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Abstract

Diffusion models, especially denoising diffusion probabilis-
tic models (DDPMs), are prevalent tools in generative AI,
making their intellectual property (IP) protection increas-
ingly important. Most existing IP protection methods for
DDPMs are invasive, e.g., model watermarking, which al-
ter model parameters and raise concerns about perfor-
mance degradation, also with requirement for extra compu-
tational resources for retraining or fine-tuning. In this pa-
per, we propose the first non-invasive fingerprinting scheme
for DDPMs, requiring no parameter changes or fine-tuning,
and keeping generation quality intact. We introduce a dis-
criminative and robust fingerprint latent space based on the
well-designed ”crossing route” of noisy samples that span
the performance border-zone of DDPMs, with only black-
box access required for the diffusion denoiser in ownership
verification. Extensive experiments demonstrate that our
fingerprinting approach enjoys both robustness against the
often-seen attacks and distinctiveness on various DDPMs,
providing an alternative for protecting DDPMs’ IP rights
without compromising their performance or integrity1.

1. Introduction

Diffusion models (DMs) [29, 31], particularly DDPMs [8],

have become essential models in artificial intelligence gen-

erated content (AIGC), renowned for their exceptional gen-

erative capabilities and wide-ranging applications [3, 14,

26, 32]. With their increasing adoption, especially through

open-source platforms, the need to protect their IP rights

and guard against misuse has become critical. While open-

source models foster rapid innovation, they also introduce

vulnerabilities, allowing unauthorized exploitation for illicit

purposes, including IP infringement [11, 18, 33].

The current leading IP protection solutions for DDPMs

1Source codes are released in https://github.com/painfulloop/
Fingerprint_DDPM

DDPM Inversion Our Fingerlnv

B
ed

ro
om

C
at

C
el

eb
A

C
hu

rc
h

Bedroom Cat CelebA Church Bedroom Cat CelebA Church

Figure 1. Cross-generation results for DDPM inversion [10] and

FingerInv. In each confusion matrix, we invert the same ”horse“

image for different DDPMs to obtain their latent codes, which are

then used to generate image for different DDPMs. Each row uses

a specific latent code across various DDPMs, and the diagonal po-

sitions indicates matched DDPMs and latent codes. DDPM inver-

sion shows universality but lacks distinctiveness, while FingerInv
only reconstructs matched cases, highlighting distinctiveness.

are invasive, such as model watermarking [4, 16, 22, 40,

44], which embeds specific information (called watermark)

into the model by modifying its parameters for ownership

verification. However, watermarking affects model perfor-

mance and adds computational overhead during training or

fine-tuning. Watermarking methods are divided into black-

box [1, 15, 15, 24, 41] and white-box schemes [20, 27, 34],

with black-box approaches preferred for their lower verifi-

cation requirements. Nonetheless, both schemes inherently

modify the model and can be resource-intensive.

1.1. Motivation
Recently, model fingerprinting [2, 6, 17, 23, 25, 43] has

gained significant attention as a non-invasive approach to

protecting neural network (NN) models in image classifi-

cation and restoration. Model fingerprinting involves cal-

culating a unique identifier within a model or its behavior,

enabling ownership verification without altering its perfor-

mance, and requiring no additional training or fine-tuning.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Illustration of the basic idea for our inversion. We aim to

define a discriminative fingerprint latent space using FingerInv.

To the best of our knowledge, no existing work has

studied fingerprinting for DDPMs. Current fingerprinting

methods are tailored for deterministic NNs that map an

input image to a label via one-to-one mapping. In con-

trast, DDPMs are probabilistic models that map a standard

distribution to an image distribution, allowing for genera-

tion of new images from random samples (e.g., Gaussian

noise). Due to such a fundamental difference between prob-

abilistic DDPMs and deterministic NNs for classification or

restoration, existing fingerprinting methods cannot be eas-

ily adapted to DDPMs. This motivated us to develop a new

fingerprinting method specifically designed for DDPMs.

