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Figure 1. This image represents a novel hyperspectral image at the 70th channel of a 141-channel image predicted from the top three

models, HyperGS (Ours), 3DGS and MipNerf360 for the hyperspectral novel view synthesis task. Two random pixel reconstructions taken

from the novel view with corresponding border color for its plot and pixel location in the image represented by the stars.

Abstract

We introduce HyperGS, a novel framework for Hyper-

spectral Novel View Synthesis (HNVS), based on a new la-

tent 3D Gaussian Splatting (3DGS) technique. Our ap-

proach enables simultaneous spatial and spectral render-

ings by encoding material properties from multi-view 3D

hyperspectral datasets. HyperGS reconstructs high-delity

views from arbitrary perspectives with improved accuracy

and speed, outperforming currently existing methods. To

address the challenges of high-dimensional data, we per-

form view synthesis in a learned latent space, incorporating

a pixel-wise adaptive density function and a pruning tech-

nique for increased training stability and efciency. Ad-

ditionally, we introduce the rst HNVS benchmark, imple-

menting a number of new baselines based on recent SOTA

RGB-NVS techniques, alongside the small number of prior

works on HNVS. We demonstrate HyperGS’s robustness

through extensive evaluation of real and simulated hyper-

spectral scenes with a 14db accuracy improvement upon

previously published models.

1. Introduction

Recent advancements in Novel View Synethesis (NVS),

particularly with implicit Neural Radiance Field modeling

(NeRFs) [22] and explicit Gaussian models (3DGS)[13],

have dramatically improved the delity of synthetically ren-

dered views for conventional RGB images. However, RGB

imaging is fundamentally limited, as it cannot capture the

detailed material properties or non-visible scene character-

istics critical for deeper scene understanding.

Hyperspectral imaging addresses these limitations by

capturing a continuous spectrum of light across narrow

bands for each pixel, providing valuable material properties

and subtle spectral signatures. This modality is crucial for

applications such as remote sensing, medical diagnostics,

environmental monitoring, and robotics [27], where spec-

tral information is paramount. The demand for Hyperspec-

tral Novel View Synthesis (HNVS) is driven by the need for

accurate, real-time spectral and spatial modeling. However,

synthesizing novel views from hyperspectral data presents

signicant challenges due to its high dimensionality and the

requirement for spectral consistency across different per-

spectives for each pixel.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5970



Previous works, such as HS-NeRF [5], have explored

HNVS by adapting NeRF architectures to hyperspectral

data. However, these methods suffer from unstable train-

ing dynamics, slow rendering times, and inefciencies in

handling high-dimensional.

3DGS has recently emerged as a promising approach

for fast NVS in the RGB domain, offering efcient, high-

delity rendering of 3D scenes through point-based rep-

resentations. By projecting 3D Gaussians onto the im-

age plane, 3DGS enables smooth, continuous representa-

tions of scene geometry while preserving ne surface de-

tails. However, despite its efciency and rendering quality,

3DGS has not yet been successfully extended to accommo-

date high-dimensional data types. In our benchmark, tradi-

tional 3DGS fails to achieve consistent results against NeRF

baselines for HNVS (Section 5 and Section 9 of the supple-

mentary materials). HyperGS aims to address these chal-

lenges. In summary, the contributions of this paper are:

1. We present the rst method that successfully integrates

view-dependent hyperspectral material information with

3DGS for high-quality HNVS.

2. We introduce an adaptive density control and global

pruning process that leverages hyperspectral signatures

for efciency alongside a hyperspectral SFM process to

stabilize the modeling.

3. A comprehensive benchmark of hyperspectral NeRF ap-

proaches and adaptations of classical RGB-NVS models

for HNVS.

2. Literature review

2.1. Hyperspectral 3D reconstruction

Efforts to extend 3D reconstruction to multispectral and hy-

perspectral domains include works from Zia et al. [31] and

Liang J et al. [17], which employ point clouds and key point

descriptors for structure-from-motion. These methods en-

hance 3D reconstruction by improving point matching but

often result in sparse, noisy point clouds with inadequate

occupancy information for multi-view stereo. Shadows and

lighting variations degrade geometric quality. A faster ap-

proach by Zia et al. [32] instead skips rasterization by map-

ping hyperspectral images onto preprocessed 3D meshes.

