new GW efficiently, we developed fast versions of CG
and PG using cyclic symmetry. Our main idea is to utilize
the following remarkable property that emerges in this new
problem: By setting the initial solution as a m × n block
circulant matrix consisting of K matrices with size m′×n′,
all intermediate solutions and matrices that appear in CG
and PG also become m × n block circulant matrices con-
sisting of K matrices with size m′ × n′ until convergence
(see Theorem 1 and the later discussion). This property en-
sures that we can restrict the solution space to such a block
circulant matrix in CG and PG and update only the K ma-
trices with size m′ × n′ instead of the whole m× n matrix,
which results in fast versions of CG and PG. We call this fast
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CG Cyclic CG (C-CG) and this fast PG Cyclic PG (C-PG).
Moreover, OT and EOT that must be solved in C-CG and
C-PG also exhibit cyclic symmetry. These problems can
be solved efficiently [36], and as a result, C-CG and C-PG
perform significantly faster than the original CG and PG. In
this paper, we theoretically show the time complexities of
C-CG and C-PG in Secs. 5.2 and 5.3, respectively.

In summary, this paper is the first to introduce the con-
cept of symmetry to solve GW faster and proposes fast
cyclic symmetry-aware algorithms C-CG and C-PG. We
validated the effectiveness of our algorithms in experiments
on synthetic and real-world data with strict and approximate
cyclic symmetry.

2. Related Works
Mémoli [25] initially formulated the Gromov–Wasserstein
problem (GW) for object matching even defined on differ-
ent metric-measure spaces. The Gromov–Wasserstein dis-
tance relaxes the Gromov–Hausdorff distance and quanti-
fies the coupling distortion between two measures from be-
ing isometry. GW is a relaxation of the quadratic assign-
ment problem that is NP-hard. Thus, several relaxations
for this problem could be also used for GW, such as SDP
relaxation [19, 21] and eigenvalue relaxation [9, 24]. How-
ever, the former runs slowly due to the increased number of
variables, while the latter has looser approximation bounds.
Recently, the conditional gradient method (CG), which is
also known as the Frank-Wolfe algorithm, was proposed
to solve GW directly [41]. This algorithm at each itera-
tion boils down to compute the gradient of the objective
function in GW and solve the optimal transport problem
(OT) [20] by the network simplex algorithm [1]. Moreover,
the entropy-regularized GW (EGW) has attracted much at-
tention [28, 31, 49] because it offers a concise and fast pro-
jected gradient method (PG). This algorithm is similar to
CG but solves the entropy-regularized OT instead of OT by
the Sinkhorn-Knopp algorithm [30]. This paper focuses on
the algorithms CG for GW and PG for EGW because they
are widely used in the Gromov–Wasserstein research field.

To solve GW faster, various algorithms that use special
structures of input data have been proposed [23, 29, 42, 48].
Scalable algorithm [48] uses the hierarchical structure of
input data and recursively solves GW for each layer. Low-
rank algorithm [29] uses the low-rank structure of the in-
put metrics and couplings. Besides, several algorithms us-
ing special structures of input data provide closed-form so-
lutions to GW. Sliced algorithm [42] assumes input prob-
ability measures on the 1-dimensional real line and the
squared Euclidean distance metrics; such GW becomes the
Gromov–Monge problem that has a closed-form solution.
Since the 1-dimensional line is a special case of the tree
structure, the algorithm using tree metric structures of input
data was also proposed [23]. Unlike the above algorithms,

this paper is the first to introduce the use of a new and ubiq-
uitous special structure, cyclic symmetry.

The optimal transport problem (OT) was formulated as
the linear programming problem by [20], and the entropy-
regularized OT (EOT) has attracted attention recently be-
cause this problem can be solved faster than OT [13]. These
problems seek an optimal coupling to minimize the to-
tal cost of transporting a probability measure toward an-
other one on the same metric-measure space. Similar to
the research progress in GW, many algorithms have been
proposed to solve OT faster using special structures of
input data, e.g., low-rankness [2, 38], translation invari-
ant [17, 27], hierarchy [16], and submodularity [3] of input
data. More recently, using cyclic symmetry of input data
for OT was proposed [36]. This structure and the convexity
of OT can reduce OT to a small problem with significantly
fewer variables, resulting in faster computation. Similar to
this research, we use cyclic symmetry of input data to solve
GW faster, but this is more challenging and non-trivial be-
cause GW is non-convex while OT is convex.

3. Preliminary
Notations. We denote the set of non-negative real num-
bers by R≥0. For matrices X,Y ∈ Rd×d, we denote
the Frobenius inner product by ⟨X,Y⟩ =

∑d−1
i,j=0 XijYij .