1.2. Main Idea
Consider a diffusion generation process G(z) = x0, where z
is the latent code and x0 ∈ R

H×W×C is the resulting image.

Our fingerprinting method, called FingerInv and denoted

as F , uses a predefined verification image x0 containing

copyright details, and inverts G to find a distinctive finger-

print latent code z = F(x0,G), serving as the trigger key.

During verification, z is input into the suspect model, and

the output is validated for ownership, requiring only black-

box access of the DDPM denoiser εθ . The key concern is

defining F to ensure the distinctiveness of the latent code

z. It has been observed that, when utilizing a fixed “random

seed”, two DMs tend to produce similar images [21, 38].

Furthermore, denoisers trained on non-overlapping datasets

can potentially learn nearly identical score functions [12].

Thus, existing diffusion inversion methods [10, 38] may

exhibit similar Gaussian latent spaces. As shown in Fig-

ure 1 (left), applying existing inversion methods on Gaus-

sian noise space [10] results in interchangeable latent codes

z. Most models can reconstruct x0 using latent codes of

other models, lacking uniqueness.

We propose to utilize our FingerInv to map the verifi-

cation images to the discriminative fingerprint latent space

as illustrated in Figure 2. Our fingerprint latent code can

be used directly for white-box verification and also enhance

discriminability for black-box verification, as shown in Fig-

ure 1. In DDPM, the denoiser εθ is typically trained to

estimate noise εt within the Gaussian noisy domain D, re-

sulting in small prediction errors ‖εθ(xt) − εt‖22 for sam-

ples from D. Besides, there is also a complementary set D̄

that causes εθ to produce large prediction errors, and the

boundary region between D and D̄ is defined as the per-

formance border-zone, which possesses good distinctive-

ness and robustness [25]. Inspired by adversarial samples

across the decision boundary, leveraging the characteris-

tic of DDPM generation through progressive denoising, we

propose the discriminative “crossing route” on performance

border-zone to construct unique noisy samples.

As illustrated in Figure 3, the crossing route is defined as

a set of noisy samples {x1, . . . , xT } that precisely span the

performance border-zone. After obtaining these samples,

we can back-derive other latent components [10, 38] based

on DDPM sampling process to obtain the entire fingerprint

latent code z = {xT , z1, . . . , zT }. Moreover, compared

to the critical point [25] in performance border-zone, our

crossing route includes noisy samples with sufficient large

prediction errors (e.g., xT in D̄). These “difficult” samples

often have potential to enhance the distinction in model out-

put domain, which is crucial for black-box verification.

1.3. Contribution
We utilize FingerInv to obtain the fingerprint latent code

as the trigger key from the verification image, and create

a trigger-verification pair for IP protection. Our method is

primarily validated on two representative approaches: pixel

space DDPMs (PS-DDPMs) [8], and latent diffusion mod-

els (LDMs) [26]. Extensive experiments show that our pro-

posed method exhibits greater distinctiveness and robust-

ness compared to baseline fingerprint methods , while re-

maining competitive against recent invasive watermarking

techniques. The main contributions are listed below:

• We propose the first non-invasive fingerprinting frame-

work aimed at protecting IP rights for DDPMs. The ver-

ification process is simple and intuitive, requiring only

black-box access to the DDPM denoiser, without addi-

tional visualization components.

• Inspired by adversarial samples across decision bound-

aries in classification, combining with DDPM iterative

scheduling, the concept of crossing route on performance

border-zone is introduced to characterize DDPMs.

• A distinctive and robust fingerprint latent space is pro-

posed. By mapping the verification image to the finger-

print latent code, the model owner can obtain the trigger-

verification pair, serving to protect IP right.

