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Abstract

Dataset distillation has become a popular method for
compressing large datasets into smaller, more efficient rep-
resentations while preserving critical information for model
training. Data features are broadly categorized into two
types: instance-specific features, which capture unique,
fine-grained details of individual examples, and class-
general features, which represent shared, broad patterns
across a class. However, previous approaches often strug-
gle to balance these features—some focus solely on class-
general patterns, neglecting finer instance details, while
others prioritize instance-specific features, overlooking the
shared characteristics essential for class-level understand-
ing. In this paper, we introduce the Non-Critical Region
Refinement Dataset Distillation (NRR-DD) method, which
preserves instance-specific details and fine-grained regions
in synthetic data while enriching non-critical regions with
class-general information. This approach enables models
to leverage all pixel information, capturing both feature
types and enhancing overall performance. Additionally, we
present Distance-Based Representative (DBR) knowledge
transfer, which eliminates the need for soft labels in train-
ing by relying on the distance between synthetic data pre-
dictions and one-hot encoded labels. Experimental results
show that NRR-DD achieves state-of-the-art performance
on both small- and large-scale datasets. Furthermore, by
storing only two distances per instance, our method deliv-
ers comparable results across various settings. The code is
available at https://github.com/tmtuan1307/
NRR-DD.

1. Introduction
Dataset distillation, also known as dataset condensa-

tion [2, 21, 26, 27, 32], has gained considerable attention
as an effective method for compressing large datasets into
smaller, more efficient representations, while preserving es-
sential information critical for model training. By generat-
ing compact, high-quality data representations, dataset dis-

tillation reduces both storage requirements and computa-
tional costs associated with training on full-sized datasets
[5, 8, 17]. This compression is particularly valuable in
resource-constrained environments, such as edge devices or
memory-limited systems, where training on large datasets is
often impractical [1,9,23]. The primary goal of dataset dis-
tillation is to achieve high model performance while dras-
tically reducing the amount of data that needs to be stored
and processed [26]. During this process, synthetic data in-
stances are generated to capture the key properties of the
original data, enabling models to generalize effectively us-
ing only a fraction of the dataset [2, 32].

In recent years, several methods have been proposed to
address this task, including Gradient Matching [10,32], Dis-
tribution Matching [31,33], Trajectory Matching [2,6], and
more recent approaches for large-scale datasets [3, 21, 27].
However, designing an efficient distillation method remains
a challenge, as it must capture both class-general features,
which represent shared patterns, and instance-specific fea-
tures, which highlight unique, fine-grained details. Previ-
ous methods often fall short by emphasizing one of these
feature types over the other. Approaches focusing on class-
general features [2,3,27,32,33] risk losing crucial instance-
specific information, which hinders fine-grained generaliza-
tion. Conversely, methods that prioritize instance-specific
features [7, 21] may neglect broader class patterns, leading
to suboptimal class-level representation. To address these
challenges, we introduce the Non-Critical Region Refine-
ment Dataset Distillation (NRR-DD) method, which con-
sists of three key stages:

(i) Critical-based Initial Data Discovery: This stage in-
volves selecting diverse and significant patches from
the original dataset, which are then combined to cap-
ture instance-specific features.

(ii) Non-Critical Region Refinement (NRR): In this
stage, we apply Class Activation Mapping (CAM)
[19, 34] to identify critical and non-critical regions in
the images. The model preserves the critical regions,
which contain fine-grained, instance-specific features,
while refining the non-critical regions with more class-
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general information. By balancing these two feature
types, NRR enhances the dataset’s comprehensiveness,
improving both generalization and performance.

(iii) Knowledge Transfer via Relabeling: After training,
the synthetic images are relabeled and used to transfer
knowledge to a student model.

Additionally, recent research [3, 21, 27] has highlighted
the importance of soft labels generated by a pretrained
model in enhancing dataset distillation performance, par-
ticularly for large-scale, high-resolution datasets like Ima-
geNet1k. However, this approach incurs substantial mem-
ory overhead; for instance, with 200 images per class (IPC)
in ImageNet1k, it can require over 120 GB of storage [27].

To address this challenge, we propose a novel Distance-
Based Representative (DBR) knowledge transfer technique
that eliminates the need for traditional soft labels. DBR em-
ploys a distance-based approach to measure the discrepancy
between predictions on synthetic data and one-hot encoded
labels, simplifying the training process and reducing label
storage requirements. For example, our method requires
only 0.2 GB to store ImageNet1k (200 IPC), achieving a
500× reduction in storage while still delivering compara-
ble results. By integrating DBR with NRR, our method
enhances dataset distillation by capturing essential features
while minimizing training complexity. This results in more
compact and efficient datasets, well-suited for a variety of
training environments. Figure 1 illustrates the differences
between our method and two popular large-scale dataset
distillation techniques, RDED [21] and SRe2L. It is evident
that RDED focuses on instance-specific features without re-
finement, while SRe2L updates all pixels to capture class-
general features, often at the expense of fine-grained details.
In contrast, our NRR-DD method effectively preserves fine-
grained details by updating only non-critical pixels, while
still capturing class-general features.