2.2. NeRFs

NeRFs have gained signicant attention [8] since Milden-

hall et al. [23] introduced the technique. NeRFs rely on

classical volume rendering techniques for scene synthesis.

Recent advances have sought to adapt NeRFs for spectral

and hyperspectral imaging. SpectralNeRF [16] incorporates

a spectrum attention mechanism (SAUNet) for realistic low-

channel multi-spectral rendering under variable lighting.

However, the reliance on attention mechanisms introduces

computational overhead, making long-range spectra dif-

cult to capture. Spec-NeRF [15] takes a more efcient ap-

proach by adapting TensoRF [4] for reconstruction, with a

seperate MLP estimating the camera’s spectral sensitivity,

focusing on computationally efcient spectral scene recon-

structions. HS-NeRF [5] targets hyperspectral novel view

synthesis by learning sinusoidal position encoding for each

channel, allowing it to interpolate between viewpoints. This

approach struggles with full-spectrum delity due to its lack

of end-to-end training. HS-NeRF also released two multi-

view hyperspectral datasets, using two different hyperspec-

tral cameras with varying signal-to-noise ratios. These,

NeRF-based methods remain limited by their large param-

eter counts and instability when handling high-dimensional

hyperspectral data alongside slower inference times.

2.3. 3DGS

Advancements in 3DGS improve point cloud efciency

for hyperspectral imaging but rely on discrete thresholds,

causing uneven textures and memory issues with high-

dimensional HSI data. VDGS [20] employs a hybrid NeRF

neural model for color and opacity, improving spectral re-

construction for HSI. However, this model still heavily de-

pends on the 3DGS prediction and only uses opacity esti-

mation from the MLP. Scaffold-GS [19] introduces com-

pressed representations to smooth surfaces but, like 3DGS,

it struggles with artifacts in sparse regions. Mip-Splatting

[30] addresses rendering quality by applying 3D smoothing

and a 2D Mip lter, yet it remains constrained by view-

frustum-based Gaussian selection, limiting its effectiveness

in dynamic scenes. Challenges in Gaussian initialization,

especially due to poor SfM data, are tackled by RAIN-

GS [12], which incorporates adaptive optimization. In-

stantSplat [10] improves stability by using simpler point

provisioning alongside the use of dust3r [28] which offers

better SFM than COLMAP but has difculty in processing

large amounts of images. Meanwhile, Bulo [3] proposes

pixel-level error-based densication to ensure consistent

quality, and GaussianPro [6] extends pixel-wise loss meth-

ods to better align 3D Gaussian normals during rendering,

albeit at the cost of longer training times. EfcientGS[18]

and LightGaussian[9] reduce model size and computational

load through pruning methods but risk losing important vi-

sual details, especially when over-decimation occurs with-

out proper ranking thresholds[18]. These methods often pri-

oritize storage efciency over rendering performance, over-

looking challenges in real-time optimization. Although no

previous works have explored the adaptation of Gaussian

Splatting to Hyperspectral data, our experiments show that

a naive adaptation struggles to model ne details. HyperGS

solves these issues by operating in a lower-dimensional

learned latent space.
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3. Preliminaries

3DGS, developed by Kerbl et al. [13], represents 3D envi-

ronments using N Gaussian primitives. Each Gaussian is

parameterized by its position xi ∈ R
3 in world coordinates,

a scaling vector Si ∈ R
3 dening the size of the Gaussian

along each axis, a rotation quaternion Ri ∈ R
4 dening

its orientation, opacity σi ∈ R, which is controlled by a

sigmoid function, and appearance features fi ∈ R
k to rep-

resent view-dependent RGB signals. The core of 3DGS lies

in transforming these Gaussians from 3D world space into

the 2D image plane for rendering. To do this, we rst dene

the 3D covariance matrix of each Gaussian in world space

as:

Σi = RiS
2

i R
T
i , (1)

where Ri is the rotation matrix derived from the quaternion

Ri, and Si is the scaling matrix derived from the vector Si.