2. Related Work
2.1. Invasive Methods
Most watermarking approaches for DDPMs are invasive [4,

9, 16, 22, 40, 44]. [44] proposed watermarking strategies
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Figure 3. Main concept of our crossing route. We identify a dis-

tinct path {x1, . . . , xT } that crosses the performance boundary of

εθ . Assuming x0 in-domain, unlike original Gaussian route within

D, ours transitions from D to D̄ during the diffusion process.

for both unconditional and conditional DMs, which intro-

duced to watermark the data before training the models for

unconditional generation, and fine-tune the DMs to embed

a special trigger prompt and predefined verification images

(e.g., QR codes) for text-to-image generation. In addition to

text prompts [16, 44], backdoor watermarking in DDPMs

can also use image triggers [22]. To improve fidelity, a

two-stage approach is proposed to separately fine-tune the

text encoder and U-Net for watermarking stable diffusion

(SD) models [40]. Stable Signature invasively fine-tunes

the LDM decoder to embed watermark information for all

generated images [4] (rather than the specific output of a

trigger), while fine-tuning the decoder again with unwater-

marked samples can erase the watermark [9]. In conclusion,

watermarking DDPM or its outputs always requires training

or fine-tuning of models, which incurs resource costs and

potentially alters model performance.

2.2. Non-invasive Methods
In image classification, a commonly used non-invasive

method for model copyright protection is fingerprinting [2,

6, 17, 23, 43], which typically identifies samples on de-

cision boundaries or adversarial samples and distinguishes

models based on their varying behaviors. The fingerprinting

method also exists in image restoration [25], which finds

critical points within performance border- zone, demon-

strating that the critical points of various image restoration

models exhibit good distinctiveness and robustness. How-

ever, it requires white-box access in verification stage, thus

posing practical challenges in real-world applications. In

DDPMs, an analogous fingerprinting approach [37] primar-

ily protects the copyright of generated images rather than

the IP rights of the model itself. Furthermore, [37] water-

marks the original latent space of DMs, which affects the

quality of the generated samples, making it invasive.

2.3. Inversion Methods for DDPMs
Model inversion is typically applied in fingerprinting clas-

sification and restoration models [2, 5, 25]. Given out-

puts, when it comes to inversely acquiring the latent codes

Verification Img

Output
Suspicious DDPM

FingerInv

Owner

Fingerprint 
Latent Z

Original DDPM

Verify

…

Verification

Figure 4. Framework of our fingerprinting approach.

for DMs, several existing methods have been proposed [10,

19, 30, 35, 38]. For deterministic sampling process, these

include the DDIM inversion [30], as well as null-text in-

version [19], utilizing DDIM inversion as pivot and opti-

mizing null-text embeddings, and EDICT [35], the inver-

sion approach via coupled transformations. For stochas-

tic sampling process, CycleDiffusion [38] recovers the se-

quence of noise vectors to perfectly reconstruct the image,

and a more edit-friendly variant of CycleDiffusion, DDPM

inversion [10] is proposed. Compared with the determin-

istic inversion methods, the stochastic ones have higher-

dimensional latent space, which makes it easier to obtain

better uniqueness and robustness in our fingerprinting task.

Thus, after searching for crossing routes on the performance

border-zone, our method obtains the fingerprint latent code

based on the spirit of stochastic inversion methods [10, 38].

3. Methodology
3.1. Problem Statement and Overview

Threat model Similar to [25], in common scenarios of

IP protection, the model owner trains the model using their

private resources, while an attacker attempts to steal the

model. The model owner, acting as the defender, needs

to have the ability to verify whether a suspicious model

is a plagiarized version. Meanwhile, the attacker needs to

modify the model to evade detection of ownership while

ensuring that the modified model retains its functionality

and performance. Typically, the modifications may involve

common techniques such as pruning, quantization, and fine-

tuning. Moreover, unlike [25], our ownership verification

imposes stricter conditions by allowing only black-box ac-

cess to the denoiser, without access to gradient information.

Principles Model fingerprinting typically considers two

requirements [2, 25]: first, discriminability/uniqueness,

which mandates that different models possess unique fin-

gerprints and ensures that the fingerprints of other models

do not trigger a specific model’s verification information,

and vice versa; second, robustness, which requires that the

fingerprint can still successfully trigger the verification mes-

sage even after the model has been attacked or modified.

