
Towards All-in-One Medical Image Re-Identification

Yuan Tian1 Kaiyuan Ji2 Rongzhao Zhang1 Yankai Jiang1 Chunyi Li3

Xiaosong Wang1 Guangtao Zhai3B

1Shanghai AI Laboratory
2School of Communication and Electronic Engineering, East China Normal University

3Institute of Image Communication and Network Engineering, Shanghai Jiao Tong Unversity

tianyuan168326@outlook.com

Abstract

Medical image re-identification (MedReID) is under-
explored so far, despite its critical applications in person-
alized healthcare and privacy protection. In this paper,
we introduce a thorough benchmark and a unified model
for this problem. First, to handle various medical modal-
ities, we propose a novel Continuous Modality-based Pa-
rameter Adapter (ComPA). ComPA condenses medical con-
tent into a continuous modality representation and dynam-
ically adjusts the modality-agnostic model with modality-
specific parameters at runtime. This allows a single model
to adaptively learn and process diverse modality data. Fur-
thermore, we integrate medical priors into our model by
aligning it with a bag of pre-trained medical foundation
models, in terms of the differential features. Compared to
single-image feature, modeling the inter-image difference
better fits the re-identification problem, which involves dis-
criminating multiple images. We evaluate the proposed
model against 25 foundation models and 8 large multi-
modal language models across 11 image datasets, demon-
strating consistently superior performance. Additionally,
we deploy the proposed MedReID technique to two real-
world applications, i.e., history-augmented personalized di-
agnosis and medical privacy protection. Codes and model
is available at https://github.com/tianyuan168326/All-in-
One-MedReID-Pytorch.

1. Introduction
Medical images [88], such as X-ray images and Computed
Tomography (CT) scans, are essential for diagnosing and
monitoring various health conditions. Up to 2020, images
have accounted for about 90% of all medical data [114].

Despite the large-scale data advanced the computer-
aided diagnosis tasks [6, 80], its privacy concern [62] is also
serious. It is urgent to (1) efficiently manage patient histor-
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Figure 1. (a) We propose MaMI, an all-in-one modality-adaptive
ReID model for medical images. (b) MaMI enhances personal-
ized healthcare by integrating historical medical data. (c) MaMI
detects identity cues and removes them from the original images,
protecting privacy while maintaining medical utility.

ical images for personalized healthcare [2, 44, 58] and (2)
effectively protect privacy before images are shared [22, 30,
41]. We argue that both sides call for the medical image re-
identification (MedReID) technique.

As for historical image management, traditional meth-
ods [52, 68] manually pre-link images to patient meta-
data (e.g., name, medical record numbers), and retrieve
images by querying the system with the metadata. How-
ever, the links are not always complete and accurate, espe-
cially when data are stored in different Picture Archiving
and Communication System (PACS) platforms. This re-
quires the MedReID technique to retrieve personal images
from poorly organized data, providing accurate historical
evidence for disease diagnosis [37].

As for medical image privacy protection, current meth-
ods only remove explicit information, such as the patient
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name [38]. However, some works [21, 56] have found
that the identifiable visual information within the images
can also breach privacy. A robust MedReID model can
detect the identity-related regions of the image. By post-
processing these regions, the images become unidentifiable,
thereby enhancing their safety before data sharing.

Despite the importance of the MedReID problem, there
are only few works investigating this. Fukuta et al. [20] and
Singh et al. [67] exploit the low-level features for identify-
ing fundus images. Packhäuser et al. [56] leverages neu-
ral networks to identify chest X-ray images. However, all
these approaches are designed for one specific modality.
They can not enjoy the mutual enhancement from various-
modality data sources. Moreover, these models are with less
medical priors, which limits their generalization.

In this paper, we introduce a unified MedReID model,
termed Modality-adaptive Medical Identifier (MaMI). To
handle heterogeneous data from various modalities, MaMI
introduces a Continuous Modality-based Parameter Adapter
(ComPA). ComPA adapts a modality-agnostic model to
modality-specific models at runtime. Given an input image,
ComPA generates a continuous modality context, which dy-
namically produces modality-specific parameters. These
parameters are then used to adjust the modality-agnostic
model, enabling accurate re-identification of diverse med-
ical modalities with a single model.

Furthermore, we integrate medical priors into our model
by aligning it with pre-trained medical foundation models
(MFMs), in terms of the inter-image key feature differences.
The key features are obtained by attending to the local fea-
tures using a group of learnable modality-specific query to-
kens. Compared to the single-image feature, the inter-image
differences are more consistent with the ReID, which tar-
gets discriminating the identity relation of multiple images.