We define the probability simplex as ∆d := {x ∈ Rd
≥0 |∑d−1

i=0 xi = 1}. The d-dimensional all-ones vector is writ-
ten as 1d. We use X◦2 to represent element-wise squaring
of X, meaning (X◦2)ij = X2

ij . The matrix norm is given
by ∥X∥∞ := maxi,j |Xij |. We define the entropy of X as
H(X) := −

∑d−1
i,j=0 Xij(logXij − 1). We denote the ele-

mentwise division by ⊘. We denote the Kronecker product
of matrices by ⊗. When a matrix X can be written as

X =


X0 X1 · · · XK−1

XK−1 X0
. . .

...
...

. . . . . . X1

X1 · · · XK−1 X0

 ,

using X0,X1, . . . ,XK−1 ∈ Rd1×d2 , the matrix X is re-
ferred to as a (d1, d2,K)-block circulant matrix generated
by X0,X1, . . . ,XK−1.

3.1. Entropic Gromov–Wasserstein Problem
We first define the original 2-Gromov–Wasserstein prob-
lem (GW) introduced by [25]. Let X = (X , dX ,a) be a
metric-measure space where X = {x0, . . . , xm−1} is a fi-
nite set with an associated metric dX and a discrete prob-
ability measure a ∈ ∆m. Similarly, let Y = (Y, dY ,b)
be another discrete metric-measure space with a discrete
probability measure b ∈ ∆n. Given similarity matrices
C ∈ Rm×m

≥0 and D ∈ Rn×n
≥0 where Cii′ := dX (xi, xi′) and
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Djj′ := dY(yj , yj′), we define GW between X and Y as the
following constrained non-convex optimization problem:

min
T∈Π(a,b)

∑
i,i′,j,j′

(Cii′ −Djj′)
2TijTi′j′ , (1)

where T is a coupling matrix between X and Y, and
Π(a,b) := {X ∈ Rm×n

≥0 | X1n = a,X⊤1m = b}. The
optimal objective function value of (1) is called Gromov–
Wasserstein distance (GWD). Through a simple calcula-
tion, the objective function in (1) can be rewritten in ma-
trix form as

〈
Q− 2CTD⊤,T

〉
, where Q := C◦2a1⊤

n +
1mb⊤(D◦2)⊤. Hereafter, we will use this matrix form.

In this paper, we consider the entropy-regularized GW
(EGW), which is an extension of GW with the entropy reg-
ularizer introduced by [28]:

min
T∈Π(a,b)

〈
Q− 2CTD⊤,T

〉
− εH(T), (2)

where ε ≥ 0. Apparently, EGW is identical to the original
GW when ε = 0.

3.2. Gradient-based Algorithms for EGW
Several algorithms have been proposed to solve EGW. In
this paper, we focus on two representative algorithms that
use gradient information: the Conditional Gradient method
(CG) [41] and the Projected Gradient method (PG) [28].

CG is an iterative algorithm for solving GW, i.e., (2) with
ε = 0. At each iteration, this algorithm approximates the
objective function linearly around the current solution and
then updates the solution in the direction obtained by mini-
mizing the linear approximation within the feasible region.

PG is an iterative algorithm for solving EGW, i.e., (2)
with ε > 0. At each iteration, this algorithm updates the
current solution in the direction of the gradient of the ob-
jective function in EGW using exponentiated gradient de-
scent [22] and then projects the updated solution back onto
the feasible region with the Kullback–Leibler metric.

Although these algorithms differ in the problems they
address (GW and EGW) and their algorithm design princi-
ples (e.g., how the feasible region is handled), the proce-
dures can be described in a unified manner as below. Let
T(τ) be the current solution and G(τ) denotes the gradient
of the first term of (2) at T(τ). First, G(τ) is calculated as

G(τ) = Q− 2
(
C⊤T(τ)D+CT(τ)D⊤

)
. (3)

Then, we solve the following problem:

S(τ) = argmin
S∈Π(a,b)

⟨G(τ),S⟩ − εH(S). (4)

Finally, T(τ) is updated to the next solution T(τ+1):

T(τ+1) = (1− λ)T(τ) + λS(τ), (5)

where 0 ≤ λ ≤ 1 is the step size.
In CG, the problem (4) is identical to the optimal trans-

port problem (OT) introduced by [20] because ε = 0. This
problem can be solved efficiently using the network sim-
plex algorithm [1]. The step size λ can be determined by
line search based on Armijo or Wolfe conditions [6, 46].

In PG, the problem (4) is identical to the entropy-
regularized OT introduced by [13] because ε > 0, and it
can be solved efficiently via the Sinkhorn-Knopp algorithm
for its dual problem [30]. The step size λ is fixed to 1.