To splat the Gaussian onto the 2D image plane, we trans-

form the covariance matrix using the viewing transforma-

tion matrix W and the Jacobian matrix J , which handles

the projection onto the camera’s image plane as

Σ̂i = JWΣiW
TJT . (2)

accounting for the perspective distortion and view transfor-

mation. When rendering to a particular pixel, the opacity αi

of Gaussian i is computed as:

αi = 1− exp(−δTi Σ̂
1

i δi), (3)

where δi is the distance between the pixel and the projected

center of the Gaussian in 2D.

The transmittance Ti, which represents the cumulative

transparency along the ray up to the i-th Gaussian. It is

computed as:

Ti =

i−1


j=1

(1− σiαj). (4)

The nal color C of each pixel, p is obtained by blending

the colors of all Gaussian’s projected onto that pixel:

C(p) =


i∈N

Tiαici, (5)

where p is the coordinate position in the image, ci is the

color of the i-th Gaussian, derived from its color appear-

ance coefcients fi. In summary, this process transforms

and projects the Gaussian primitives from 3D space into

2D image space and computes the nal pixel colors through

opacity and transmittance blending.

4. Methodology

HyperGS aims to provide a lightweight, fast rasterization

solution to HNVS that is robust to different hyperspectral

cameras’ sensitivity functions with outstanding accuracy.

Our system diagram is seen in Figure 2.

4.1. Hyperspectral Compression

To address the challenges of high-dimensional optimiza-

tion, we adopt a novel latent space exploration method for

the hyperspectral data. The latent space of a pre-trained

autoencoder (AE) serves as an exploratory space for our

3DGS system. This approach reduces the computational

load during 3DGS optimization by providing a compact,

lower-dimensional target. Additionally, the latent space

bounds the error by encapsulating the spectral sensitivity

of the hyperspectral camera for each channel, enhancing

the accuracy and reliability of novel view reconstruction in

the spectral domain. During testing, the latent space 3DGS

viewpoint estimations are decoded using the frozen AE to

produce novel HSIs from which gradient ow will be cal-

culated.

The compression network is a fast convolutional AE.

Both sides are symmetrical and is built using a series of 1D

convolutional layers and Squeeze-Excitation (SE) blocks

that operate across the spectral dimension of the images.

The SE blocks benet the performance by weighting fea-

tures between layers for improved spectral discrimination.

The model is trained on the pixel level of the scenes dataset.

The encoder compresses the high-dimensional hyperspec-

tral data into a latent representation via max-pooling layers,

while the decoder reconstructs the original spectral infor-

mation from this compressed form via upsampling. The

architecture omits skip connections to ensure the decoder

can function independently during training and testing to

decode the LHSI data produced by the 3DGS system. For

a detailed layout of the network architecture, please refer to

Fig. 3.

The AE minimizes the loss Lae, dened as:

Lae = LHuber(C
∗(p), Dec(Enc(C∗(p)))), (6)

where C∗ is the ground truth pixel spectrum. The Hu-

ber loss provides a smooth optimization process throughout

training, as it handles outliers effectively while maintaining

smooth gradients. Since each hyperspectral dataset includes

varying levels of signal-to-noise ratios, this approach helps

improve robustness against noise-related issues.

4.2. Latent Hyperspectral 3D Gaussian Splatting

Each Gaussian in the splatting process is assigned a latent

spectral signature fi ∈ R
m, where m represents the la-

tent space dimensionality. Inspired by many previous RGB

techniques [14, 19, 21, 29] an MLP conditioned on view-

directional hash encoding is used to predict anisotropic

opacity and spectral color information for each Gaussian.

This allows view-dependent spectral effects to be modelled

upon specic bands. This signature is mapped directly to

the pixel values using the decoder model dened in Sec-

tion 4.1. For camera d, the MLP F predicts view-dependent
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Figure 2. Visual system diagram of our approach. Blue lines indicate the operational ow, while orange lines represent the gradient ow.

Our novel modied latent hyperspectral adaptive density function operates within a latent space provided by a frozen autoencoder, which

is also responsible for decoding the nal images. Latent space novel views are generated through a combination of the latent hyperspectral

Gaussian point cloud and a NeRF-style MLP. Gradients are updated based on the decoded images.