Contributions. Our major contributions are summa-
rized as follows:

• We introduce the Non-Critical Region Refinement
Dataset Distillation (NRR-DD) framework, which
consists of three key stages: Critical-based Initial Data
Discovery (CIDD), Non-Critical Region Refinement
(CRR), and Relabeling. This approach generates syn-
thetic data that captures both instance-specific fine-
grained features and class-general patterns, signifi-
cantly enhancing performance.

• We propose the Distance-Based Representative (DBR)
method for knowledge transfer, eliminating the need
for soft labels and drastically reducing memory re-
quirements. Specifically, our method reduces storage
requirements by 500-fold compared to soft labels on
ImageNet1k, while recovering up to 80% of the full
performance (see Table 4).

• Experimental results demonstrate that our NRR
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Figure 1. Comparison of our method with two popular frame-
works, SRe2L [27] and RDED [21], for generating synthetic
datasets. RDED selects high-confidence, easily classifiable im-
ages, while our method focuses on low-confidence, harder-to-
classify samples, which helps reduce overfitting and improve
model accuracy. Additionally, RDED targets instance-specific fea-
tures without refinement, and SRe2L updates all pixels to capture
class-general features, often at the expense of fine details. In con-
trast, our NRR-DD method preserves fine-grained details while
capturing class-general features by updating only non-critical pix-
els.

method achieves state-of-the-art performance on both
small- and large-scale datasets. Additionally, by stor-
ing only two distances per instance, it achieves compa-
rable results across various settings.

2. Related Works
Dataset Distillation. Several dataset distillation methods
have been proposed recently [2, 3, 21, 27, 32, 33], which
can be classified into two main categories. The first cate-
gory, Class-General Feature-Based Methods, aims to cap-
ture class-wide features. For example, Gradient Match-
ing [10, 32] generates synthetic data by matching gradients
across all samples in a class, while Distribution Match-
ing [16, 31, 33] uses distribution prediction. Trajectory
Matching [2, 6] aligns training trajectories of original and
synthetic data, and SRe2L [27] recovers Batch Normal-
ization statistics to capture class-general features. The
second category, Instance-Specific Feature-Based Methods
[7, 21], includes approaches such as RDED [21], which ex-
tracts high-confidence patches and combines them to cre-
ate synthetic data, and MDiff [7], which utilizes a diffusion
model to generate fine-grained images tailored to the task.
However, each approach has its limitations: methods fo-
cused on class-general features risk losing crucial instance-
specific details, hindering fine-grained generalization, while
instance-specific methods may neglect broader class pat-
terns, leading to suboptimal class-level representation.
Large-Scale Dataset Distillation via Soft-Label Knowl-
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edge Transfer. Recently, several methods have been pro-
posed for large-scale datasets like ImageNet1k [3, 21, 27].
However, all of these approaches require storing the soft la-
bels of each augmented data point for training new student
models, leading to significant memory storage overhead.
For example, with ImageNet1k, storing the soft labels for
50 Images-Per-Class (IPC) requires approximately 30 GB,
and for 200 IPC, over 120 GB of storage [27]. This high-
lights the need for novel knowledge transfer techniques to
reduce memory storage requirements.

3. Proposed Method

In this section, we first provide the necessary preliminar-
ies for the Dataset Distillation Method (Section 3.1), fol-
lowed by an introduction to our Non-Critical Region Re-
finement Dataset Distillation (NRR-DD) framework. The
framework consists of three key stages: (i) Critical-based
Initial Data Discovery (Section 3.2), which selects diverse,
important patches to capture instance-specific features; (ii)
Non-Critical Region Refinement (Section 3.3), where
Class Activation Mapping (CAM) [19, 34] is employed to
identify and refine both critical and non-critical regions,
preserving fine-grained details while enriching non-critical
areas with class-general information; and (iii) Knowledge
Transfer via Relabeling (Section 3.4), in which synthetic
images are relabeled for knowledge transfer to a student
model. The overall architecture is shown in Figure 2, and
the pseudo code can be found in Algorithm 1.

3.1. Preliminaries

Consider a training dataset D = {(xi,yi)}mi=1, where
each input xi ∈ Rc×h×w represents a sample, and yi ∈
{1, . . . ,K} denotes its label. Let T = TθT be a pretrained
model on D. The goal of dataset distillation is to generate
a synthetic dataset D̃ = {(x̃i, ỹi)}ni=1 (with n ≪ m) that
retains the essential information from D, enabling a new
model S to achieve performance comparable to that of T .

3.2. Critical-based Initial Data Discovery

In this section, instead of using Gaussian noise to gen-
erate synthetic data for M, we propose training-free tech-
niques to more effectively select initial data. The motiva-
tion behind this approach is that real data inherently con-
tains fine-grained, instance-specific features, which are cru-
cial for training on large-scale datasets [7, 12–14, 21, 25].