4. C-EGW: EGW with Cyclic Symmetry
This section explains our assumption of cyclic symmetry
for EGW (2). We assume that a,b,C and D in (2) have the
following K-order cyclic symmetry.

Assumption 1. A common divisor K exists for m and n.
The probability vectors a and b in (2) can be written as

a = 1K ⊗α, b = 1K ⊗ β,

where α ∈ Rm′

≥0,β ∈ Rn′

≥0 and m′ := m
K , n′ := n

K
are integers. Furthermore, in (2), the similarity matrix
C is an (m′,m′,K)-block circulant matrix generated by
C0, . . . ,CK−1 ∈ Rm′×m′

≥0 and D is an (n′, n′,K)-block

circulant matrix generated by D0, . . . ,DK−1 ∈ Rn′×n′

≥0 .

In this paper, we call EGW (2) with Assumption 1 Cyclic
EGW (C-EGW). This problem naturally appears as one ap-
proach to the object-matching task, which underlies various
computer vision applications, as below.

Example 1 (Image Matching with Cyclic Symmetry). Im-
age matching task, which seeks a coupling of similar fea-
tures between images, is essential for various visual ap-
plications such as face recognition [51], image registra-
tion [33, 40], stereo matching [4, 35], and image re-
trieval [18, 43]. Since images often exhibit inherent cyclic
symmetry, the image matching task often uses cyclic sym-
metry to improve accuracy [4, 26, 32, 35, 43, 51]. We here
consider an image matching task between two images with
90◦ rotational symmetry, i.e., 4-order cyclic symmetry, as
shown in Fig. 1. We define a and b as concatenations of
image features (or simply intensity values) at each symmet-
ric region in each image of Fig. 1, and C and D as the Eu-
clidean distance matrix between the pixel positions. These
a,b,C and D satisfy Assumption 1 with K = 4, and thus
this image matching task will become C-EGW with K = 4.

Figure 1. Images with 4-order cyclic symmetry.
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Example 2 (Point Cloud Matching with Cyclic Symme-
try). Point cloud matching task, which seeks a coupling of
similar geometric features between point clouds, is essen-
tial for various 3D applications such as point cloud reg-
istration [5, 50] and 3D reconstruction [39, 47]. Since
3D objects, especially artificial ones, often exhibit inher-
ent cyclic symmetry, the point clouds obtained from such
3D objects also exhibit cyclic symmetry. Thus, the point
cloud matching task often uses this structure to improve ac-
curacy [34, 39, 45]. We here consider a point cloud match-
ing task between two point clouds with mirror symmetry,
i.e., 2-order cyclic symmetry, as shown in Fig. 2. We define
a and b as uniform weights (or intensity values of points),
each of which has a total of 1, and C and D as the Eu-
clidean distance matrices for pairwise 3D point positions of
each object in Fig. 2. These a,b,C and D satisfy Assump-
tion 1 with K = 2, and thus this point cloud matching task
will become C-EGW with K = 2.

Figure 2. Point clouds with 2-order cyclic symmetry

We can show that Q has a block circulant structure in
C-EGW, which will be used in the next section.

Lemma 1. Under Assumption 1, the matrix Q in (2) is an
(m′, n′,K)-block circulant matrix generated by Q̂, . . . , Q̂,
where Q̂ :=

∑K−1
i=0 C◦2

i α1⊤
n′ + 1m′β⊤(D◦2

i )⊤.

Note that all proofs are in the Appendix.

5. Fast Algorithms for C-EGW
In this section, we propose fast algorithms to solve C-EGW.

5.1. Block Circulant Intermediate Matrices
We first demonstrate that in CG and PG, introduced in
Sec. 3.2, the cyclic symmetry structure of matrices gener-
ated during the algorithms, including all intermediate solu-
tions, can be preserved under Assumption 1.

Theorem 1. Assume that T(τ) is an (m′, n′,K)-block cir-
culant matrix. Then, under Assumption 1, G(τ) given by (3)
is an (m′, n′,K)-block circulant matrix. Moreover, there
exists an (m′, n′,K)-block circulant matrix S(τ) which is
an optimal solution to the problem (4). Furthermore, when
S(τ) is an (m′, n′,K)-block circulant matrix, T(τ+1) given
by (5) remains an (m′, n′,K)-block circulant matrix.

By repeatedly applying Theorem 1, we can see that
by setting the initial solution T(0) in C-EGW as an
(m′, n′,K)-block circulant matrix, it is possible to ensure
that T(τ),G(τ), and S(τ) all become (m′, n′,K)-block cir-
culant matrices in CG and PG until convergence (see Fig. 3).

Figure 3. An illustrative flow diagram of repeatedly applying The-
orem 1 for τ = 0, 1, 2.