Framework Figure 4 illustrates our framework:
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• First, select a verification image x0 that contains the copy-

right information as the target output.

• Next, perform FingerInv to map the target verification

image x0 to fingerprint latent code (trigger) z.

• Then, to verify a suspicious DDPM, using z to generate

an image and check if it contains copyright information.

Inversion choice To define FingerInv, the reconstruc-

tion capability for the given verification image x0 is crucial.

In diffusion inversion schemes, DDIM inversion addressing

the deterministic sampling process are based on lineariza-

tion assumption [35], leading to error accumulation. Al-

though some approaches mitigate this error, they often incur

additional overhead, such as optimization [19] or doubling

the sampling computational costs [35]. In contrast, Cycle

Diffusion [38] and DDPM inversion [10] ensure perfect re-

construction for a given image, and compared to methods

that use only xT as the latent code, these methods leverage

more information {xT , zT , . . . , z1}, indicating a greater po-

tential to enhance discriminability and robustness.

3.2. Fingerprint Extraction

Preliminaries DDPM adds noises to the clean image x0

during the forward process to gradually obtain white Gaus-

sian noise xT and reverses this process during sampling.

The forward process can be expressed as follows:

xt =
√
ᾱtx0 +

√
1− ᾱtεt, (1)

where ᾱt =
∏t

s=1 αs, αs denotes a specified variance

schedule, and εt ∼ N (0, I). This process is commonly

employed to construct a posterior distribution q(x1:T |x0) to

obtain the noisy images from x1 to xT . Subsequently, the

DDPM sampling process is defined by:

xt−1 = μ̂t(xt) + σtzt, t = T, . . . , 1, (2)

where zt are sampled i.i.d. standard Gaussian noises and the

mean estimator μ̂t(xt) is defined as:

μ̂t(xt) =
√
ᾱt−1x̂0 +

√
1− ᾱt−1 − σ2

t εθ(xt), (3)

where x̂0 = xt−
√
1−ᾱtεθ(xt)√

ᾱt
is predicting x0, and the sec-

ond term represents the direction pointing to xt; εθ repre-

sents the denoiser and the variance schedule σt is defined as

η βt(1−ᾱt−1)
(1−ᾱt)

, where η ∈ [0, 1]. Specifically, η = 1 corre-

sponds to the DDPM and η = 0 to the DDIM scheme. Cy-

cleDiffusion and DDPM inversion utilize Eq. (1) to add de-

pendent/independent Gaussian noise to obtain a set of noisy

images {x1, . . . , xT }. Subsequently, the inversion process

entails back-calculating {zT , . . . , z1} based on Eq. (2) to

ensure perfect reconstruction. Thus, the latent components

zt can be simply inferred using:

zt =
xt−1 − μ̂t(xt)

σt
, t = T, . . . , 1. (4)

Initialization As discussed in Section 1.2, we seek to

leverage the crossing route through the performance border-

zone of εθ to implement our FingerInv. According to

Eq. (1), we can change the distribution of Gaussian noise

εt to achieve it, denoted as ε̃t. With the noises {ε̃1, . . . , ε̃T },

our goal is to make the noisy samples {x1, . . . , xT } pre-

cisely traverse through the performance border-zone of the

DDPMs. We define the initialized ε̃
(0)
t as follows:

ε̃
(0)
t = δ1

t− 1

T
no + ng, (5)

where ng ∼ N (0, I), no is from a non-Gaussian distribu-

tion, and δ1 is a weight controlling the initial intensity; e.g.,

no could be uniformly distributed: no ∼ U(−1, 1).

According to Eq. (5), when t = 1, ε̃
(0)
t = ng , indicating

that x
(0)
1 is easy to predict for the DDPM denoiser εθ . As t

increases, the intensity of no also increases, resulting in xt

becoming more disordered and further deviating from the

original Gaussian domain, which implies that x
(0)
t becomes

increasingly difficult for εθ to predict. We try to make that,

during the initialization phase, {x(0)
1 , . . . , x

(0)
T } traverse the

performance border-zone of the DDPM as possible.