Given the training dataset D = {(xi,yi)}mi=1, for each
data example (x,y) ∈ D, we first compute the class activa-
tion mapping (CAM) [34], producing a matrix C(x,y) for
the image x and class y:

C(x,y) =
∑
k

wy
kTk(x,y), (1)

Algorithm 1: NRR-DD
Input: Pre-trained model TθT , training set

D = {(xi,yi)}mi=1

Output: Synthetic dataset D̃ = {(x̃i, ỹi)}ni=1

1 Initial D̃ = ∅;
/* Critical-based Initial Data

Discovery */
2 foreach (x,y) ∼ D do
3 Calculate CAMs matrix C(x) for x;
4 Crop x into k patches {p1, . . . , pk};
5 Select the top t patches with the highest values in the

CAMs matrix;
6 Resize and store them in the patch pool P;

7 foreach p ∼ D do
8 Compute the score s(p) = Lce(p);

9 Select the top g = β × IPC patches with the lowest
scores;

10 for i = 1 to IPC do
11 Combine β patches into x̃, store (x̃, ỹ) in D̃

/* Non-Critical Region Refinement */

12 foreach (x̃org, ỹorg) ∼ D̃ do
13 for I iterations do
14 (x̃aug, ỹaug) ∼ D̃;
15 x̃mix = A(x̃org, x̃aug);
16 Update x̃org by Eq. 11;

17 ỹsoft = T (x̃mix);
18 dTorg = Lce(ỹsoft, ỹorg);
19 dTaug = Lce(ỹsoft, ỹaug);
20 Store (x̃org, (ỹorg, ỹaug), (d

T
org, d

T
aug)) in D̃;

/* Distance-Based Representative
Knowledge Transfer */

21 foreach (x̃org, (ỹorg, ỹaug), (d
T
org, d

T
aug)) ∼ D̃ do

22 Update new model S by Eq. 9;

where wy
k represents the kth weight in the final classification

head for class y, and Tk denotes the kth feature map from
the final layers of the model.

Next, the images x are randomly cropped to extract mul-
tiple patches, and the top t patches, which contain the high-
est values in the class activation map, are selected. These
patches are then resized to the full image size and stored in
the patch pool P . Since the selection is based on the high-
est values in the class activation map, the chosen patches
capture the most important information from the original
images.

For each patch p in P , we feed it into T to obtain a confi-
dence score s = T (p), which represents the highest predic-
tion probability. Unlike RDED [21], which selects patches
with the highest scores, we choose the top g = β × IPC
patches with the lowest scores, where β = 1, 4, 9, . . . de-
notes the number of patches used to form a single synthetic
image, and IPC specifies the number of images per class.
Notably, our strategy of selecting the lowest-scoring patches
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Figure 2. The architecture of our NRR-DD consists of three key stages: (i) Critical-based Initial Data Discovery (Section 3.2), which selects
patches with a high CAM ratio but low confidence level to capture instance-specific features; (ii) Non-Critical Region Refinement (Section
3.3), where CAM [34] is used to identify and refine both critical and non-critical regions, preserving fine-grained details while enriching
non-critical areas with class-general information; (iii) Knowledge Transfer, which aims to minimize the distance between S(x̃mix) (student
prediction) and T (x̃mix) (pretrained teacher prediction or soft label) by reducing the distance between dTorg and dSorg, as well as between dTaug

and dSaug. By storing only the two values, dTorg and dTaug, the new model can effectively mimic the performance of the pretrained one.

identifies the hardest-to-learn samples, while the method of
selecting patches with the highest values in the class activa-
tion map ensures that the patches contain important infor-
mation. This provides more opportunity and flexibility in
the next phase to further refine the chosen synthetic images.
Figure 1 visualizes the images selected by both the highest-
and lowest-scoring strategies.

Finally, similar to RDED [21], we construct each syn-
thetic image by combining β patches. The selected patches
are resized to 1/β of their original size and then combined
to create IPC synthetic images per class, all of which
are stored in the dataset D̃. Unlike RDED [21], our syn-
thetic images in D̃ are refined to include both fine-grained,
instance-specific features and class-general features.