This remarkable property ensures that we can restrict the so-
lution space to (m′, n′,K)-block circulant matrices in CG
and PG. Therefore, we hereafter restrict T(τ),G(τ), and
S(τ) to (m′, n′,K)-block circulant matrices generated by
T

(τ)
0 , . . . ,T

(τ)
K−1 ∈ Rm′×n′

≥0 , G(τ)
0 , . . . ,G

(τ)
K−1 ∈ Rm′×n′

≥0 ,

and S
(τ)
0 , . . . ,S

(τ)
K−1 ∈ Rm′×n′

≥0 , respectively. Using this
restriction and Lemma 1, we can rewrite (3) as

G
(τ)
k = Q̂− 2

K−1∑
i,j=0

(
C⊤

i T
(τ)
j−iDj−k +CiT

(τ)
j−iD

⊤
j−k

)
, (6)

where T
(τ)
j−i and Dj−k are simplifications of T(τ)

j−i mod K

and Dj−k mod K , respectively. We can rewrite (4) as

S
(τ)
0 , . . . ,S

(τ)
K−1

= argmin
S0,...,SK−1∈Γ(α,β)

K−1∑
k=0

⟨G(τ)
k ,Sk⟩ − εH(Sk),

(7)

where Γ(α,β) := {X0, . . . ,XK−1 ∈ Rm′×n′

≥0 |∑K−1
k=0 Xk1n′ = α,

∑K−1
k=0 X⊤

k 1m′ = β}. We can rewrite
(5) as

T
(τ+1)
k = (1− λ)T

(τ)
k + λS

(τ)
k . (8)

5.2. Fast Conditional Gradient Method for C-GW
We here propose a fast CG for C-GW, i.e., (2) with ε = 0
and Assumption 1. The processes (6)–(8) can be computed
faster than the original ones (3)–(5) because they update
only K matrices with the size m′ × n′. Moreover, because
(7) with ε = 0 is equivalent to OT with cyclic symmetry in
[36], we can show the following proposition, which extends
Theorem 1 in [36] to the case where m ̸= n. The proof is
almost the same as the m = n case.

Proposition 1. We consider the following OT

Z(τ) = argmin
Z∈Π′(α,β)

〈
W(τ),Z

〉
, (9)

where Π′(α,β) := {X ∈ Rm′×n′

≥0 | X1n′ = α,X⊤1m′ =
β} and

W
(τ)
ij := min

0≤k≤K−1
G

(τ)
ijk. (10)
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Algorithm 1 C-CG for C-GW

Input: a ∈ ∆m,b ∈ ∆n,C ∈ Rm×m
≥0 ,D ∈ Rn×n

≥0 which
satisfy Assumption 1 and ε = 0

1: Initialize T(0) as an (m′, n′,K)-block circulant matrix
generated by T

(0)
0 , . . . ,T

(0)
K−1 ∈ Rm′×n′

≥0 .
2: for τ = 0, 1, . . . do
3: Calculate G

(τ)
0 , . . . ,G

(τ)
K−1 by (6)

4: Calculate W(τ) whose entry is given by (10)
5: Solve (9) to obtain Z(τ)

6: Calculate S
(τ)
ijk for i, j, k by the relationship (11)

7: Calculate T
(τ+1)
0 , . . . ,T

(τ+1)
K−1 by (8)

8: end for

Then, we will obtain the optimal solution to (7) with ε = 0,
S∗
0, . . . ,S

∗
K−1, as follows.

S∗
ijk =

Z
(τ)
ij if k = min

(
argmin

0≤k≤K−1
G

(τ)
ijk

)
,

0 otherwise.

(11)

Proposition 1 indicates that we will obtain the optimal
solution to (7) with ε = 0 by solving the small OT (9)
instead, which has significantly few only m′n′ variables.
Therefore, the original processes (3), (4), and (5) in CG can
be reduced to the small ones (6), (9), and (8), respectively.
We call the proposed algorithm Cyclic Conditional Gradi-
ent method (C-CG), summarized in Algorithm 1.

We evaluate the time complexity of C-CG (Algorithm 1).
It mainly depends on the matrix-vector product in (6) and
solving the small OT (9). The former requires O(mn(m′ +
n′)), which is improved from O(mn(m + n)) in CG
that uses (3). From the report of [37], the latter requires
O((m′ + n′)m′n′ log(m′ + n′) log((m′ + n′)∥W(τ)∥∞))
when using the network simplex algorithm to solve (9),
which is improved from O((m+n)mn log(m+n) log((m+
n)∥G(τ)∥∞)) in CG that solves (4) in terms of the di-
mensional reduction and ∥W(τ)∥∞ ≤ ∥G(τ)∥∞ by (10).
Therefore, for C-GW, C-CG will achieve a better time com-
plexity than CG. Note that, in C-CG, the time complexity
of line search to determine λ in (8) will also be improved
because the objective function value of (2) can be assessed
by using only the block matrices {C(τ)

k ,D
(τ)
k ,T

(τ)
k }

K−1
k=0 .