Optimization To ensure that noisy samples reflect the

inherent capabilities of εθ and serve as the crossing route,

we optimize the noise ε̃t with εθ fixed. The loss function is:

Lcritical =
T − t

T
‖εθ(xt)− ε̃t‖22 − δ2

t− 1

T
‖∇xt‖1, (6)

where δ2 is the weight parameter. The first term supports the

denoiser in predicting the noise in xt, whereas the second

term increases the total variation (TV, the �1-norm of image

gradient) of xt, making noise prediction more challenging,

as discussed in [25]. While [25] hypothesizes that the crit-

ical point in performance border-zone has good uniqueness

and confirms its white-box performance, it suffered in the

black-box situation. The problem may be that [25] fixed

the artificial degradation process and optimizes the clean

image, making recovery easy in samples with small degra-

dation. So we add TV loss on noisy samples rather than

clean samples, and by fixing x0, it is equivalent to directly

optimizing the noise to make restoration hard, which poten-

tially increases black-box discrimination.

Eq. (6) positions xt to the performance border-zone of

εθ . As shown in Figure 3, when t = 1, only the first term is

used, ensuring that the noise of x1 is easily predicted by εθ ,

placing it within D. When t = T , only the second term is

active, ensuring that the noise of xT is difficult to predict by

εθ , placing it within D̄. Therefore, we obtain the crossing

route {x1, . . . , xT } that traverse the performance border-

zone, possessing sufficient discriminative properties.

Thus, calculating the latent code z via Eq. (4) becomes

more discriminative.FingerInv is detailed in Algorithm 1.
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Algorithm 1 Fingerprint Inversion Algorithm

Input: εθ: DDPM denoiser, x0: verification image, T :

number of timesteps, δ1 and δ2: hardness parameters, λ:

learning rate, N : optimization steps in each timestep

Output: latent code z = {xT , zT , . . . , z1}
1: for t = 1 to T do // Stage1: obtain {x1, . . . , xT }
2: // Noisy samples across performance border-zone

3: no ∼ U(−1, 1), ng ∼ N (0, 1)
4: ε̃t = ng + δ1

t−1
T no

5: for i = 1 to N do // Optimize ε̃t
6: xt =

√
ᾱtx0 +

√
1− ᾱtε̃t

7: Lcritical =
T−t
T ‖εθ(xt)− ε̃t‖22 − δ2

t−1
T ‖∇xt‖1

8: // Update ε̃t using gradient descent

9: ε̃t = ε̃t − λ∇ε̃tLcritical

10: end for
11: xt =

√
ᾱtx0 +

√
1− ᾱtε̃t

12: end for
13: for t = T to 1 do // Stage2: obtain {zT , . . . , z1}
14: zt ← (xt−1 − μ̂t(xt))/σt

15: end for
16: return latent code z = {xT , zT , . . . , z1}

Selection of the verification image We propose using

QR codes as verification images for two reasons: ease of

verification, and that QR images are typically not within

the target domain of DDPMs, which are more likely to

achieve better distinctiveness and robustness [24]. Note

that although QR codes are a natural choice for verification

due to their scan-based validation and are widely used in e-

commerce, our method is not restricted to QR codes. Some

results using natural images as verification images are pro-

vided in Section 7.2 of the supplementary material.

4. Experiment

4.1. Experimental Setup

Source models For PS-DDPMs, we explored clas-

sic DDPMs [8] on the LSUN [39] and CelebA-HQ [13]

datasets, focusing on church, cat, bedroom, and face im-

ages. We used four generative models at 256x256 resolu-

tion with exponential moving average (EMA) techniques.