Figure 3. Our channel-wise convolutional AE model learns LHSI

space representation of the scene. The decoder is only used in

training and inference for the 3DGS system after the preprocessing

of the dataset is nished.

spectral effects f̃i,d and opacity σ̃i,d effects for each Gaus-

sian. Specically, the MLP takes the centre mi of each

Gaussian and the view direction as inputs:

[f̃i,d, σ̃i,d] = Fv(h(mi,d);Θ), (7)

where h is the hash encoding of the inputs while Θ̃ denotes

the MLP parameters similar to that of I-NGP [24] and Mip-

Nerf360 [1].

These view-dependent spectral and opacity effects are

multiplied with those stored in the Gaussian Cloud, leading

to the updated volumetric rendering equations with trans-

mittance being dened as:

Ti,d =

i−1


j=1

(1− αjσiσ̃i,d). (8)

The nal latent signature Ĉ of each pixel is obtained by

blending the colors of all Gaussians projected onto that

pixel p:

Ĉ(p, d) =


i∈N

Ti,dαifif̃i,d. (9)

It is worth emphasizing that these view-dependent spectral

effects are applied within the learned latent space before

decoding. This helps maintain a low computational com-

plexity while minimizing outliers.

A decoding operation is then performed to provide the

full delity prediction from the system using the decoder

from Section 4.1.

C(p, d) = Dec(Ĉ(p, d)). (10)

The nal rendering ensures that the spectral integrity is

maintained throughout the entire process, which is critical

for accurately reconstructing material properties. By lever-

aging the latent space, HyperGS provides a more meaning-

ful and efcient spectral representation of the scene, than

the original full hyperspectral image. The original loss pro-

posed in 3DGS for spatial and geometric consistency in ren-

dered images uses a weighted DSSIM and L1 loss. How-

ever, this type of loss have been shown to lead to undert-

ting for HSI in other elds. This is because an L1 loss can

produce extreme errors for sensitive spectral bands, desta-

bilizing training. To address this, we employ a weighted

loss combining Charbonnier loss and cosine similarity to

account for both spectral quality and spatial consistency.
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Figure 4. Visualization of our re-projection protocol for initializ-

ing the SFM point cloud. We estimate the SFM from grayscale

channel slices of the hyperspectral image scene with COLMAP.

Then, using the average of all views, we re-project each point into

LHSI from provided by our AE, providing an optimal initializa-

tion of latent spectral color for the 3DGS system.

The cosine similarity provides a measured angular distance

between vectors, making it ideal for comparing spectra. To

provide an overall consistency in the spatial and spectral

domain we keep the SSIM score in the training from the

original 3DGS system. The per pixel HyperGS training loss

Ld(p) is:

Ld(p) = (1−λ)(βLCB(p)+LCS(p))+λLSSIM (p), (11)

where β weighs the spectral loss balancing the cosine sim-

ilarity and charbonnier loss. Thus the total training loss

across all pixels and views is:

L(C,C∗) =

P


p=1



d∈V

Ld(p), (12)

where C is the 3DGS systems network prediction after de-

coding the entire latent image, C∗ is the ground truth hyper-

spectral image, and V is the set of training view directions.

4.2.1 Initialisation

Since there is no dedicated hyperspectral Structure-from-

Motion (SfM) algorithm compatible with COLMAP, we

rst convert the hyperspectral images into grayscale im-

ages, Igray, by selecting the spectral channel with the high-

est foreground intensity variance to preserve key features

for the SfM process. Our process is visualized in Fig-

ure 4. Using these grayscale images and their correspond-

ing camera projection matrices for each view d, we apply

COLMAP to generate a sparse 3D point cloud. Each 3D

point X = (X,Y, Z, 1)T in world coordinates is related to

its pixel coordinate pd = (xd, yd, 1)
T in the image plane

via the camera projection KdEd:

pd = KdEdX, (13)

where Kd are the camera intrinsics and Ed the extrinsics.

After generating 3D points and recovering camera poses,

we re-project the points into the LHSIs. Each 3D pointX is

linked to pixel coordinates pd across all views. We then

initialize the Gaussian cloud with one Gaussian centered

on each 3D point X, with spectral signature fi computed

by averaging the latent hyperspectral signaturesHd(yd, xd)
across all views d:

fi =
1

|V |

V


v=1

Ĉ∗

d (pd), (14)

where Ĉ∗

d (pd) is the latent hyperspectral signature at pixel p
for view d, and V is the set of training views. This averaging

ensures the spectral information is captured robustly.