5.3. Fast Projected Gradient Method for C-EGW
We here propose a fast PG for C-EGW, i.e., (2) with ε > 0
and Assumption 1. Similar to the discussion in Sec. 5.2,
because (7) with ε > 0 is equivalent to EOT with cyclic
symmetry in [36], we can show the following proposition,
which extends Theorem 2 in [36] to the case where m ̸= n.
The proof is almost the same as the m = n case.

Algorithm 2 C-PG for C-EGW

Input: a ∈ ∆m,b ∈ ∆n,C ∈ Rm×m
≥0 ,D ∈ Rn×n

≥0 which
satisfy Assumption 1 and ε > 0

1: Initialize T(0) as an (m′, n′,K)-block circulant matrix
generated by T

(0)
0 , . . . ,T

(0)
K−1 ∈ Rm′×n′

≥0 .
2: for τ = 0, 1, . . . do
3: Calculate G

(τ)
0 , . . . ,G

(τ)
K−1 by (6)

4: Calculate L(τ) whose entry is given by (13)
5: Solve (12) via Remark 1 to obtain p and q.
6: Calculate S

(τ)
ijk for i, j, k by the relationship (14)

7: Calculate T
(τ+1)
0 , . . . ,T

(τ+1)
K−1 by (8)

8: end for

Proposition 2. The Fenchel dual of (7) with ε > 0 is

argmax
u∈Rm′ ,v∈Rn′

⟨u,α⟩+ ⟨v,β⟩ − ε

m′−1∑
i=0

n′−1∑
j=0

piL
(τ)
ij qj , (12)

where pi = exp(ui/ε), qj = exp(vj/ε), and

L
(τ)
ij :=

K−1∑
k=0

exp

(
−
G

(τ)
ijk

ε

)
. (13)

Let u∗
i and v∗j be the optimal solutions to (12), we can

describe p∗i = exp(u∗
i /ε) and q∗j = exp(v∗j /ε), respec-

tively. Then, we will obtain the optimal solutions to (7),
S∗
0, . . . ,S

∗
K−1 as follows.

S∗
ijk = p∗i q

∗
j exp

(
−
G

(τ)
ijk

ε

)
. (14)

Proposition 2 indicates that we will obtain the optimal
solution to (7) with ε > 0 by solving the small dual prob-
lem (12) instead, which has significantly few only m′ + n′

variables. Therefore, the original processes (3), (4), and (5)
in PG can be reduced to the small ones (6), (12), and (8), re-
spectively. We call the proposed algorithm Cyclic Projected
Gradient method (C-PG), summarized in Algorithm 2.

Remark 1. The problem (12) can be solved efficiently us-
ing the Sinkhorn-Knopp algorithm [13, 30]; instead of opti-
mizing u and v directly, we iteratively optimize p and q as
p← α⊘ (L(τ)q) and q← β ⊘ ((L(τ))⊤p).

We evaluate the time complexity of C-PG (Algorithm 2).
It mainly depends on the matrix-vector product in (6) and
solving the small dual problem of EOT (12). The former is
the same as in Algorithm 1. The latter using the Sinkhorn-
Knopp algorithm [13, 30] requires O(m′n′) at each itera-
tion, which is improved from O(mn) in PG that solves (4)
using the same algorithm. Therefore, for C-EGW, C-PG
will achieve a better time complexity than PG.
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6. Experiments
To validate the effectiveness of our algorithms, C-CG and
C-PG, we conducted experiments on synthetic and real-
world data with strict and approximate cyclic symmetry, re-
spectively. Specifically, the synthetic data provide a,b,C
and D that satisfy Assumption 1 strictly but the real-world
data provide them that satisfy Assumption 1 approximately
due to slight distortion and displacement. We cannot ap-
ply C-CG and C-PG to such real-world cases directly be-
cause they rely on Assumption 1 strictly. However, we
can adapt them via a simple preprocess called symmetric
alignment (details will appear in Sec. 6.3). We here com-
pared four algorithms: CG using the network simplex al-
gorithm [41], C-CG using the network simplex algorithm
(Algorithm 1), PG [28], and C-PG (Algorithm 2). As an
initial solution for CG or PG, we created a uniform ran-
dom matrix in [0, 1)m×n and scaled it to lie within Π(a,b)
using the Sinkhorn-Knopp algorithm [30]. Also, as an ini-
tial solution for C-CG or C-PG, we created K uniform ran-
dom matrices in [0, 1)m

