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Figure 1. Example results from our minority generation approach using SDXL-Lightning. Our framework is designed to produce
unique minority samples w.r.t. user-provided prompts, which are rarely generated by standard samplers like DDIM [46]. Due to its
low-likelihood encouraging nature, our sampler often demonstrates counteracting results against demographic biases in text-to-image
models [13]. See the samples in the last row for instance, where our sampler mitigates prevalent age and racial biases (e.g., associating
“man” with “young” and “woman” with “white”) by modifying the demographic traits of the subjects.

Abstract

We investigate the generation of minority samples us-
ing pretrained text-to-image (T2I) latent diffusion mod-
els. Minority instances, in the context of T2I generation,
can be defined as ones living on low-density regions of
text-conditional data distributions. They are valuable for
various applications of modern T2I generators, such as
data augmentation and creative AI. Unfortunately, existing
pretrained T2I diffusion models primarily focus on high-
density regions, largely due to the influence of guided sam-
plers (like CFG) that are essential for high-quality gen-
eration. To address this, we present a novel framework

to counter the high-density-focus of T2I diffusion mod-
els. Specifically, we first develop an online prompt op-
timization framework that encourages emergence of de-
sired properties during inference while preserving seman-
tic contents of user-provided prompts. We subsequently tai-
lor this generic prompt optimizer into a specialized solver
that promotes generation of minority features by incorpo-
rating a carefully-crafted likelihood objective. Extensive
experiments conducted across various types of T2I models
demonstrate that our approach significantly enhances the
capability to produce high-quality minority instances com-
pared to existing samplers. Code is available at https:
//github.com/soobin-um/MinorityPrompt.
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1. Introduction
Text-to-image (T2I) generative models [35, 40, 54] have
recently attracted substantial interest for their capability
to convert textual descriptions into visually striking im-
ages. At the forefront of the surge are diffusion mod-
els [20, 47], augmented by guidance techniques [11, 19]
such as classifier-free guidance (CFG) [19]. The guided
T2I samplers encourage generations from high-density re-
gions of a data manifold [11], producing realistic images
that faithfully respect the provided prompts.

A key challenge is that the inherent high density focus of
modern T2I samplers makes it difficult to generate minor-
ity samples – instances that reside in low-density regions
of the manifold. This limitation is particularly significant
as T2I-generated data is increasingly incorporated in down-
stream applications [1, 49, 50] where the majority-focused
bias within the data may be perpetuated. Furthermore, the
unique attributes found in minority instances are crucial
for applications like creative AI [16, 41], where generating
novel and highly creative outputs is essential.

In this work, we present a novel approach dubbed as Mi-
norityPrompt that counteracts the high-density bias of T2I
samplers to improve their capability of minority genera-
tion. Our framework is built upon the concept of prompt
optimization, an intuitive technique that exhibits strong per-
formance in enhancing T2I diffusion models for various
tasks [6, 14, 36]. Unlike existing T2I-based online prompt-
tuning methods that modify the entire input prompts (e.g.,
by optimizing their text-embeddings during inference), our
approach updates the prompts in a selective fashion to pre-
serve the intended semantics while encouraging generations
of unique low-density features.

Specifically during inference, we incorporate learnable
tokens into the input prompts, e.g., by appending them to
the end of the text. The embeddings of these tokens are it-
eratively refined across sampling timesteps to optimize the
proposed objective for minority generation, which approx-
imates the likelihood of noisy intermediate samples in T2I
generation. See Fig. 2 for an overview. We highlight that
our prompt optimization framework is versatile, i.e., it can
be applied to various tasks with distinct optimization objec-
tives beyond minority generation.

Comprehensive experiments validate that our method
can significantly improve the ability of creating minority
instances of modern widely-adopted T2I models (including
Stable Diffusion (SD) [41]) with minimal compromise in
sample quality and text-image alignment. In addition, we
emphasize that our framework can work on distilled back-
bones like SDXL-Lightning [29], which demonstrates its
robustness and practical relevance. As an additional appli-
cation, we explore the potential of our prompt optimization
framework to improve the diversity of T2I models, further
exhibiting its versatility as a general-purpose solver appli-

cable across various tasks.
Our key contributions are summarized as follows:
• We propose a token-based online prompt optimiza-

tion framework that iteratively updates learnable to-
kens during inference, achieving superior text-image
alignment over existing online prompt tuners.

• We develop a novel objective for minority sampling in
the T2I context, which mathematically approximates
the target log-likelihood in T2I generation.

• We empirically demonstrate that our approach
achieves state-of-the-art performance in generating
minority samples for T2I generation.