3.3. Non-Critical Region Refinement

In contrast to RDED [21], our synthetic images in D̃ are
refined to incorporate both detailed, instance-specific fea-
tures and broader, class-general features. Specifically, for
each (x̃, ỹ) ∈ D̃, the image x̃ is refined according to the
following loss function:

LC = Lce(T (x̃), ỹ) + αbnLbn(T (x̃)), (2)

where αbn is a parameter.
In this framework, Lce represents the cross-entropy

(CE) loss, which aims to move x̃ with the smallest con-
fidence score into the teacher’s high-confidence regions.
The batch normalization regularization (Lbn) [22, 24, 27],
a standard DFKD loss, aligns the mean and variance at the

BatchNorm layer with its running mean and variance:

Lbn =
∑
l

(
∥µl(x̃)− µl∥+ ∥σ2

l (x̃)− σ2
l ∥
)
, (3)

where µl(x̃) and σ2
l (x̃) are the mean and variance of the

l-th BatchNorm layer of T , and µl and σ2
l are the running

mean and variance of the l-th BatchNorm layer in T .
Non-Critical Region. A naive approach to refining x̃
would involve optimizing all pixels in x̃ using the gradi-
ent of LC . However, this would lead to significant changes
in the images, resulting in the loss of fine-grained, instance-
specific features, as shown in Figure 1. Instead, we pro-
pose the Non-Critical Region Refinement Dataset Distilla-
tion (NRR-DD) method, which preserves instance-specific
and fine-grained regions in the synthetic data while enrich-
ing non-critical regions with more class-general informa-
tion. This approach enables our models to utilize all pixel
information to capture both types of features, thereby en-
hancing overall performance.

Given a synthetic image x̃ with label ỹ, we use CAM to
create a non-critical mask M of the same size as x̃. This
mask assigns low or zero values to high-importance pixels
in x̃ and higher values to less important pixels. The objec-
tive is to control pixel updates in x̃ by limiting updates to
important pixels in order to preserve instance-specific fea-
tures, while allowing less important pixels to update more
significantly, thus enhancing the learning of class-general
features. The process is detailed as follows.

We first generate the CAM matrix C of (x̃, ỹ) using
Eq. 1. Subsequently, we calculate the pixel-wise non-
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Figure 3. Visualization of images from the ‘tench’ and ‘English springer’ classes synthesized using various dataset distillation methods,
including SRe2L [27], RDED [21], and our NRR-DD. For additional visualizations, please refer to the Supplementary Material.

critical mask M matrix using the following formula:

M = max{0, ϵ− C}. (4)

Here, ϵ serves as the upper threshold for the method. For
any value c in C that exceeds ϵ, its corresponding value
in M will be set to 0; otherwise, the value will be ϵ − c.
Since higher class activation values correspond to lower
non-critical scores, the matrix M will be used to weight
the gradient update for each pixel in x̃. With each gradient
update, the image x̃ is updated as follows:

x̃ = x̃−M × η∇x̃LC , (5)

where ∇x̃LC represents the gradient of the loss function LC
with respect to the image x̃.

3.4. Knowledge Transfer via Relabeling

Soft-Label Knowledge Transfer. Previous methods [3,21,
27] store soft labels generated by a pretrained teacher model
T to train a student model S by minimizing the Kullback-
Leibler (KL) divergence between the student model’s pre-
dictions and the teacher’s soft labels. These soft labels are
generated through augmentation techniques such as Cut-
Mix [28] and Mixup [30].

Given a pair of original image (x̃org, ỹorg) and aug-
mented image (x̃aug, ỹaug) in the synthetic dataset D̃, we
apply CutMix or Mixup to create the mixed image and com-
pute its soft label as:

x̃mix = A(x̃org, x̃aug) (6)
ỹsoft = T (x̃mix). (7)

Here, A represents an augmentation method such as Cut-
Mix [28] or Mixup [30], and ỹsoft denotes the soft labels
produced by the mixed image x̃mix.

Therefore, for each pair of original image (x̃org, ỹorg)
and augmented image (x̃aug, ỹaug), we need to store the in-
dices of the two images in the synthetic dataset, the specifi-
cation of the mixing method A used to construct the mixed
image x̃mix, and the soft label ỹsoft. However, this approach
requires substantial memory to store the soft labels, espe-
cially when large datasets and numerous augmentations are
involved.
Distance-Based Representative Knowledge Transfer. To
address the memory limitations of storing soft labels, we
propose a more memory-efficient approach. Instead of stor-
ing the soft labels ỹsoft, each of which consists of 1, 000 real
numbers for ImageNet1K, we store only two real numbers
representing the cross-entropy (CE) divergences between
the soft label and the one-hot vectors of ỹaug and ỹorg.

Specifically, for each pair of an original image
(x̃org, ỹorg) and an augmented image (x̃aug, ỹaug) in the syn-
thetic dataset D̃, we apply CutMix or Mixup to create the
mixed image x̃mix and compute its soft label ỹsoft using the
teacher model T . We then calculate and store the cross-
entropy (CE) divergences between the soft label and the
one-hot vectors of ỹaug and ỹorg as follows:

dTorg = Lce(ỹsoft, ỹorg),

dTaug = Lce(ỹsoft, ỹaug). (8)

Moreover, for each pair of original and augmented images,
we store their indices in the synthetic dataset, the details of
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ConvNet Resnet18 ResNet-101