4.2.2 Latent Hyperspectral Densication

As the number of color channels in HSI data increases, vi-

sual discontinuities become more prevalent. Additionally,

our initial SFM reconstruction is less dense compared to

standard RGB 3DGS. To address these issues, we incorpo-

rate an advanced densication method that enhances stabil-

ity in both results and training. A key component of 3DGS

involves determining whether a Gaussian should be split

or cloned based on the gradient magnitude of the Normal-

ized Device Coordinates (NDC) across various viewpoints.

However, in sparse regions, this can cause artefacts as large

Gaussians are highly visible in many viewpoints, leading to

inconsistent splitting. This challenge is exacerbated in the

hyperspectral domain of 3DGS, where the larger number of

channels and highly variable value ranges make it harder to

set effective thresholds. To mitigate this, we scale the gradi-

ent by the square of the depth relative to the scene’s radius,

which reduces the inuence of Gaussians near the camera.

More formally, we dene the splitting score as:

S(gi) =


d∈V

P


p=1

h(d, i)





∂Ld(p)

∂xi

2

+



∂Ld(p)

∂yi

2

,

(15)

where the depth-scaling function is:

h(d, i) =



|EdXi|

βeld ×R

2

, (16)

βeld is a tunable parameter, and R is the scene’s radius,

based on the largest distance between any pair of cameras.

The Gaussian gi is split or cloned if S(gi) > θq . This

approach accounts for depth-based scaling and pixel contri-

butions, leading to better hyperspectral scene reconstruction

with fewer artifacts near the camera. However, this more

expressive densication can result in an excessive number

of Gaussians in scenes with high-frequency details (e.g., the

“pinecone” scene in Figure 1, to stabilize this we deploy a

global pruning strategy.
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Figure 5. Visualization of our pixel-wise pruning. Gaussians with

poor similarity scores below a threshold are pruned, such as the

red-circled Gaussian and the black ground truth spectrum.

4.3. Global Hyperspectral Gaussian Pruning

In HyperGS, we deploy pixel-wise pruning [25] to preserve

the spectral integrity of latent hyperspectral images (LHSIs)

while lowering the overall number of primitives to improve

the scene quality, model size, and spectral gradient descent.

Unlike cross-view pruning methods, which evaluate Gaus-

sians across multiple viewpoints and leads to over-pruning

[11, 18], our approach assesses each Gaussian’s contribu-

tion at the pixel level. This approach retains ne spectral

details specic to each pixel. For each Gaussian gi, prun-

ing is based on its pixel-wise importance I across all view-

points and pixels. We compute the importance for every

combination of Gaussian, pixel and viewpoint as the spec-

tral difference between the ground truth hyperspectral value

Ĉ∗

d (p) and the decoded Gaussians LHSI, with the pruning

score dened as:

I[gi, p, d] = (1− |C∗

d (p)−Dec(fi)|)αiTi, (17)

where Ti is the accumulated transmittance of Gaussian gi.

Including αi and Ti ensures that only Gaussians contribut-

ing signicantly in visibility and spectral accuracy are re-

tained, and also ensures that the score is 0 for Gaussians

that do not overlap the given pixel.

Following recent works, we do not prune Gaussians

based on the average, or the total pixel-wise importance

score. Instead, we retain all Gaussians within the top-K im-

portance ranking for any pixel. More formally the ltered

Gaussian cloud G is

G = {gi|∃(p, d),Rank(gi, I[:, p, d] < τp)}, (18)

where “Rank” is a function that returns the rank of a given

Gaussian within the slice of the score tensor for that pixel

and view.