For LDMs, we used models like SD V1-4 [26], Pixart-α [3],

and the float16 DeciDiffusion [32]. All pretrained models

are accessible online.2 PS-DDPMs share an architecture

but differ in datasets, while LDMs are based on the similar

LAION [28] datasets with different structures. This variety

2https://huggingface.co/google
https://huggingface.co/Deci/DeciDiffusion-v1-0
https://huggingface.co/PixArt-alpha/PixArt-XL-2-
512x512
https://huggingface.co/CompVis/stable-diffusion-
v1-4

Length = 24 Length = 32 Length = 64

Figure 5. QR code images used in our experiments.

enhances the reliability and validity of our discriminability

experiments, all conducted on an H800 GPU.

Implementation details In Algorithm 1, we set δ1 = 20;

δ2 = 1; N = 10; λ = 0.1. As mentioned in Section 3.2,

we use the QR code images as the verification image. Let

lqr denote the length of the string encoded in the QR code

image. We set lqr to 24, 32, and 64 to investigate the impact

of different lqr on fingerprinting, and use random strings to

generate QR codes. As shown in Figure 5, the complexity of

QR code patterns increases with lqr. For LDMs, we utilized

512x512 resolution QR codes, while for PS-DDPMs, we

downsampled the QR codes to 256x256 to facilitate com-

parison. We found that lqr has minimal impact on the re-

sults, thus primarily present verification results for lqr = 32
in part of our subsequent analyses. Results for more lqr are

given in Sections 9 and 10 of the supplementary material.

Baselines As we are the first to develop a non-invasive

method specifically for DDPMs, we considered employing

existing inversion techniques for DDPMs as baselines for

comparison, including CycleDiff (Cycle Diffusion [38] ) and

DDPMinv (DDPM inversion [10]). In addition, we also in-

corporated several existing watermarking schemes for com-

parison, including invasive methods such as those presented

in WMDM (WatermarkDM [44] for PS-DDPMs and LDMs)

and Stablesig (Stable Signature [4] for LDMs, which aim to

protect generated images and can also reflect model IP) .

4.2. Uniqueness Analysis

Quantitative analysis in fingerprint domain We com-

pared the distinctiveness of fingerprints by obtaining latent

codes z using CycleDiff (original Gaussian space), DDPMinv

(edit-friendly space), and our FingerInv. We calculated the

distances between latent codes for PS-DDPMs and LDMs,

averaging over different lengths lqr for comparison.

Specifically, we tested the squared l2 distance between

an owner fingerprint z and a suspicious fingerprint z′, with

defined thresholds γps = 8.27 × 106 for PS-DDPMs and

γldm = 6.91 × 105 for LDMs as per [24, 25] (see Sec-

tion 6.2 of supplementary material). A distance below

the threshold indicates theft; above, no theft. Figure 6

shows that our method produces distances below thresholds

along the diagonal only, effectively distinguishing mod-
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Figure 6. Squared l2 distances in different latent spaces. The top row of the confusion matrices is for PS-DDPMs, while the bottom row is

for LDMs. Columns show the results of CycleDiffusion, DDPM inversion, and FingerInv. Yellow hues indicate higher similarity between

latent codes, whereas blue signifies greater dissimilarity. Our fingerprint latent space exhibits significantly better discriminability.

N=10000 N=100000

K
ey
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K

ey
 B

Model A Model B Model A Model B

Figure 7. Discriminability analysis for highly similar denoising

generative models with nearly the same score function and density.

els. CycleDiff occasionally produces false positives, such as

overly small distances for DeciDiffusion and other models,

falling below the threshold. While DDPMinv is relatively

more discriminative than CycleDiff, it still lags behind ours.

Uniqueness analysis in the output domain Verification

in fingerprint domain requires applying FingerInv to the

suspicious model, which requires access to denoiser gradi-

ents and thus additional white-box privileges. In contrast,

direct verification of the output image avoids this require-

ment and is more convenient. Previous statistical thresh-

olding methods [25] assume that the error elements of two

samples follow the i.i.d. Gaussian distribution with a manu-

ally estimated variance, potentially compromising threshold

reliability. Using QR code images for direct scanning can

simplify it, so we generate QR images with various finger-

print triggers and DDPMs, and create confusion matrices.