′×n′
, scaled each of them to lie

within Π′( 1
Kα, 1

Kβ) using the Sinkhorn-Knopp algorithm,
and then constructed an (m′, n′,K)-block circulant matrix
generated by the scaled K matrices. For each algorithm,
we checked GWD, defined by the objective function value
of (1), and the computation time, measured from data in-
put to solution output. Each algorithm ran until the update
of the GWD value was below 1.0× 10−6. All experiments
were performed in Python on an Ubuntu 20.04 desktop with
AMD Ryzen Threadripper 3970X 32-core CPU and 256
GB memory. In CG and C-CG, we determined λ using the
Armijo line-search in SciPy library [44] and used the net-
work simplex algorithm in LEMON [15].

6.1. Performance Analysis with Synthetic Data
We here evaluated whether our C-CG and C-PG show
GWDs compatible with those of CG and PG but faster com-
putations, respectively, in different synthetic data.

We created 100 random pairs of synthetic 2D point sets
with 10-order rotational symmetry on a 2D plane (for de-
tails, see Appendix C). The number of 2D points in each
point set was 2000. Thus, m = n = 2000. For the input
data to each algorithm, we set a = 1

m1m and b = 1
n1n,

and C and D as the Euclidean distance matrices for pair-
wise 2D point positions of each point set. The input data
a,b,C and D satisfy Assumption 1 with K = 10 strictly.
Because this input data also satisfy Assumption 1 for all K
that are divisors of 10 greater than 1, i.e., K ∈ {2, 5, 10},
we conducted experiments for using each K in C-CG and
C-PG; using a larger K makes C-CG and C-PG faster. In
PG and C-PG, we set ε = 0.004 as low as possible while
avoiding overflow, which is often caused by the Sinkhorn
iterations [13].

Table 1 lists the results. C-CG showed GWDs compat-

Algo. K GWD (×10−3) # of iterations Time (s)

CG [41] – 3.75± 2.13 10.08± 5.71 16.82± 10.49

C-CG
2 3.76± 2.14 9.60± 5.84 3.52± 2.17
5 3.74± 2.14 8.87± 5.45 1.01± 0.62

10 3.75± 2.13 8.97± 4.27 0.64± 0.3

PG [28] – 6.88± 2.13 19.56± 20.0 6.73± 6.78

C-PG
2 6.88± 2.15 20.60± 18.63 3.56± 3.20
5 6.89± 2.14 17.97± 16.21 1.47± 1.33

10 6.89± 2.13 17.41± 17.13 0.94± 0.93

Table 1. Performance analysis with synthetic data in Sec. 6.1.
“Algo.” means “Algorithm.” “#” means “the number.” “s” is the
symbol for seconds. Mean ± SD is shown in each result.

Figure 4. Sensitivity to different initial solutions in Sec. 6.2. Each
of Synthetic 1 to 5 indicates the different synthetic pair data. The
time listed to the right of each algorithm name represents Mean ±
SD of the computation time to obtain all GWDs. Note that PG and
C-PG showed larger GWDs than those of CG and C-CG because
they solved C-EGW having the entropy regularizer.

ible with those of CG but faster computation times when
a larger K value was used. This trend was also observed
between PG and C-PG. These results validated the effec-
tiveness of C-CG and C-PG for C-EGW; they achieve faster
computations than CG and PG when using the higher cyclic
symmetry structure hidden in the input data (i.e., larger K
value) without degrading GWDs.

6.2. Sensitivity to Different Initial Solutions
Since GW is non-convex, the result depends on an initial so-
lution. In C-CG and C-PG, the initial solution is restricted
to an (m′, n′,K)-block circulant matrix. This raises a con-
cern that C-CG and C-PG may reach a worse solution than
CG and PG, which allows for more flexible initial solutions.
Therefore, we here evaluated the sensitivity of each algo-
rithm to different initial solutions in the same synthetic data.

As in Sec. 6.1, we created 5 random pairs of synthetic
2D point sets with 2-order rotational symmetry and set the
input data a,b,C and D to each algorithm. We randomly
set 50 different initial solutions for each algorithm in each
synthetic pair data. Other settings were the same in Sec. 6.1.

Figure 4 shows the results. In the same synthetic pair
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data, C-CG and C-PG showed GWDs compatible with those
of CG and PG but faster computation times, respectively.
These results indicate that the constraint in C-CG and C-PG,
which restricts the initial solution to an (m′, n′,K)-block
circulant matrix, does not always degrade GWDs.

6.3. 2D Shape Analysis with Real-World Data

Similar to the existing Gromov–Wasserstein studies [8, 31],
we evaluated whether GWDs obtained by our algorithms
are useful to distinguish different 2D objects even if the ob-
jects have approximate cyclic symmetry.