IPC MTT IDM TESLA RDED NRR-DD SRe2L RDED NRR-DD SRe2L RDED NRR-DD

CIFAR10 1 46.3 ± 0.8 45.6 ± 0.7 48.5 ± 0.8 23.5 ± 0.3 48.4 ± 0.4 16.6 ± 0.9 22.9 ± 0.4 30.3 ± 0.4 13.7 ± 0.2 18.7 ± 0.1 25.7 ± 0.3
10 65.3 ± 0.7 65.3 ± 0.7 66.4 ± 0.8 50.2 ± 0.3 66.7 ± 0.4 29.3 ± 0.5 37.1 ± 0.3 72.2 ± 0.4 24.3 ± 0.6 33.7 ± 0.3 65.1 ± 0.3
50 71.6 ± 0.2 67.5 ± 0.1 72.6 ± 0.7 68.4 ± 0.1 73.1 ± 0.1 45.0 ± 0.7 62.1 ± 0.1 84.1 ± 0.1 34.9 ± 0.1 51.6 ± 0.4 78.2 ± 0.4

CIFAR100 1 24.3 ± 0.3 20.1 ± 0.3 24.8 ± 0.5 19.6 ± 0.3 27.3 ± 0.3 6.6 ± 0.2 11.0 ± 0.3 33.3 ± 0.3 6.2 ± 0.0 10.8 ± 0.1 32.9 ± 0.3
10 40.1 ± 0.4 45.1 ± 0.1 41.7 ± 0.3 48.1 ± 0.3 55.7 ± 0.2 27.0 ± 0.4 42.6 ± 0.2 62.7 ± 0.2 30.7 ± 0.3 41.1 ± 0.2 58.3 ± 0.2
50 47.7 ± 0.2 50.0 ± 0.2 47.9 ± 0.3 57.0 ± 0.1 61.1 ± 0.1 50.2 ± 0.4 62.6 ± 0.1 67.1 ± 0.1 56.9 ± 0.1 63.4 ± 0.3 65.1 ± 0.3

Tiny-ImageNet 1 8.8 ± 0.3 10.1 ± 0.2 - 12.0 ± 0.1 20.4 ± 0.2 2.62 ± 0.1 9.7 ± 0.4 13.5 ± 0.2 1.9 ± 0.1 3.8 ± 0.1 10.1 ± 0.1
10 23.2 ± 0.2 21.9 ± 0.3 - 39.6 ± 0.1 44.3 ± 0.2 16.1 ± 0.2 41.9 ± 0.2 45.2 ± 0.2 14.6 ± 1.1 22.9 ± 3.3 26.1 ± 3.3
50 28.0 ± 0.3 27.7 ± 0.3 - 47.6 ± 0.2 50.2 ± 0.1 41.1 ± 0.4 58.2 ± 0.1 61.2 ± 0.1 42.5 ± 0.2 41.2 ± 0.4 46.2 ± 0.4

ImageNette 1 47.7 ± 0.9 - - 33.8 ± 0.8 39.3 ± 0.9 19.1 ± 1.1 35.8 ± 1.0 40.1 ± 0.9 15.8 ± 0.6 25.1 ± 2.7 28.1 ± 2.7
10 63.0 ± 1.3 - - 63.2 ± 0.7 68.3 ± 0.6 29.4 ± 3.0 61.4 ± 0.4 66.2 ± 0.6 23.4 ± 0.8 54.0 ± 0.4 56.0 ± 0.4
50 - - - 83.8 ± 0.2 86.5 ± 0.3 40.9 ± 0.3 80.4 ± 0.4 85.6 ± 0.3 36.5 ± 0.7 75.0 ± 1.2 78.0 ± 1.2

ImageNet1k 1 - - 7.7 ± 0.2 6.4 ± 0.1 11.2 ± 0.2 0.1 ± 0.1 6.6 ± 0.2 11.6 ± 0.2 0.6 ± 0.1 5.9 ± 0.4 12.2 ± 0.4
10 - - 17.8 ± 1.3 20.4 ± 0.1 25.6 ± 0.2 21.3 ± 0.6 42.0 ± 0.1 46.1 ± 0.2 30.9 ± 0.1 48.3 ± 1.0 51.3 ± 1.0
50 - - 27.9 ± 1.2 38.4 ± 0.2 42.1 ± 0.1 46.8 ± 0.2 56.5 ± 0.1 60.2 ± 0.1 60.8 ± 0.5 61.2 ± 0.4 64.3 ± 0.4

Table 1. Comparison with state-of-the-art (SOTA) dataset distillation baselines. Identical neural networks are used for both dataset
distillation and evaluation. Following [21, 27], ConvNets used for distillation are Conv-3 for CIFAR10 and CIFAR100, Conv-4 for Tiny-
ImageNet and ImageNet-1K, Conv-5 for ImageNette and ImageWoof, and Conv-6 for ImageNet-100. MTT and TESLA use down-sampled
images for distillation to 224 × 224 images. SRe2L and RDED use ResNet-18 for distillation and retrieval, and are evaluated on ResNet-18
and ResNet-101. Entries marked with “-” indicate scalability issues. See Supplementary Material for further details.