We compare our model, MaMI, against 25 foundation
models and 8 large multi-modal language models across
11 medical image datasets, encompassing a wide range of
modalities and body organs, establishing a thorough bench-
mark for the MedReID problem. Our model consistently
outperforms the others. Additionally, we deploy our ap-
proach in real-world applications. First, historical data-
augmented diagnosis, i.e., MaMI retrieves personalized his-
torical patient data from unorganized datasets, significantly
enhancing the accuracy of current medical examinations.
Second, privacy protection, i.e., MaMI detects subtle visual
cues that reveal patient identity and removes them from im-
ages before data sharing, ensuring privacy while preserving
medical utility. Our contributions are:

• We propose the first all-in-one medical re-
identification model, termed MaMI, capable of
re-identifying medical images of various modalities
using a single model. We build a thorough and fair
benchmark for this novel problem.

• We propose a novel Continuous modality-based
Parameter Adapter, which dynamically produces
modality-specific parameters, and enables the model
to adaptively re-identify different modalities.

• Our model inherits the medical priors from medical
foundation models, while adapting them to the ReID
problem by inter-image difference modeling.

• We showcase that MaMI can benefit real-world med-
ical applications, e.g., history-augmented healthcare
and medical privacy protection.

2. Related Work
Medical Image Re-Identification (MedReID). Numerous
medical models focus on automatically diagnosing med-
ical images [6, 90] or retrieving the images by disease
features [17, 39]. There are few works focusing on the
MedReID problem. Heinrich et al. [29] utilized low-level
image descriptors such as Sobel [109] to detect patient iden-
tity from head CT images. Packhäuser et al. [56] and
Ganz et al. [21] re-identify patients from chest X-ray and
histopathology images, respectively. However, all these ap-
proaches are limited to a single modality and cannot benefit
from large-scale data of various modalities.

Object Re-Identification. Most approaches [98] focus
on identifying faces [15, 59, 78, 110], persons [9, 19, 27,
28, 31, 33, 42, 49, 50, 84, 95, 100], animals [36, 64], and
vehicles [40, 111, 113]. However, there are few methods
dedicated to medical images.

Medical Foundation Models. Early, there are amounts
of dedicated models for independent tasks, such as video
recognition [12, 18, 70, 72, 73, 75–77], low-level image
processing [71, 74, 93, 99, 104, 106–108], and medical
image analysis [7, 8, 69] tasks. Later, foundation mod-
els [43, 55] are becoming more and more popular, due
to their strong generalization capability and strong perfor-
mance. Recently, numerous medical foundation models,
such as X-ray models [81, 83, 97], fundus image mod-
els [115][66], and CT models [25, 91], have been contin-
uously proposed. We are the first to adapt their medical
priors to the MedReID problem.

Medical Image Domain Adaptation. Medical image
domain adaptation addresses domain shifts in imaging data,
improving model generalization across different clinical
settings [23, 101, 105]. However, these methods mainly fo-
cus on diagnosis tasks, how to devise a highly generalizable
medical ReID model is left blank.

3. Approach
3.1. Overview
As outlined in Figure 2, we introduce two key ideas to en-
able a single model to identify various-modality medical
images, in an all-in-one manner. First, we achieve modality-
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Figure 2. Overview of the proposed all-in-one MedReID framework, namely Modality-adaptive Medical Identifier (MaMI). (a) We intro-
duce a Continuous Modality-based Parameter Adapter (ComPA) to dynamically adjust a modality-agnostic model into an input modality-
specific model at runtime. (b) The adjusted model extracts the identity-related visual features from the input medical images. (c) During the
optimization, we also transfer the rich medical priors from the (d) medical foundation models (MFMs) to the MedReID task, by aligning
the inter-image key differences. We illustrate with X-ray images, though our method also supports other modalities.

adaptive feature extraction, by upgrading a modality-
agnostic model to a modality-specific model at runtime.
Second, we optimize the model to focus more on medically-
relevant regions, by transferring the medical priors within
medical foundation models to the MedReID task.

3.2. Modality-Adaptive Feature Extraction
We leverage a typical Transformer network, ViT-Base [16],
as the backbone for feature extraction. ViT consists of sev-
eral attention blocks and feed-forward networks (FFNs).
During runtime, we dynamically adjust the network to cater
to the current input image.

Motivation. We try to fine-tune a pre-trained ViT model,
namely, CLIP [63], towards the MedReID task with two
strategies, (1) Single-modality, which separately fine-tunes
a specialized model for each modality, and (2) Multiple-
modality, which combines the data of all modalities and
fine-tunes a unified model. The results are shown in Table 1.
Compared to single-modality, the multiple-modality strat-
egy shows improvement in eye fundus modality (76.88% →
82.48%), while demonstrating a decrease in X-ray modal-
ity (94.21% → 92.30%). This indicates that using com-
bined data to learn a unified model benefits some modali-
ties due to more training data, while also limiting the upper
bound of some other modalities. We argue that the reason is
that, naively putting multiple modalities into a single model,
mostly learns the modality-agnostic knowledge, neglecting
the modality-specific knowledge.