We used the publicly available 2D structure dataset [7]
and selected ten objects from each of the four classes, bone,
glass, butterfly, and bell, with approximate mirror symme-
try (K = 2). Each object consists of 100 to 200 vertices
and triangles, and we used the vertices as a representative
feature for the object as in [8, 31]. For the input data to CG
and PG, we selected a pair of objects with m and n ver-
tices, respectively, and set a = 1

m1m and b = 1
n1n. Then,

we defined C and D as the Euclidean distance matrices for
pairwise vertex positions of each object. Because these real-
world 2D objects satisfy Assumption 1 approximately due
to slight displacement and distortion of shape, we cannot
apply C-CG and C-PG to these data directly. Therefore, for
the input data to C-CG and C-PG, we here first aligned the
vertices of each object to exhibit strict mirror symmetry (for
details, see Appendix D) and then set a,b,C and D in the
same manner of CG and PG. This alignment preprocess is
called symmetric alignment, mentioned at the beginning of
Sec. 6. Figure 5 left panels show the original vertices and
aligned ones of each object; we can see that the shape dif-
ferences were not significant. Note that we also tested CG
and PG with the symmetric alignment in this experiment for
a fair comparison. For PG and C-PG, we set ε = 0.002.

For the evaluation, we computed the pairwise GWD be-
tween all objects using each algorithm. Also, to evaluate
the discriminative power of the pairwise GWD obtained by
each algorithm, we conducted a simple classification task
as in [8, 25]; one object is randomly selected from each
class and performs 1-nearest neighbor classification of the
remaining objects using the pairwise GWD. This classifica-
tion was repeated 10000 times, and we obtained a confu-
sion matrix for each algorithm. That is, (i, j)-th entry of the
confusion matrix indicates the probability that the classifier,
which is based on the pairwise GWD obtained by each al-
gorithm, will assign class j to an object with the true class i.

Figure 6 shows the results. CG produced almost the
same pairwise GWDs and confusion matrices when using
and not using the symmetric alignment. Also, because the
symmetric alignment preprocess was so much faster than
CG itself, the difference in total computation time to obtain
the pairwise GWD between CG and CG with the symmetric
alignment was negligible. In contrast, C-CG showed better

Figure 5. Input data examples in Sec. 6.3 (left) and Sec. 6.4 (right).

results than CG: (i) its pairwise GWD showed larger val-
ues between different classes, (ii) its confusion matrix was
closer to the identity matrix, which indicates the classifica-
tions were done more successfully, and (iii) its total com-
putation time was the fastest. The reason for (i) and (ii)
is that CG, with or without the symmetric alignment, often
reached worse local solutions due to its large solution space,
while C-CG often reached better local solutions thanks to
its smaller solution space that considers cyclic symmetry of
input data. This implies that C-CG can properly use the
inherent cyclic symmetry of input data emerging clearly by
the symmetric alignment (for details, see Appendix E). This
trend was also observed among PG, PG with the symmetric
alignment, and C-PG. These results indicate that combin-
ing C-CG and C-PG with the symmetric alignment can be
more effective than CG and PG in distinguishing different
real-world 2D objects with approximate cyclic symmetry.

6.4. 3D Shape Analysis with Real-World Data
Following the existing studies [8, 25, 31], we also con-
ducted experiments on a 3D object version of Sec. 6.3,
which have more complex shapes and bigger data size.

We used the publicly available 3D structure dataset [11]
and selected ten objects from each of the four classes, plane,
bag, bottle, and chair, respectively, with approximate mirror
symmetry (K = 2) along the YZ-axes plane. Each object is
provided as 3D mesh data, and we approximated the object
as a point cloud with 2000 points using trimesh library [14].
In the same manner of Sec. 6.3, we set the input data a,b,C
and D to CG and PG by using each pair of the original point
clouds, and set them to C-CG and C-PG by using each pair
of the symmetrically aligned point clouds exhibiting strict
mirror symmetry. For details of the symmetric alignment
for these point clouds, see Appendix F. Figure 5 right panels
show the original point cloud and the aligned ones of each
3D object. Other settings were the same in Sec. 6.3.

Figure 7 shows the results. Similar to Sec. 6.3, C-CG
and C-PG showed better pairwise GWDs, confusion matri-
ces, and faster computations than those of CG and PG, re-
spectively. These results indicate that combining C-CG and
C-PG with the symmetric alignment can be more effective
than CG and PG in distinguishing different real-world 3D
objects with approximate cyclic symmetry.
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Figure 6. Experimental results in Sec. 6.3. Top panels show the pairwise GWD between all objects using each algorithm. Bottom panels
show the confusion matrices obtained by each pairwise GWD. The time listed under each algorithm name represents the total computation
time to obtain each pairwise GWD, which includes the symmetric alignment time if used.