In the confusion matrices, only the diagonal elements repre-

sent successful matches, leading to scannable QR codes. As

shown in Figures 8, matched triggers and DDPMs produce

clear, scannable QR code images with various lqr, while

mismatched pairs result in unscannable images, highlight-

ing our method’s strong discriminability.

Moreover, we compare the output discriminability for

different inversion methods in Table 1, which presents the

cross-verification results between different DDPMs using

their triggers. The successful scanning is indicated by �,

while �means the failure. Ideally, the matrix should dis-

play �only along the diagonal, with all non-diagonal ele-

ments marked as �, indicating that detections align cor-

rectly with their corresponding fingerprints and DDPMs. It

is evident that CycleDiff and DDPMinv exhibit a significant

risk of false positives in various scenarios, while our method

demonstrates excellent discriminability, successfully distin-

guishing between all situations.

More analysis for uniqueness Recent work [12]

showed that blind Gaussian DNNs can generate high-

quality images using score-based reverse diffusion algo-

rithms; and with sufficient training samples, two non-

overlapping subsets can yield DNNs with nearly identical

score functions and densities. Although these models are

score-based generative models (SGMs), they are also de-
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Table 1. Discriminative comparative results for output verification.

Our fingerprint approach perfectly distinguishes different models

(only the diagonal is �), while other baseline methods show vary-

ing degrees of misclassifications.

PS-DDPMs LDMs
Bedroom Cat CelebA Church SD Pixart Deci

CycleDiff

Bedroom � � � � SD � � �
Cat � � � � Pixart � � �

CelebA � � � � Deci � � �
Church � � � � - - - -

DDPMinv

Bedroom � � � � SD � � �
Cat � � � � Pixart � � �

CelebA � � � � Deci � � �
Church � � � � - - - -

Ours

Bedroom � � � � SD � � �
Cat � � � � Pixart � � �

CelebA � � � � Deci � � �
Church � � � � - - - -

SD
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Figure 8. Results of discriminability analysis on output images.

noising ones, suitable for our method. Similar to Algo-

rithm 1, we adapted our FingerInv for these SGMs (de-

tailed in Section 9.2 of supplementary material).

We employed their pretrained denoisers, trained with

10K and 100K samples and resulting in similar score func-

tions, to validate our FingerInv. These training samples

are 80 × 80 grayscale facial images, and the QR codes im-

ages we used were at the same resolution with lqr = 16.

The highly similar models were open-sourced3. As shown

in Figure 7, our method displayed discriminative capability

and successfully reconstructed verification images. This in-

3https : / / github . com / LabForComputationalVision /
memorization_generalization_in_diffusion_models

dicates our method’s strong fingerprint uniqueness and po-

tential for extending to other DM variations.

4.3. Robustness Analysis

Attack settings We unified the attack settings for com-

parison on robustness. For PS-DDPMs, we applied an

8% pruning rate, conducted 1K fine-tuning iterations (by

LAION-Art), and used float16 quantization. LDMs, partic-

ularly SD, benefit from a robust ecosystem for fine-tuning.

We utilized pretrained models from the open-source com-

munity, including SD V1-5, Deliberate4, Realistic Vision

V25, and Anything V46. These models, fine-tuned for spe-

cific purposes, enhance our analysis. We conducted a 50%

pruning attack on SD and 10% on Pixart and DeciDiffu-

sion. For quantization, float16 was used for SD and Pixart-

α, while bfloat16 was used for DeciDiffusion.

For more visual results, we applied a wider range and

stronger attacks, such as a 10% pruning rate for PS-

DDPMs, a 15% pruning rate for DeciDiffusion and Pixart-

α, and bfloat16 quantization for other DDPMs.