Continuous modality-based Parameter Adapter
(ComPA). To address the above challenge, we propose

Method X-ray (%) Fundus (%)
CLIP baseline 33.10 41.14

Single-modality 94.21 76.88
Multiple-modality 92.30 82.48

Continuous-modality (Ours) 96.89 85.71

Table 1. Comparison of different modality handling strategies. We
adopt the MIMIC-X [38] and Mess2 [14] datasets to evaluate the
performances on X-ray and eye fundus images.

the ComPA to amend the modality-agnostic model with
input-modality-specific model parameters, as shown in
Figure 2 (b). This effectively decouples the learning of
modality-agnostic and modality-specific knowledge.

Rather than employing categorical modality labels, such
as 0/1/2 for X-ray/Fundus/CT, ComPA introduces a novel
continuous modality representation to handle the modality
specificity, as shown in Figure 2 (a). Specifically, given
an input image xi ∈ R3×H×W , where H and W denote
its spatial scales, we convert each 16 × 16 patch into local
modality contexts by a Multilayer Perceptron (MLP), which
are averaged to obtain the global modality context.

To improve generalization for images outside the train-
ing domain, instead of directly employing the above un-
constrained modality context, we constrain the underlying
modality representations to be derived from a set of basis
centers. Specifically, another MLP transforms the global
context into a modality probability vector w ∈ RL, where
L = 32 denotes the number of all pseudo modalities. Note
that this number significantly exceeds the typical number of
medical modalities, such as CT and X-ray, due to the di-
verse imaging styles within a single modality class. For
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example, variations in X-ray machines and settings can
result in numerous imaging styles [5]. wi is then used
to compute a weighted sum of learnable modality bases
Ω ∈ RL×768, producing the ultimate continuous modality
feature Mi = wiΩ ∈ R768. Ω is randomly initialized and
learned with other components in an end-to-end manner.

Given Mi, two MLPs, named Att-PNet and FFN-PNet,
generate parameters for the attention and FFN layers of the
ViT model, respectively. Nevertheless, directly predicting
these parameters would require an infeasibly large number
of parameters. For instance, for a ViT-Base model with 86M
parameters, given the dimension of Mi is 768, the last layer
of the above two PNets would include 86 × 768M ≈ 66G
parameters, which is intractable. To mitigate this issue, we
predict low-rank parameters [32], instead of the full param-
eters. Meanwhile, we implement the last linear layer of two
PNets in a group-wise manner [94], for further reducing the
parameter number and computational cost.

The above-generated parameters are merged into the
modality-agnostic network in a layer-wise manner. Follow-
ing LORA [32], we expand the generated low-rank param-
eters to match the shape of the ViT layers and add them to
the corresponding layer parameters.

Our approach shares similarities with recent Mixture-of-
Expert (MOE)-LORA paradigms [92, 96], which dynami-
cally weights a series of LORA modules. However, there
are two fundamental differences. Goal Difference: We aim
to perceive the input medical image modality by operating
on low-level patch features, whereas MOE-LORA methods
utilize high-level semantic features to select different LO-
RAs for various semantic tasks. Mechanism Difference:
MOE-LORA weights a series of LORA modules fixed in
runtime, while our approach directly generates LORA pa-
rameters at runtime. This makes our approach fitting the
current input image more precisely.

Feature Extraction. The input image xi is fed into
the above merged network to produce the feature fi ∈
R768×h×w, where h = H/16 and w = W/16 denote
the feature resolution. fi is then averaged into the global
identity feature for identity comparison. For multi-slice
modalities, such as CT/MRI scans, we extract feature maps
from each slice in the scan and further average them as the
scan-wise feature. While more advanced inter-slice opera-
tions [57][45] could be employed, we opt for the average
operation to maintain the simplicity and efficiency.

3.3. Learning Rich Medical Priors from MFMs
Motivation. With the MedReID loss alone as the learn-
ing objective, the model may be biased towards the triv-
ial textures, such as machine noises. In contrast, medical
foundation models (MFMs) pre-trained on massive medical
images focus on anatomical characteristics, which is more
related to the patient intrinsic identity. This motivates us to

transfer the rich medical priors within MFMs to our model.
Considering that local features contain more fine-grained

information than global features, we use the local feature
map of MFMs to guide our model. Furthermore, to close
the domain gap between the pre-training task of MFMs and
our MedReID task, we propose two strategies, (1) selecting
the identity-related key features from the local features, (2)
learning the inter-image differential features, instead of the
single-image features, as shown in Figure 2 (c).