the data mixing, and the two divergences dTorg and dTaug (see
Figure 2(c) for visualization). Subsequently, we train the
student model S by minimizing:

LS = Lsce + αdbrLdbr, (9)

Lsce = max{0, dSorg − r}+max{0, dSaug − r},
Ldbr = |dSorg − dTorg|+ |dSaug − dTaug|,

where r is a threshold and dS is calculated as follows:

dSorg = Lce(S(x̃mix), ỹorg)

dSaug = Lce(S(x̃mix), ỹaug). (10)

In Eq. 9, Lsce denotes the soft cross-entropy loss func-
tion, which encourages the student model to predict the
mixed instance x̃mix as a blend of the two labels, ỹorg and
ỹaug. This helps prevent excessive confidence by imposing
a threshold r, which is especially crucial when using tech-
niques such as CutMix or MixUp, where the soft label often
blends multiple classes. This mechanism reduces the risk
of the model becoming overly confident in any single class.
Additionally, Ldbr represents the distance-based represen-
tative loss, which allows the student model S to replicate
the teacher model’s divergences from its predictions on the
mixed image x̃mix to ỹorg and ỹaug. This loss ensures consis-
tency between the teacher and student models, both in terms
of learned feature representations and decision boundaries.
Memory Reduction. It is important to note that, unlike pre-
vious models that require storing augmentation informa-
tion to generate x̃mix, along with the indices and labels for
both x̃org and x̃aug, our approach only necessitates storing
two additional distances, dTorg and dTaug, for the loss function.
This significantly reduces memory requirements.

Label Refinement. To further enhance the benefits of
Distance-Based Representative (DBR), we propose refining
the images with an additional term. Instead of training x̃org
using the formula from Eq. 2, we train x̃org with the follow-
ing formulation:

LC = Lorg + αlrLlr, (11)
Lorg = Lce(T (x̃org), ỹorg) + αbnLbn(T (x̃org))

Llr = max{0, dTorg − r}+max{0, dTaug − r} (12)

Minimizing Llr ensures that the prediction of T on x̃mix,
which will be used for training the student model, is focused
solely on the two designated classes, facilitating alignment
with the DBR function.

In Figure 3, we visualize the images generated by
our NRR-DD method alongside several state-of-the-art ap-
proaches. It is clear that our method captures both instance-
specific and class-general features, leading to improved per-
formance.

4. Experiment
This section evaluates the effectiveness of our proposed

method compared to state-of-the-art techniques across vari-
ous datasets and neural architectures, accompanied by com-
prehensive ablation studies.

4.1. Experimental Setting

For large-scale datasets, we assessed our method using
two popular pairs of backbones: ResNet34/ResNet18 [8]
and ResNet50/MobileNetV2 [18], applied to three well-
known benchmarks: Tiny-ImageNet [15], which consists of
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Using Soft Label Using One-Hot Using Compact Label

Dataset Architecture IPC RDED (SL) NRR-DD(SL) RDED (OH) RDED (CL) NRR-DD (DBR) NRR-DD (DBR+LR) Recover

ImageNette

ConvNet
1 33.8 ± 0.8 39.3 ± 0.9 16.3 ± 0.3 23.2 ± 0.5 32.3 ± 0.4 34.5 ± 0.5 79%
10 63.2 ± 0.7 68.3 ± 0.6 27.3 ± 0.2 37.3 ± 0.4 52.2 ± 0.4 55.1 ± 0.4 68%
50 83.8 ± 0.2 86.5 ± 0.3 41.2 ± 0.3 54.6 ± 0.3 66.9 ± 0.2 69.2 ± 0.2 62%

Resnet18
1 35.8 ± 1.0 40.1 ± 0.9 16.2 ± 0.4 22.2 ± 0.4 34.6 ± 0.6 36.2 ± 0.4 84%
10 61.4 ± 0.4 66.2 ± 0.6 25.4 ± 0.3 34.1 ± 0.4 54.7 ± 0.4 57.1 ± 0.4 78%
50 80.4 ± 0.4 85.6 ± 0.3 41.3 ± 0.3 52.1 ± 0.2 69.4 ± 0.2 72.2 ± 0.3 70%

ImageNet1k

ConvNet
1 6.4 ± 0.1 11.2 ± 0.2 2.4 ± 0.5 3.1 ± 0.5 6.2 ± 0.5 8.5 ± 0.5 69%
10 20.4 ± 0.1 25.6 ± 0.2 8.3 ± 0.4 12.5 ± 0.3 16.1 ± 0.3 19.2 ± 0.5 63%
50 38.4 ± 0.2 42.1 ± 0.1 14.1 ± 0.3 22.3 ± 0.3 26.1 ± 0.1 28.1 ± 0.3 50%