2. Related Work
The generation of minority samples has been explored
in a range of different scenarios and generative frame-
works [22, 31, 38, 44, 51, 52, 56]. However, significant
progress has been recently made with the introduction of
diffusion models, due to their ability to faithfully capture
data distributions [44, 51, 52]. As an initial effort, [44]
incorporate separately-trained classifiers into the sampling
process of diffusion models to yield guidance for low-
density regions. The approach by [51] shares similar in-
tuition of integrating an additional classifier into the reverse
process for low-density guidance. A limitation is that their
methods rely upon external classifiers that are often diffi-
cult to obtain, especially for large-scale datasets such as T2I
benchmarks [43]. The challenge was recently addressed
by [52] where the authors develop a self-contained minor-
ity sampler that works without expensive extra components
(such as classifiers). However, their method is tailored for
canonical image benchmarks (like LSUN [55] and Ima-
geNet [9]) and exhibits limited performance gain in more
challenging scenarios like T2I generation.

A related yet distinct objective is enhancing the diver-
sity of diffusion models, an area that has been relatively
overlooked compared to improving their quality. Signif-
icant progress was recently made in [42], where the au-
thors demonstrated that adding noise perturbations, if grad-
ually annealed over time, to conditional embeddings could
greatly enhance the diversity of generated samples. How-
ever, unlike our approach, their method focuses on produc-
ing diverse samples that remain consistent with the ground-
truth data distribution, rather than targeting the low-density
regions of the distribution. Another notable contribution
was done by [8]. Their idea is to repel intermediate latent
samples that share the same condition, thereby encourag-
ing the final generated samples to exhibit distinct features.
A disadvantage is that it requires generating multiple in-
stances for each prompt, which can be redundant in many
practical scenarios.

Prompt optimization has been widely explored in the
context of T2I diffusion models due to their strong depen-
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Figure 2. Overview of MinorityPrompt. Unlike existing online prompt tuning approaches that adjust the entire text-embedding (e.g.,
the output of the text-encoder) during inference, our framework focuses on optimizing a dedicated token-embedding to better preserve the
semantics within the prompt. Specifically given a user-prompt (e.g., “A portrait of a dog”), we integrate a placeholder string (e.g., S in
the figure) into the prompt, marking the position of the learnable token embedding v. With the text-embedding Cv that incorporates the
contents of v, we update v on-the-fly during the inference process to maximize the reconstruction loss of the denoised version of zt (i.e.,
ẑ1
0 in the figure). The optimized token v∗ is subsequently used to progress the inference at the corresponding timestep; see Sec. 3 for

details.

dence on language models. This approach has exhibited
significant performance across various tasks, including in-
verse problems [6] and image editing [33, 36]. A key dif-
ference is that most existing methods in these lines tune
the entire prompts to find the ones that best perform the
focused tasks (e.g., minimizing data consistency loss [6]).
In contrast, our framework updates only the attached learn-
able tokens, thereby preserving the original prompt’s se-
mantics while encouraging the emergence of low-density
features. Additional use cases of prompt tuning include
personalization [14, 15] and object counting [57]. Simi-
lar to ours, their frameworks introduce variable tokens and
tune their embeddings. However, their optimizations aim
to learn visual concepts captured in user-provided images,
whereas our focus is to invoke low-density features through
optimized prompts. Also, their methods are not online, re-
quiring separate training procedure which can be potentially
expensive.

3. Method

Our focus is to generate high-quality minority instances
using text-to-image (T2I) diffusion models, which faith-
fully reflect user-provided prompts while featuring unique
visual attributes rarely produced via standard generation
techniques1. To this end, we start with providing a brief

1More formally, this can be expressed as drawing instances from Sc :=
{z ∈ Mc : pθ(z|C) < ϵ}, where C is the prompt, Mc represents the
(latent) data manifold associated with C, and pθ denotes the probability

overview on T2I diffusion frameworks and the essential
background necessary to understand the core of our work.
We subsequently present our proposed framework for mi-
nority generation based on the idea of prompt optimization.

3.1. Background and preliminaries

The task of T2I diffusion models is to generate an output
image x0 ∈ Rd from a random noise vector zT ∈ Rk

(where typically k < d), given a user-defined text prompt
P . Similar to standard (non-T2I) diffusion frameworks, the
core of T2I diffusion sampling lies in an iterative denois-
ing process that progressively removes noise from zT until
a clean version z0 is obtained. This denoising capability is
learned through noise-prediction training [20, 47], mathe-
matically written as:

min
θ

Ez0,y,ϵ∼N (0,I),t∼Unif{1,...,T}[∥ϵ− ϵθ(zt, C)∥22],

where z0 := E(x0), yielded by passing a training image
x0 through a compressive model E (e.g., the encoder of
VQ-VAE [12, 41]). Here, zt represents a noise-perturbed
version of z0, given by zt :=