Key Feature Selection. Given the modality feature Mi

of the image xi, we use a three-layer MLP to map it into
N query tokens Oi = {O1

i ,O
2
i , . . . ,O

N
i }, where N de-

notes the query number. The above tokens are modality-
specific, enabling flexible handling of key structures in dif-
ferent modalities. For example, key features for Chest X-
ray images include ribbon shape, heart size, and clavicle
shape, while key features for fundus images include optic
disc shape and vessel patterns, etc.

For the nth query token On
i ∈ Rd, we calculate its atten-

tion map An
i with the image feature map fi,

An
i = Softmax

(
On

i Linear(fi)√
d

)
∈ Rh×w, (1)

where the feature dimension d is 768, Linear denotes a lin-
ear transformation. Then, An

i attentively pools the feature
map fi, producing the nth key feature Pn

i =
∑h×w

j=o An
i [o] ·

fi[o], where o denote the spatial position index. For the fea-
tures from the MFM, we first choose the MFM from the
MFM sets, based on the modality of xi. Then, the nth key
feature is selected in a similar manner, denoted as Qn

i .
Feature Difference Alignment. Considering that the

MedReID task requires modeling the subtle differences be-
tween different images, we propose to align the inter-image
feature difference from our model to those of MFM, instead
of directly aligning singe-image feature. Given two medi-
cal images, xi and xj , after performing the above feature
selection procedures, the nth key features from our model
are denoted as Pn

i and Pn
j , while those from the MFM are

denoted as Qn
i and Qn

j . Then, we could use a simple sub-
traction operation to calculate the nth feature differences,
which are given by un = Pn

i −Pn
j and vn = Qn

i −Qn
j , re-

spectively, for our model and the MFM, respectively. Then,
we adopt the contrastive loss to align the above features,

Lmed−align =
1

N

N∑
n=1

− log(S(un,vn)), (2)

where

S(un, vn) =
exp(un · vn/τ)

exp(un · vn/τ) +
∑

k∈N exp(un · vk/τ)
, (3)

where N denotes negative samples, which include non-nth
feature differences of the image pair (xi,xj), as well as all
feature differences from other image pairs. τ denotes the
temperature, which is set to 0.07, following MoCo [10].
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3.4. Framework Training
To enable our model to discriminate the medical images
from different patients, while also of rich medical priors,
we adopt the following loss function:

L = Lid−classify + Ltri︸ ︷︷ ︸
Identity terms

+λLmed-align︸ ︷︷ ︸
Medical term

, (4)

where Lid−classify is the cross-entropy loss for patient ID
classification, Ltri denotes the triplet loss with soft margin,
following [27]. λ denotes the balancing weight.

4. Experiments
4.1. Model Details
Implementation Details. During training, we apply ran-
dom flipping, random cropping, random erasing [112], and
random slice sampling for data augmentation. Specifically,
random flipping involves horizontal and vertical flips, while
random cropping randomly crops the patches of size 224 ×
224 from the original image. Random slice sampling de-
notes randomly selecting 8 slices of the CT scans. For each
training batch, all images belong to the same modality. λ
is set to 0.01. The rank number of the generated parame-
ters is set to 16. The group number of the last linear layer
of FFN-PNet and Att-PNet is set to 64. At test time, we
resize the shorter side of the images to 256 and then center-
crop the middle 224×224 region. For multiple-slice scans,
we uniformly sample 8 slices. The initial learning rate is
set to 1e-5 and is gradually decayed with the cosine an-
nealing strategy [48]. The total number of training steps is
300,000. The mini-batch size is 196 for single-image medi-
cal imaging, while 24 for multiple-slice medical sequences.
We utilize the AdamW optimizer [47] implemented in Py-
Torch [60] with CUDA support. The values of β1 and β2 are
set to 0.9 and 0.999, respectively. The weight decay is set
to 0.05. The entire training process takes about two days on
a machine equipped with four NVIDIA RTX 4090 GPUs.

Medical Foundation Models. For X-ray modality, we
adopt the Med-Unic [81, 82]. For CT modality, we adopt
the CT-CLIP [24, 25]. For fundus image modality, we adopt
the RetFound [24, 115]. For histopathology modality, we
adopt the CHIEF [86, 87].

Evaluation Metrics. Following [27], we adopt the
cumulative matching characteristics (CMC) [4] at Rank-1
(R1), i.e., CMC-R1, to evaluate the ReID performance.

4.2. Datasets
Training and Internal Validation Sets. We re-organize the
public datasets with multiple images per patient, excluding
those with less than two images, to ensure each patient has
at least one query and target images for re-identification.
The re-organized datasets include, (1) 111333 X-ray im-
ages from MIMIC-X [38]. (2) 2460 lung CT scans

from CCII [102]. (3) 211 abdominal CT scans from
HCC-TACE [53]. and (4) 35126 eye fundus images
EyePACS (5) 6068 eye fundus images from ODIR [1].
(6) 542 histopathology images from LUAD [13]. The
train/validation splitting protocols and dataset details are
provided in the supplementary material.