Resnet18
1 6.6 ± 0.2 11.6 ± 0.2 2.3 ± 0.5 3.2 ± 0.5 7.5 ± 0.3 8.9 ± 0.5 71%
10 42.0 ± 0.1 46.1 ± 0.2 16.3 ± 0.7 22.2 ± 0.4 34.3 ± 0.5 37.2 ± 0.4 70%
50 56.5 ± 0.1 60.2 ± 0.1 32.4 ± 0.5 39.3 ± 0.2 45.1 ± 0.3 49.2 ± 0.5 60%

Table 2. Comparison of various relabeling methods on large-scale datasets, including ImageNette and ImageNet1k. Bold values indicate
the highest scores, while underlined values indicate the second-highest scores. ‘SL’ denotes the use of soft labels, ‘OH’ represents one-
hot vector labels, and ‘CL’ signifies compact labels (with 2 classes for fair comparison to our DBR). ‘DBR’ refers to our method using
distance-based representation without label refinement, and ‘DBR+LR’ indicates our method with distance-based representation combined
with label refinement. The Recover rate is calculate by using (DBR - One-hot)/(Soft-label - One-hot)

200 object categories, with 500 training images, 50 vali-
dation images, and 50 test images per category, all resized
to 64 × 64 pixels; ImageNet1k [4], containing 1,000 ob-
ject categories and over 1.2 million labeled training im-
ages, along with its subset Imagenette, which includes 10
sub-classes. For small-scale datasets, we ran experiments
with ResNet [8], VGG [20], and WideResNet (WRN) [29]
across CIFAR-10 and CIFAR-100 [11]. Both CIFAR-10
and CIFAR-100 consist of 60,000 images (50,000 for train-
ing and 10,000 for testing), with 10 and 100 categories,
respectively, and all images have a resolution of 32 × 32
pixels. Consistent with previous research, we set the IPC
to 1, 10, and 50. All experiments were run on a single
NVIDIA A100 40 GB GPU. The details of the model ar-
chitectures, parameters, and additional experimental results
are provided in the Supplementary Material.
Compared Baselines. We focus on comparing our method
to state-of-the-art dataset distillation methods:

• MTT [2], the first to propose trajectory matching;
• IDM [33], the first to introduce distribution matching;
• TESLA [3], the first method to scale up to full Ima-

geNet1k;
• SRe2L [27], a method that efficiently scales to

ImageNet-1k and significantly outperforms existing
approaches on large, high-resolution datasets;

• RDED [21], a recent paper that uses instance-specific
features with fine-grained details to improve large-
scale dataset distillation, which we consider the closest
baseline.

4.2. Main Result

Large-scale Dataset. To demonstrate the effectiveness
of our methods in real-world applications, we first com-
pared them with various baselines on large-scale datasets

Teacher\Student Resnet18 MobileNetV2 EfficientNet-B0

Resnet18 SRe2L 21.7 ± 0.6 15.4 ± 0.2 11.7 ± 0.2
RDED 42.3 ± 0.6 40.4 ± 0.1 31.0 ± 0.1

NRR-DD 46.1 ± 0.2 45.0 ± 0.2 34.2 ± 0.1

MobileNetV2 SRe2L 19.7 ± 0.1 10.2 ± 2.6 9.8 ± 0.4
RDED 34.4 ± 0.2 33.8 ± 0.6 24.1 ± 0.8

NRR-DD 36.2 ± 0.2 37.2 ± 0.1 27.3 ± 0.7

EfficientNet-B0 SRe2L 25.2 ± 0.2 20.5 ± 0.2 11.4 ± 2.5
RDED 42.8 ± 0.5 43.6 ± 0.2 33.3 ± 0.9

NRR-DD 47.2 ± 0.2 45.6 ± 0.3 35.1 ± 0.2
Table 3. Evaluation of ImageNet-1K top-1 accuracy for cross-
architecture generalization. Datasets are distilled using ResNet-
18, EfficientNet-B0, and MobileNet-V2, and transferred across
different architectures. Note that experiments for SRe2L could
not be conducted when the distillation model lacks batch normal-
ization [27]. All methods are evaluated with IPC = 10.

such as ImageNet1k, Tiny ImageNet, and ImageNette. The
results in Table 1 show that our methods outperform all
the compared baselines in every scenario. For instance,
our method achieves 60.2% accuracy on ImageNet1k using
ResNet18, which is 4% higher than RDED and 14% higher
than SRe2L. These improvements highlight the superiority
of our approach in handling large-scale datasets and its abil-
ity to significantly outperform existing methods.
Small-scale Dataset. To validate the robustness of our
NRR-DD, we compared it with various baselines on small-
scale datasets, including CIFAR-10 and CIFAR-100. As
shown in Table 1, our NRR-DD demonstrates significant
improvements over the baselines. For example, with 10
IPC, our method achieves 72.2% accuracy on CIFAR-10 us-
ing ResNet18, which is 35% higher than the current state-
of-the-art, RDED, which achieves 37.1%. Similarly, on
CIFAR-100, our method shows a 20% improvement with
10 IPC. These results highlight the effectiveness and gener-
alization ability of our method on small-scale datasets.
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ConvNet Resnet18