√
αtz0 +

√
1− αtϵ, where

{αt}Tt=1 defines the noise-schedule. ϵθ refers to a T2I dif-
fusion model parameterized to predict the noise ϵ, and C
represents the embedding of the text prompt P . See below
for details on how to obtain C from P .

density captured by the T2I diffusion model. Here ϵ is a small positive
constant.
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Once trained, T2I generation can be done by starting
from zT ∼ N (0, I) and implementing an iterative noise
removal process guided by the text embedding C. A com-
mon approach is to follow the deterministic DDIM sam-
pling [5, 46]:

zt−1 =
√
αt−1ẑ0(zt, C) +

√
1− αt−1ϵθ(zt, C), (1)

where ẑ0(zt, C) := (zt −
√
1− αtϵθ(zt, C))/

√
αt. Here

ẑ0(zt, C) indicates a denoised estimate of zt conditioned
on the text embedding C, implemented via Tweedie’s for-
mula [4].

To further strengthen the impact of text conditioning,
classifier-free guidance (CFG) [19] is commonly integrated
into the sampling process. In particular, one can obtain
a high-density-focused noise estimation through extrapola-
tion using an unconditional prediction:

ϵ̃wθ (zt, C) := wϵθ(zt, C) + (1− w)ϵθ(zt), (2)

where ϵθ(zt) indicates an unconditional noise prediction,
often implemented via null-text conditioning [19]. CFG
refers to the technique that employs ϵ̃wθ (zt, C) in place of
ϵθ(zt, C) (in Eq. (1)), which has been shown in various sce-
narios to significantly improve both sample quality and text
alignment yet at the expense of diversity [42].
Text processing. A key distinction from non-T2I diffu-
sion models is the incorporation of the text embedding C,
a continuous vector yielded by a text encoder T (such as
BERT [10]) based on the user prompt P . To obtain this
embedding, each word (or sub-word) in P is first converted
into a token – an index in a pre-defined vocabulary. Each to-
ken is then mapped to a unique embedding vector through
an index-based lookup. These token-wise embedding vec-
tors, often referred to as token embeddings, are typically
learned as part of the text encoder. The token embeddings
are then passed through a transformer model, yielding the
final text embedding C. For simplicity, we denote this text
processing operation as the forward pass of the text encoder
T ; thus, C = T (P).
Prompt optimization. In the context of T2I diffusion mod-
els, prompt tuning is performed by intervening in the text-
processing stage. A common approach is to adjust the text
embedding C over inference time, which is widely adopted
in existing online prompt optimizers [6, 36]. Specifically at
sampling timestep t, existing online prompt tuners can be
formulated as the following optimization problem:

C∗
t := argmax

C
J (zt, C), (3)

where zt is a noisy latent at step t, and J represents a task-
specific objective function, such as data consistency in in-
verse problems [6]. Once C∗

t is obtained, it is used as a drop-
in replacement for C at time t (e.g., in Eq. (1)), encouraging
the desired property to manifest in subsequent timesteps.

A problem is that the optimization in Eq. (3) may lead
to a loss of user-intended semantics in P , due to the com-
prehensive updating of the entire text-embedding C. This
is critical, especially in the context of our focused T2I mi-
nority generation where preserving prompt semantics is es-
sential; see the supplementary for our empirical results that
support this. One can resort to tuning the null-text embed-
ding while keeping C intact (as suggested by [33]). How-
ever, this method requires reserving the null-text dimen-
sion for this specific purpose, limiting its potential use for
improving sample quality or serving other functions. In
the following section, we present an online prompt op-
timization framework designed to better preserve seman-
tics. Building on this foundation, we develop our T2I mi-
nority sampler, which promotes the generation of minor-
ity features while maintaining both sample quality and text-
alignment performance.

3.2. Semantic-preserving prompt optimization
The key idea of our optimization approach is to incorpo-
rate learnable tokens into a given prompt P and update its
embedding on-the-fly during inference. Specifically, we ap-
pend a placeholder string2 S to the prompt P , which acts
as a mark for the learnable tokens. For instance, the aug-
mented prompt could be PS := “A portrait of a dog S”.
This additional string is treated as a new vocabulary item
for the text-encoder T . We assign a token embedding v to
S, and denote the text encoder incorporating it as T ( · ;v).

We propose optimizing this embedding v rather than C.
The proposed online prompt optimization at sampling step
t can then be formalized as follows:

v∗
t := argmax

v
J (zt, Cv), (4)

where Cv := T (PS ;v). Afterward, the optimized text-
embedding Cv∗

t
is obtained by text-processing PS with

the updated token-embedding of S, therefore Cv∗
t

:=
T (PS ;v

∗
t ).