External Validation Sets. We also evaluate our model
on six external validation sets, the results of which can re-
flect the model’s generalization capability. (1) To build ex-
ternal X-ray set, we sample 6569 images of 1000 patients
from Chest-X [85]. (2) To build abdominal CT set, we
sample 239 CT scans of 70 patients from KIRC [3]. (3) As
another abdominal CT set, we sample 194 CT scans of 56
patients from LIHC [3]. It is worth mentioning that a lit-
tle proportional of LIHC contains the MRI images. (4) To
build brain MRI set, we use all 55 MRI scans of 20 patients
from OASIS2 [51]. (5) To build eye fundus image set, we
use 700 fundus images of 350 patients from Mess2 [14]. (6)
As another eye fundus image set, we use all 521 images of
144 patients from GRAPE [34].

4.3. Results
MedReID Benchmark. As shown in Table 2, we evaluate
various visual foundation models, visual-language founda-
tion models, Person-ReID model, medical foundation mod-
els, and single-modality MedReID models. To fully release
their potential, we fine-tune some representative models us-
ing our training datasets, ensuring a fair comparison.

For visual foundation models, contrastive learning ap-
proaches like MoCoV3 and DINOv2 achieve decent per-
formance, with accuracies of 84.79% and 91.52% on the
CCII (Lung-CT) dataset, respectively. In contrast, masked
learning models such as MAE and MaskFeat perform much
worse, achieving only 68.33% and 19.95% on the same
dataset. However, after fine-tuning for the MedReID task,
MAE† outperforms MoCoV3† on most datasets. These
findings align with previous research [26, 54], i.e., con-
trastive features are more linearly separable when being di-
rectly deployed, while MAE-style models excel after adap-
tation due to their more powerful representations.

For visual-language foundation models, CLIP consis-
tently outperforms other methods by a substantial margin,
achieving 93.02% accuracy on CCII and 70.00% on OA-
SIS2. In contrast, Align and BLIP perform much worse,
with accuracies below 20% on OASIS2. These results high-
light that CLIP, trained on approximately one billion image-
text pairs, learns highly generalizable visual features. After
further tuning, the fine-tuned CLIP† shows another signif-
icant improvement, surpassing both MoCoV3† and MAE†

models by a large margin. For example, on the Chest-X
dataset, CLIP†, MoCoV3†, and MAE† achieve, 73.00%,
64.00%, and 68.60%, respectively.

Person ReID method TransReID has generally produced
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Method
Dataset

MIMIC-X Chest-X CCII HCC-TACE KIRC LIHC OASIS2 Mess2 ODIR GRAPE LUAD
X-Ray X-Ray Lung-CT Ab-CT Ab-CT Ab-CT Br-MRI Fundus Fundus Fundus Histo

Visual Foundation Models
ImageNet-Sup [16] 34.10 39.90 84.04 50.00 47.14 26.78 47.99 47.14 32.70 44.30 29.13
MoCoV3 [10] 45.10 46.50 84.79 45.24 46.43 30.36 50.00 56.86 42.26 59.93 47.24
DINOv2 [54] 36.40 37.60 91.52 50.00 42.86 28.57 46.00 36.00 23.72 41.37 42.52
BEITv2 [61] 35.10 35.30 89.53 52.38 25.00 30.36 70.00 52.00 37.89 54.40 45.67
CAE [11] 36.20 32.40 71.32 45.24 28.57 21.43 40.00 41.43 28.34 50.16 47.24
MAE [26] 23.80 23.10 68.33 35.71 32.14 23.21 15.99 47.14 23.15 33.55 30.71
MaskFeat [89] 9.20 11.60 19.95 28.57 17.86 14.29 10.00 20.00 8.32 16.94 14.17
MoCoV3† 84.20 64.00 92.52 71.43 46.43 33.93 56.00 70.99 65.90 67.43 51.97
MAE† 88.20 68.60 93.27 76.19 57.14 41.07 60.00 72.57 61.12 60.91 45.67
Visual-Language Foundation Models
Align [35] 0.40 0.90 43.39 4.76 17.86 12.50 0.00 13.71 3.38 7.82 5.51
BLIP [46] 3.10 4.80 79.05 21.42 25.00 14.29 10.00 33.43 10.54 17.59 24.41
CLIP [63] 33.10 31.60 93.02 45.24 35.71 28.57 68.00 41.14 30.15 50.81 46.46
CLIP† 92.30 73.00 93.52 69.05 57.14 51.79 68.00 73.71 66.06 60.52 40.94
Object ReID Model
TransReID [27] 29.30 33.90 88.78 33.33 39.29 26.79 69.99 42.29 30.89 36.81 30.71
TransReID† 86.80 68.60 93.52 80.95 47.14 39.29 64.00 74.00 65.52 60.36 54.33
Medical Foundation Models
BioMedClip [103] 25.20 24.00 82.04 40.48 32.14 26.79 32.00 23.14 19.44 27.68 33.07
RetFound [115] 12.10 15.00 61.85 35.71 39.29 16.07 15.99 53.71 28.83 35.50 25.98
CT-CLIP [25] 3.80 5.30 87.03 9.52 33.14 13.51 5.99 33.14 17.79 16.61 16.54
Med-Unic [81] 48.70 44.90 77.06 33.33 32.14 25.00 23.99 27.71 21.75 35.83 28.35
BioMedClip† 20.10 19.00 83.04 52.38 25.00 26.79 36.00 28.57 18.62 27.69 42.52
RetFound† 54.80 42.80 92.27 66.67 28.57 35.71 50.00 74.14 66.70 61.10 37.80
CT-CLIP† 19.70 19.70 94.04 47.62 21.43 28.57 37.99 29.71 19.93 29.97 42.52
Med-Unic† 92.90 74.30 69.08 57.14 39.29 35.71 41.99 24.57 16.39 22.15 25.20
Modality-specialized MedReID Models
Packhäuser et al. [56] 92.42 88.21 68.63 45.24 35.7 32.11 36.02 23.74 15.18 23.77 29.19
Ganz et al. [21] 11.40 11.90 53.62 33.33 39.29 33.93 28.00 27.43 22.65 25.08 56.76
All-in-One MedReID Models
Ours 96.89 91.49 95.01 88.09 82.68 76.82 85.00 85.71 71.34 71.00 68.75