5. Experiments

We rst evaluate HyperGS using the HS-NeRF datasets

[5]. These datasets differ in signal-to-noise ratios, chan-

nel lengths, and the number of images per scene, providing

a comprehensive test of model performance. The Bayspec

dataset [5] contains around 360 images per scene (3 scenes

total), while the SOP dataset [5] has around 40 images per

scene (4 scenes total). Due to the lack of continuous HSI

datasets for non-object-centric scenes, we also evaluate Hy-

perGS on a synthetic dataset curated from ScanNetv200 [7]

(Section 9 in the supplementary materials, where we re-

place each semantic label with distinct hyperspectral sig-

natures as seen in our supplementary materials). The base-

lines we have implemented for the HNVS problem include

conventional 3DGS (with our reprojected SFM initialisation

4.2.1 and removed SH coefcients), traditional NeRF mod-

els adapted for hyperspectral data (NeRF [22], MipNeRF

[2] MipNeRF-360 [1], Nerfacto [26] and TensorF [4] (Spec-

NeRF), and the only existing HNVS method HS-NeRF [5].

All experiments were conducted on an NVIDIA A100

80GB GPU, as MipNeRF360 requires signicantly more

VRAM than the other methods, which could run on a

NVIDIA 3090 GPU. Using the A100 also facilitated accu-

rate tracking of training times across all methods. We assess

the performance of HyperGS after 60k training iterations,

while NeRF methods are trainined with the standard 1024

rays per batch and competing methods using rigorous met-

rics that capture both accuracy and spectral delity: PSNR,

SSIM, Spectral Angle Mapping (SAM), RMSE. We use a

90% training and 10% test split according to the HS-NeRF

dataset.

5.1. Real HSI

We compare two HNVS datasets from HS-NeRF with dif-

ferent spectral channels and noise levels. The SOC710-VP

(SOP) camera, covering 370–1100 nm, provides high spa-

tial (696×520) and spectral (128 channels) resolution but

suffers from poor temporal resolution due to long expo-

sure. The BaySpec GoldenEye camera offers comparable

spatial (640×512) and spectral (141 channels) resolution

with faster captures, introducing more noise. Tables 1 and 2

show that HyperGS consistently outperforms other methods

on unseen images across all scenes.

The BaySpec dataset particularly highlights HyperGS’s

strengths. Its autoencoder produces bounded errors in la-

tent space, letting HyperGS effectively manage noise by

averaging spectra and decoding within well-dened 1D fea-

ture structures. This yields more accurate reconstructions

than standard end-to-end training methods. Figure 6 further

shows how HyperGS better predicts object size and specu-

lar reections compared to other baselines.

Similar to its performance on natural NeRF tasks, Mip-

NeRF360 performed the best among NeRF methods for

HNVS. We attribute its performance to its use of positional

encoding and the efcient scene representation using ten-

sor decomposition initially employed by TensorF providing

more targeted spectral predictions. Our densication and

pruning techniques further rene HyperGS’s performance
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Figure 6. Visualisation of the top 4 methods for frame 51 of 359 for the Caladium plant scene from the Bayspec dataset. The top row

shows the 70th channel of the 141 channel image predicted, the bottom row provides a raw pixel-wise error heatmap of the scene.

Figure 7. Visualisation of the top 4 methods for frame 31 of 49 for the Tools plant scene from the SOP dataset. The top row shows the 70th

channel of the 128 channel image predicted, the bottom row provides a raw pixel-wise error heatmap of the scene.

by effectively ltering poor spectral representations. Mean-

while, the SOP dataset favors both 3DGS approaches. Due

to the high number of frames present in the BaySpec cam-

era scenes, the NeRF approaches adapt well to this abun-

dance of data and can provide far better and more stable

representations of the scene given the volume of viewpoints.

This volume makes predicting the noisier spectra that the

BaySpec camera provides easier than 3DGS. In contrast,

although the SOP datasets may have smoother spectra, the

number of training viewpoints is far smaller. This leads

to NeRF approaches evidently struggling with scene scale

and spectral reconstruction, as they struggle to understand

the scene scale and perform spectral reconstruction due to

the lack of data. In contrast, 3DGS approaches excel due

to smoother data interpolation and simpler optimization.