Figure 7. Experimental results in Sec. 6.4. The details are the same in Fig. 6.

7. Discussions and Limitations

We here list the future issues: (I) Our algorithms rely on
Assumption 1 and need the symmetric alignment for objects
with approximate cyclic symmetry. We experimentally con-
firmed that this process is not as computationally heavy as
the main process of solving C-EGW in Secs. 6.3 and 6.4.
However, in more complex real-world settings, it may lead
to slower runtime or worse solutions. Thus, a theoretically
guaranteed fast algorithm with symmetric alignment is de-
sirable. (II) Our algorithms are limited to cyclic symmetry
and must know its order K in advance. Generalizing for
other symmetries without prior knowledge of their order is
left for future work. (III) The output of our algorithms is
restricted to the (m′, n′,K)-block circulant matrix. How-
ever, there exists an instance of C-EGW whose globally
optimal solution is never such a matrix (for details, see
Appendix G). A fast algorithm that guarantees reaching a
globally optimal solution by using cyclic symmetry is desir-
able. (IV) As a first step, we incorporated cyclic symmetry

into the two most widely used GW algorithms, namely CG
and PG. Extending this approach to other GW algorithms is
a promising direction for future research. (V) Combining
other special structures, such as low-rank and hierarchical
structures, with symmetry has excellent potential but is non-
trivial because our approach may break such structures. We
will explore this potential in the future.

8. Conclusion
We introduced a new problem, EGW with cyclic symme-
try (C-EGW), and proposed novel fast algorithms for C-
EGW. Our algorithms restrict the solution space to have
cyclic symmetry with theoretical guarantees, thereby dra-
matically reducing the number of variables in the gradient-
based algorithms and achieving fast computation. Diverse
experiments showed the effectiveness of our algorithms in
synthetic and real-world data with cyclic symmetry. This
paper was the first to explore the possibility of symmetry in
solving GW faster, paving the way for future followers.
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– an Open Source C++ Graph Template Library. Electronic

Notes in Theoretical Computer Science, 264(5):23–45, 2011.
Second Workshop on Generative Technologies. 6

[16] Mourad El Hamri, Younès Bennani, and Issam Falih. Hier-
archical Optimal Transport for Unsupervised Domain Adap-
tation. Machine Learning, 111(11):4159–4182, 2022. 2

[17] Pascal Getreuer. A Survey of Gaussian Convolution Algo-
rithms. Image Processing On Line, 3:286–310, 2013. 2

[18] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Ham-
ming Embedding and Weak Geometric Consistency for
Large Scale Image Search. In Proceedings of the European
Conference on Computer Vision, 2008. 3

[19] Junyu Chen and Binh Nguyen and Yong Sheng Soh.
Semidefinite Relaxations of the Gromov-Wasserstein Dis-
tance. In NeurIPS 2023 Workshop Optimal Transport and
Machine Learning, 2023. 2

[20] Leonid Kantorovich. On the Translocation of Masses (in
Russian). In Doklady Akademii Nauk, page 227, 1942. 1,
2, 3

[21] Itay Kezurer, Shahar Z. Kovalsky, Ronen Basri, and Yaron
Lipman. Tight Relaxation of Quadratic Matching. In Pro-
ceedings of the Eurographics Symposium on Geometry Pro-
cessing, 2015. 2

[22] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated Gra-
dient versus Gradient Descent for Linear Predictors. Infor-
mation and Computation, 132(1):1–63, 1997. 3

[23] Tam Le, Nhat Ho, and Makoto Yamada. Flow-based
Alignment Approaches for Probability Measures in Differ-
ent Spaces . In Proceedings of the International Conference
on Artificial Intelligence and Statistics, 2021. 1, 2

[24] Marius Leordeanu and Martial Hebert. A Spectral Technique
for Correspondence Problems Using Pairwise Constraints. In
Proceedings of the International Conference on Computer
Vision, 2005. 2

[25] Facundo Mémoli. Gromov-Wasserstein Distances and the
Metric Approach to Object Matching. Foundations of Com-
putational Mathematics, 11(4):417–487, 2011. 1, 2, 7

[26] Shuchao Pang, Anan Du, Mehmet A. Orgun, Yan Wang,
Quan Z. Sheng, Shoujin Wang, Xiaoshui Huang, and Zhen-
mei Yu. Beyond CNNs: Exploiting Further Inherent Sym-
metries in Medical Image Segmentation. IEEE Transactions
on Cybernetics, pages 1–12, 2022. 3
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