Table 2. Comparison of different approaches on medical image re-identification in terms of CMC-R1. † indicates the model is further tuned
on the medical datasets same as ours. MIMIC and ChestX indicate the MIMIC-CXR and ChestX-Ray14 datasets. ‘Ab-’ and ‘Br-’ denotes
the ‘Abdominal’ and ‘Brian’. All models adopt the ViT-Base [16] architecture with a similar parameter number, for a fair comparison. The
best and the second best results are marked with gray bold and gray , respectively.

suboptimal results when applied to medical images, largely
attributed to the substantial domain gap between person im-
ages and medical images. After fine-tuning, TransReID†

improves somewhat, but still lags far behind CLIP†.

For medical foundation models, BioMedClip performs
much inferior to CLIP, due to the smaller training dataset
PMC-15M. Specialized models like Med-UniC achieve de-
cent performance in their training modality, such as 48.70%
accuracy on X-ray images, but perform poorly on other
modalities like fundus and CT. This is similar to CT-CLIP
and RetFound. After fine-tuning, CT-CLIP†, RetFound†,
and Med-UniC† show a further performance boost on
the modalities consistent with their pre-training dataset,
demonstrating that their pre-trained medical priors are ben-
eficial for the ReID task, but perform unsatisfactorily on
other modalities. For example, RetFound† achieves 74.14%
on Mess2 (fundus), outperforming the strong CLIP†, but
only 42.80% on Chest-X (X-ray).

Single-modality MedReID methods [21, 56] fail to gen-
eralize to the modalities out of the training scope. For in-
stance, the X-ray ReID model [56] attains 92.42% accuracy

on MIMIC-X (X-ray) but only 15.18% on ODIR (fundus).
In contrast, we outperform them by a large margin, due to
learning and combining identity cues from several diverse-
modality training sources. Additionally, we surpass fine-
tuned medical foundation models, such as RetFound† and
Med-UniC†, by inheriting and adapting their medical pri-
ors to the MedReID problem. Our approach also surpasses
various visual foundation models, achieving state-of-the-art
performance across all modalities and datasets.

We benchmark eight large visual-language model on the
medical ReID task. The results are detailed in the sup-
plementary material. Our approach also demonstrates ob-
vious superiority, achieving 98.80% accuracy on Chest-X,
while QWen-VL-Max and GPT-4o only achieves 76.80%
and 62.50%, respectively.

Finally, we study the cross-modality capability of our
model. We evaluate models on a licensed private dataset of
1814 respiratory patients with paired Chest X-ray and CT
images. Our all-in-one model learns to associate patient ID
across modalities, achieving 87.28% accuracy (Tab. R1),
outperforming single-modality-only models. This suggests
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Figure 3. Impact of the historical image number on diagnosis out-
come. We use the proposed MaMI to collect the historical image,
as the auxiliary information, to aid the diagnosis.

the all-in-one paradigm benefits cross-modality ReID. The
fine-tuning further improves the result to 94.38%.