Impact of attacks To evaluate the impact of attacks on

model performance, we generated 100 samples from both

source and attacked models using a fixed random seed, and

assessed them with PSNR, SSIM [36], LPIPS [42], and

FID [7]. Figure 9 shows that even 5% pruning significantly

reduces PSNR (some cases below 20 dB), SSIM (some

cases below 0.8), and increases LPIPS (some cases above

0.6). Fine-tuning with different data distributions greatly

affects FID, sometimes exceeding 1200. Quantization with

bfloat16 also reduces PSNR (some cases below 20 dB) and

SSIM (some cases below 0.8). These attack intensities con-

stitute significant perturbations.

Figure 9. Performance variations across different attack scenarios.

Results of robustness analysis Figure 10 presents our

visual results and shows clear QR code images gener-

4https://huggingface.co/XpucT/Deliberate
5https://huggingface.co/SG161222/Realistic_Vision_
V2.0

6https://huggingface.co/xyn-ai/anything-v4.0
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PN 10% PN 30% PN 50% Delibrate SD V1-5 Real V2 Float16 BFloat16Anything 
V4

Stable Diffusion V1-4

PN 5% PN 10% PN 15% BFloat16 PN 5% PN 10% PN 15% Float16 BFloat16
Deci-diffusion Pixart-

Figure 10. Visual results of robustness analysis.

ated under varying attacks. Table 2 compares our robust-

ness with baselines. Our approach effectively detected

the original QR images under various attacks for both PS-

DDPMs and LDMs, outperforming non-invasive methods

and matching the robustness of invasive techniques, which

is comparable to watermarking methods. In addition, our

method is resilient to attacks as described in [9] due to its

non-invasive approach to the decoder of LDMs, surpassing

Stablesig in model IP protection. Besides, our non-invasive

method preserves the original model performance without

additional fine-tuning or retraining, which offers significant

advantages over invasive watermarking methods and sup-

ports a wider range of applications.

5. Conclusion and Discussion

We propose the first non-invasive fingerprinting method

for DDPMs by modifying the noise to create distinctive

fingerprint latent space, enabling fingerprint-verification

pairs. Our method differentiates DDPMs with black-box

access to denoisers, without altering model parameters or

output quality. Experiments show strong distinctiveness

and robustness for PS-DDPMs and LDMs, positioning our

method as a promising solution for DDPM IP protection.

However, when considering the DDPM process as a

whole, our method does not constitute a strictly black-box

approach. The validation process requires manual input

of latent components at each timestep during DDPM sam-

pling. This can be inconvenient for direct validation in some

fully encapsulated DDPM environments, such as, serving

as an application programming interface (API). However,

compared to previous fingerprint protection methods for im-

age restoration, our approach significantly reduces permis-

sion requirements, as it does not necessitate white-box ac-

Table 2. Robustness results for various IP protection methods. We

present verification results for various attacks and their success

rates. For each method, we also include features such as non-

invasiveness and theoretical robustness against [9].

Eval CycleDiff DDPMinv Stablesig WMDM Ours

P
ru

n
in

g

Bedroom � � - � �
Cat � � - � �

CelebA � � - � �
Church � � - � �

SD V1-4 � � � � �
Deci � � � � �

Pixart � � � � �

F
in

et
u

n
in

g

Bedroom � � - � �
Cat � � - � �

CelebA � � - � �
Church � � - � �

SD V1-5 � � � - �
Delibrate � � � - �
Realistic � � � - �
Anything � � � - �

Q
u

an
ti

za
ti

o
n

Bedroom � � - � �
Cat � � - � �

CelebA � � - � �
Church � � - � �

SD V1-4 � � � � �
Deci � � � � �

Pixart � � � � �
Success Rate 81.82% 77.27% 100.00% 100.00% 100.00%

Non-invasive? � � � � �
Robust to [9]? � � � � �

cess to the denoisers during the verification stage.

Our future work will focus on fingerprinting based only

on xT for API applications and explore more properties of

crossing route, including their uniqueness and extensions to

other variants of diffusion models.
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