CIFAR10 CIFAR100 ImageNet1k CIFAR10 CIFAR100 ImageNet1k
RDED (baseline) 50.2 ± 0.3 48.1 ± 0.3 20.4 ± 0.1 37.1 ± 0.3 42.6 ± 0.2 42.0 ± 0.1
CIDD 51.3 ± 0.4 50.2 ± 0.3 21.2 ± 0.3 50.4 ± 0.5 51.3 ± 0.2 43.2 ± 0.2
CIDD+NRR 66.7 ± 0.4 55.7 ± 0.2 25.6 ± 0.2 65.1 ± 0.3 58.3 ± 0.2 51.3 ± 1.0

Table 4. Comparison between the baseline RDED [21] and our
framework using only the CIDD modules (CIDD) and with Non-
Critical Region Refinement (NRR) (CIDD+NRR). All methods
are evaluated with IPC = 10.

Different Label Compression Comparison. To demon-
strate the benefits of our distance-based representation
(DBR), we conducted experiments to compare it with var-
ious label compression methods. The results show that,
while requiring storage of only two distance values per in-
stance (achieving 5× compression on ImageNette and 500×
on ImageNet1k compared to soft-labels), our method pro-
vides comparable performance. Notably, in all cases with
IPC set to 1, our DBR method outperforms the state-of-
the-art RDED with soft-labels. When compared to com-
pact labels (which use only two elements of soft-labels),
our method achieves significant improvements across all
scenarios. These findings highlight the effectiveness of
distance-based representation in this task.
Cross-architecture Generalization. To ensure the gener-
alization capability of our distilled datasets, it is crucial to
evaluate their performance across a range of neural archi-
tectures not involved in the dataset distillation process. The
results in Table 3 demonstrate the robustness and general-
ization of our method across all cross-comparisons. This
can be attributed to the advantage of selecting the critical
key patches in CIDD and the effectiveness of non-critical
image refinement.

4.3. Ablation Study

Effectiveness of Critical-based Initial Data Discovery.
To verify the benefits of our Critical-based Initial Data Dis-
covery (CIDD) in Section 3.2, we conducted experiments
using only the data generated by CIDD to train the student
model, following the same settings as RDED [21]. The re-
sults in Table 4 demonstrate that our CIDD achieves better
performance than RDED in all cases, indicating the effec-
tiveness of the module.
Effectiveness of Non-Critical Region Refinement. Table
4 shows the results of our model with NRR (CIDD+NRR)
and without NRR (CIDD). The results demonstrate that the
NRR method significantly improves model performance.
For example, on CIFAR-10 using ResNet18, the addition
of NRR leads to an approximate 15% performance increase
compared to when NRR is not used. This clearly indicates
the effectiveness of incorporating the Non-Critical Region
Refinement module.
Effectiveness of Label Refinement (Llr). To further val-
idate the benefits of Llr in Eq. 12, we conducted experi-
ments to determine whether this term enhances model learn-
ing without relying on soft-label information. As shown in

Table 2, incorporating Label Refinement NRR-DD (DBR)
consistently improves performance over without using La-
bel Refinement NRR-DD (DBR) across all comparisons,
demonstrating the effectiveness of this term.

5. Limitation and Future Works

A possible limitation of our work is its reliance on the
quality of Class Activation Mapping (CAM) for identifying
critical and non-critical regions. While CAM provides use-
ful insights, its performance can be sensitive to the model’s
initial training, potentially affecting the accuracy of the
identified regions. Therefore, a promising direction for fu-
ture work is exploring how to connect the training of pre-
trained models to generate better CAMs.

Additionally, while the Distance-Based Representative
(DBR) technique reduces memory requirements, it may not
fully address the trade-off between memory efficiency and
the preservation of fine-grained details for certain complex
tasks. This emphasizes the need for further research to de-
velop enhanced solutions for this issue, which we plan to
explore in our future work.

6. Conclusion

In this paper, we introduced the Non-Critical Region
Refinement Dataset Distillation (NRR-DD) method to ad-
dress the limitations of current dataset distillation tech-
niques. Our approach comprises three key stages: Critical-
based Initial Data Discovery (CIDD) to capture instance-
specific details, Non-Critical Region Refinement (NRR) to
balance critical and non-critical regions using Class Activa-
tion Mapping, and relabeling to transfer knowledge effec-
tively. Additionally, we proposed the Distance-Based Rep-
resentative (DBR) technique, which eliminates the need for
memory-intensive soft label storage by using a distance-
based measure, significantly reducing memory require-
ments. By combining DBR with NRR, our method gener-
ates compact and efficient datasets, achieving state-of-the-
art performance across small- and large-scale datasets. Ex-
perimental results confirm that our approach not only en-
hances dataset representativeness but also minimizes train-
ing complexity, making it highly suitable for various train-
ing environments. This work advances dataset distillation
by capturing critical features and optimizing storage, paving
the way for efficient, scalable data solutions.
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