MaMI(X-ray only) MaMI(CT only) MaMI(Ours) MaMI(Tuned)
76.42% 78.19% 87.28% 94.38%

Table 3. Cross-modality ReID: Using X-ray images to retrieve
matching CT images of the same patient, on the test set of the
respiratory dataset. MaMI (Ours) refers to our all-in-one model
trained without cross-modality image pairs. MaMI (Tuned) de-
notes fine-tuning on the dataset’s cross-modality image pair.

Application I: Longitudinal Personalized Healthcare.
Further, we consider a realistic scenario where patients’ past
medical images are not under good management. Given the
current image, we use MaMI to retrieve relevant historical
images and combine them with the current image for di-
agnosis. Notably, only the images themselves are utilized,
without any historical labels. To integrate features from
multiple historical images, we employ a simple MLP.

As shown in Figure 3 left, the enhancement through
historical image retrieval boosts diagnostic accuracy, due
to more longitudinal observations. Specifically, when
retrieving five historical images, the accuracy increases
from 77.34% to 80.12%, a gain of 2.78%. This demon-
strates that MaMI can effectively enhance clinical util-
ity by retrieving relevant historical data from unstructured
archives. We further compare different image retrieve ap-
proaches, as shown in Figure 3 right. Our approach con-
sistently outperforms the appearance(DINOv2 [54])-based,
symptom(Med-Unic [81])-based, and X-ray-specialized
ReID (Packhäuser et al. [56]) methods.

MaMI MAE† CLIP† Med-Unic† [56]
Original 91.49% 68.60% 73.00% 74.30% 88.21%
Protected 21.23% 14.52% 11.86% 13.94% 15.68%

Table 4. MedReID on the protected Chest-X dataset. The medical
visual cues are detected by our MaMI model, while the privacy
removal images can resist attacks from other ReID models. † in-
dicates the model is further tuned on the medical datasets same as
ours, for a fair comparison.

Application II: Privacy Protection. We adopt a sim-
ple U-Net [65] to predict identity-related visual cues and
remove them from the original images. The training objec-
tive is to minimize the identity similarity distance between

Model ComPA MFMs Internal Validation External Validation
MIMIC-X HCC-TACE Chest-X GRAPE

Mbase ✗ ✗ 92.29 69.04 86.21 66.51
Mcompa ✓ ✗ 96.60 80.95 89.35 69.45
Mours ✓ ✓ 96.89 88.09 91.49 71.00

Table 5. Ablation study on the two core designs, including the
continuous-modality parameter adapter (ComPA) and the medical
prior learning from a bag of medical foundation models (MFMs).

the identity-removed image and the original image, while
maximizing their medical feature similarity. Details are in
the supplementary material. The identity-removal U-Net is
trained on the MIMIC-X dataset and evaluated on the Chest-
X dataset. As shown in Table 4, the protected images resist
re-identification attacks from various ReID models. We also
train disease classification models on both the original and
privacy-protected datasets. The accuracies are 81.24% and
80.67%, respectively, indicating that the privacy-protected
images preserve the data utility well.

4.4. Model Analysis

Framework-level Ablation Study. As shown in Table 5,
the baseline model Mbase, which naively fine-tunes the CLIP
model on our multi-modality training dataset, results in the
poorest performance. Introducing the modality-adaptive
component ComPA, the resulting Mcompa achieves substan-
tial gains on various modalities, i.e., 4.31% and 11.91%
gains on MIMIC-X (X-ray) and HCC-TACE (CT), due to
handling inter-modality heterogeneity.

Further alignment with Medical Foundation Models
(MFMs) to enrich the model’s medical prior, resulting in
Mours, yields additional performance gains, especially in
data-scarce situations. On the HCC-TACE dataset, which
contains only 127 training samples, performance increases
from 80.95% to 88.09%. This demonstrates that MFMs
mitigate the data scarcity issue common in medical imag-
ing. On external datasets (Chest-X and GRAVE), Mours sur-
passes Mcompa by 2.14% and 1.55%, respectively. The good
results on external validation datasets highlight the general-
izability of features derived from MFMs.

In summary, both ComPA and MFM alignment are cru-
cial. The ComPA improves overall performance on vari-
ous modalities, while MFM alignment mitigates the data-
scarcity problem and enhances generalization capability.

Ablation Study on ComPA. We further investigate if all
designs within ComPA are necessary. As shown in Table 6,
without considering any modality specificity, the baseline
model Mmod-no achieves 92.36% and 86.42% on MIMIC-X
and Chest-X datasets, respectively.

With the discrete modality labels, such as X-ray as 0,
Lung CT as 1, Abdominal CT as 2, etc, as the input con-
dition, the produced Mmod1 substantially improves upon
Mmod-no by 1.45% on Chest-X, proving that modality in-
formation is critical for a unified MedReID model. Further
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Model Adaptive Modality Codebook MIMIC-X Chest-X
Mmod-no ✗ - - 92.36% 86.42%
Mmod1 ✗ Discrete - 94.67% 87.87%
Mmod2 ✓ Continuous ✗ 96.78% 90.12%
Mours ✓ Continuous ✓ 96.89% 91.49%

Table 6. Ablation study on ComPA. All models are incorporated
with the Lmed−align loss item for rigorous ablation.