This is outlined by Figure 7 highlighting the intense er-

ror heatmaps from NeRF approaches compared to 3DGS

and HyperGS. HyperGS, however, outperforms all meth-

ods across all scenes and camera datasets, suggesting that it

provides a far more robust and accurate performance than

both 3DGS and NeRF methods for HNVS. For visualiza-

BaySpec Datasets

Method
Average Results

PSNR ↑ SSIM↑ SAM↓ RMSE↓

NeRF 23.35 0.6061 0.0440 0.0687

MipNeRF 22.75 0.5947 0.0435 0.0776

TensoRF 24.66 0.6482 0.0501 0.0587

Nerfacto 19.12 0.5866 0.0551 0.1174

MipNerf360 26.53 0.7442 0.0280 0.0476

HS-NeRF 19.82 0.6714 0.0534 0.1071

3DGS 22.91 0.6321 0.1335 0.0810

HyperGS 27.11 0.7804 0.0254 0.0440

Table 1. Quantitative results using the Bayspec datasets against

separate hyperspectral methods and baseline NeRF and 3DGS

(best bold, second best italic).

tions of random pixels and spectral images, please refer to

Figures 8 and then 9 which showcases HyperGS’s superior

pixel reconstruction capabilities compared to other bench-

marked methods.
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Figure 8. Three random pixel reconstructions taken from test frame 151 of the bayspec Anacampseros scene.

Figure 9. Three random pixel reconstructions from test frame 31 of the SOP origami scene.

Surface Optics Datasets

Method
Average Results

PSNR ↑ SSIM↑ SAM↓ RMSE↓

NeRF 10.89 0.5905 0.0625 0.3479

MipNeRF 12.53 0.5481 0.0568 0.3198

TensorF 13.00 0.5696 0.0595 0.2780

Nerfacto 16.37 0.6986 0.0352 0.1601

MipNeRF360 12.28 0.6824 0.1369 0.2658

HS-NeRF 14.44 0.6165 0.2037 0.1953

3DGS 28.58 0.9627 0.0301 0.0478

HyperGS 30.51 0.9756 0.00415 0.0354

Table 2. Quantitative results using the SOP datasets against sepa-

rate hyperspectral methods and baseline NeRF and 3DGS.

5.2. Ablation Study

To evaluate the effectiveness and impact of various com-

ponents in our HyperGS model, we conducted a series

of ablation experiments. These experiments help to un-

derstand the contribution of individual components and

choices in our model’s design. As shown in Table 3, each

new feature added to the baseline 3DGS model improves

HNVS performance. The joint latent autoencoder-3DGS

architecture boosts spectral reconstruction the most while

the proposed densication provides greater overall details

captured. With the latent space learning and positional

encoding, the performance of HyperGS gets a signicant

boost in performance too. Please refer to our supplementary

materials for additional ablations, including analyses of

HyperGS performance, pruning strategy scoring functions,

autoencoder performance with varying data and latent sizes,

the global pruning strategy, and system speed bottlenecks.

Ablation Step
Average Results for the Bayspec dataset

PSNR ↑ SSIM↑ SAM↓ RMSE↓ N.Prim ↓

Base. 3DGS 22.91 0.6320 0.1335 0.0810 440k

+ Spec. SFM 23.05 0.6331 0.1310 0.0799 421k

+ Latent space AE 24.87 0.7101 0.0548 0.0602 500k

+ Densication 25.25 0.7356 0.0365 0.0548 1.3M

+ Pruning 25.17 0.7199 0.0374 0.0555 412k

+ View depenent MLP 27.05 0.7792 0.0253 0.0443 309k

+ Custom L.Func 27.11 0.7801 0.0254 0.0440 310k

Table 3. Adding each new feature to 3DGS signicantly im-

proves the model’s average performance for the HNVS task in the

bayspec dataset while creating a more stable number of primitives

(N.Prim) in the point cloud.

6. Conclusions

In this paper, we introduced HyperGS, the rst effective ap-

proach for hyperspectral novel view synthesis (HNVS). By

encoding latent spectral data within Gaussian primitives and

performing Gaussian splatting in a learned latent space, Hy-

perGS achieves high-quality, material-aware rendering. Our

adaptive density control and pruning techniques efciently

handle latent hyperspectral signatures in 3D Gaussian point

clouds, ensuring stable training and superior accuracy com-

pared to benchmark methods. For future work, we aim to

extend HyperGS with more comprehensive latent space de-

coding that corrects and renes both spectral and spatial in-

formation, providing richer contextual detail.
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