Figure 4. Left: t-SNE map of the learned continuous modality.
Right: Impact of the code number of the codebook within ComPA.

Rank 8 16 32
Chest-X 85.56% 91.49% 91.50%

Group 32 64 128
Chest-X 91.45% 91.49% 90.52%

Table 7. Impact of (left) rank number of the generated parameters,
and (right) group number of the parameter-generation layers.

introducing instance-adaptive continuous modality design,
Mmod2 surpasses Mmod1 by another 2.11% on MIMIC-X,
indicating that the continuous design better captures data
nuances. The introduction of codebook design leads to fur-
ther improvements, particularly on the external validation
set Chest-X (+1.37%). This suggests that the codebook en-
hances the model’s out-of-domain generalizability.

Next, we visualize the learned instance-adaptive modal-
ity features by t-SNE[79]. Figure 4 left shows a clear sepa-
ration between different modalities (MIMIC-X and Mess2),
while the same modality datasets (Mess2 and OIDR) cluster
closely. We observe that LIHC contains some outliers, as a
small proportion of LIHC cases are abdominal MRI scans
instead of CT scans. Notably, our model autonomously
groups OASIS2 MRI images, despite not training with the
brain-MRI data, underscoring the high robustness of our
modality representation. Then, we train different variant
models by tuning the codebook size. As shown in Figure 4
right, a small code size such as 8 severely reduces perfor-
mance on all datasets (96.89% → 95.21% for MIMIC-X
and 91.49% → 89.43% for Chest-X), while a large code-
book size such as 128 mainly degrades the model general-
izability, i.e., 91.49% → 90.76% on external Chest-X.

We further investigate the impact of other ComPA hyper-
parameters. As shown in Table 7, a small rank constrains
model representation, while ranks larger than 16 lead to per-
formance saturation and increased computational cost. For
group number, performance is stable at 32 and 64 but de-
grades at 128 due to much-reduced parameters of FFN- and
Att-PNet. For λ, our model achieves very similar perfor-
mance for 0.1 and 0.01 (91.32% v.s. 91.49% on Chest-X),
but inferior performance 89.82% for 0.001, due to the too

Model Feature Inter-Image Relation Operator Chest-X
Mmed-no - - - 88.54%
Mmed1 Global - - 88.87%
Mmed2 Local ✗ - 89.10%
Mmed3 Selected ✗ - 90.02%
Mmed4 Selected ✓ MLP 91.22%
Mours Selected ✓ Subtraction 91.49%

Table 8. Strategies of learning medical priors from MFMs.

loose medical prior regularization.
Learning Strategy of Medical Priors. As shown in Ta-

ble 8, compared to the baseline model Mmed-no (no medi-
cal priors), introducing global medical priors (Mmed1) yields
minimal gains, as global features fail to capture subtle iden-
tity information. Naive local priors (Mmed2) marginally sur-
pass Mmed1 by 0.23%. After the modality-specific feature
selection operation, feature semantics is significantly im-
proved, reflected by a substantial gain of 0.92%.

Replacing single-image feature alignment with inter-
image feature relation alignment, where the relation fea-
ture is obtained by concatenating the features from differ-
ent images and feeding them into a three-layer MLP, further
boosts performance by 1.20% in Mmed4. Finally, substitut-
ing the MLP with a subtraction operation in Mours enforces
the model’s focus on subtle image differences, achieving a
final performance of 91.49%. This proves that modeling the
inter-image relationship is crucial for the ReID problem, re-
gardless of the specific relationship operator. Both the MLP
and our subtraction operation achieve good results.

Model Complexity. With batch size 128, the inference
time of our model is 151.56 ms on a machine with an
NVIDIA 4090 GPU, compared to 141.21 ms for the vanilla
ViT-Base. The ComPA module only additionally consumes
10ms, as it primarily consists of several simple MLPs to
compute modality-specific parameters. Given its brought
substantial result gains, this minor increase in latency is jus-
tified. Further, the MFM alignment procedure incurs no in-
ference cost, as it only regularizes the training procedure.

5. Conclusion
In this paper, we have introduced a comprehensive bench-
mark and a unified model for a novel MedReID problem,
covering a wide range of medical modalities. We have pro-
posed a modality-adaptive architecture to enable a single
model to handle diverse medical modalities at runtime. Ad-
ditionally, we integrate medical priors into our model by
exploiting the pre-trained medical foundation models. Our
model substantially outperforms all previous approaches.
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