Note that our optimization does not affect the embed-
dings of the tokens w.r.t. the original prompt P . This
is inherently more advantageous for preserving semantics
compared to existing methods, which alter the entire text-
embedding C and thereby effectively impact all token em-
beddings. We also highlight that unlike existing learnable-
token-based approaches that share the same embedding
throughout inference [14, 15, 57], our framework allows
the token embedding v to change over timesteps t. This
adaptive feature offers potential advantages, since the role
of v in maximizing J can vary with zt that changes over
timesteps. This point is also implied in previous works that
employ adaptive text-embeddings over time [6, 36].

2The placeholder string can be placed at any position in the prompt, but
we empirically found that inserting it at the end of the prompt yields the
best performance; see the supplementary for details.
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Algorithm 1 MinorityPrompt

Require: ϵθ, T ,D,v(0)
T ,PS , C, N,K,w, T, s, λ.

1: zT ∼ N (0, I)
2: for t← T to 1 do
3: Cv∗

t
← C

4: if t mod N = 0 then
5: v∗

t ← OPTIMIZEEMB(zt,v
(0)
t , ϵθ, T ,K, s, λ)

6: Cv∗
t
← T (PS ;v

∗
t )

7: end if
8: ϵ̃wθ ← wϵθ(zt, Cv∗

t
) + (1− w)ϵθ(zt)

9: ẑw
0 ← (zt −

√
1− αtϵ̃

w
θ )/
√
αt

10: zt−1 ←
√
αt−1ẑ

w
0 +
√
1− αt−1ϵ̃

w
θ

11: v
(0)
t−1 ← v∗

t

12: end for
13: return x0 ← D(z0)

Algorithm 2 Prompt optimization

1: function OPTIMIZEEMB(zt,v
(0)
t , ϵθ, T ,K, s, λ)

2: for k ← 1 to K do
3: Cv ← T (PS ;v

(k−1)
t )

4: ϵ1θ ← ϵθ(zt, Cv)
5: ẑ1

0 ← (zt −
√
1− αtϵ

1
θ)/
√
αt

6: ϵ ∼ N (0, I)
7: zs|t,0 ←

√
αsẑ

1
0 +
√
1− αsϵ

8: ϵ2θ ← ϵθ(zs|t,0, C)
9: ẑ2

0 ← (zs|t,0 −
√
1− αsϵ

2
θ)/
√
αs

10: Jt ← ∥ẑ1
0 − sg(ẑ2

0)∥22 + λ∥sg(ẑ1
0)− ẑ2

0∥22
11: v

(k)
t ← v

(k−1)
t + AdamGrad(Jt)

12: end for
13: return v∗

t ← v
(K)
t

14: end function

Intuitively, our optimization can be understood as cap-
turing a specific concept relevant to noisy latent zt within
the token v∗

t , guided by the objective function J . Thanks
to its general design that accommodates any arbitrary ob-
jective function J , this framework is versatile and can be
employed in various contexts beyond minority generation.
For instance, it can be used to diversify the outputs of T2I
models. See details in Tab. 3.

3.3. MinorityPrompt: minority-focused prompt
tuning

We now specialize the generic solver in Eq. (4) for the task
of minority generation. The key question is how to formu-
late an appropriate objective function J for this purpose.
To address this, we draw inspiration from Um and Ye [52],
employing their likelihood metric as the starting point for
developing our objective function.

Since the metric was originally defined in the pixel do-
main using non-T2I diffusion models (see the supplemen-
tary for details), we initially perform a naive adaptation to
accommodate the latent space of interest, zt ∈ Rk, and in-
tegrate text conditioning using CFG as is typical in the T2I
context [23]. The adapted version of the metric reads:

J (zt, C) := Eϵ

[
∥ẑw

0 (zt, C)− sg(ẑw
0 (z

w
s|t,0, C))∥

2
2

]
, (5)

where ẑw
0 (zt, C) represents a clean estimate of zt using

the CFG noise term ϵ̃wθ (zt, C) (in Eq. (2)). Here zw
s|t,0

indicates a noised version of ẑw
0 (zt, C) w.r.t. timestep s:

zw
s|t,0 :=

√
αsẑ

w
0 (zt, C) +

√
1− αsϵ, and ẑw

0 (z
w
s|t,0, C) is

a clean version of zw
s|t,0 conditioned on C. sg(·) denotes

the stop-gradient operator for reducing computational cost
when used in guided sampling [52]. Notice that the squared
L2 error is used as the discrepancy loss, rather than the orig-
inally used LPIPS [58], due to its incompatibility with our
latent space. The quantity in Eq. (5) is interpretable as a
reconstruction loss of ẑw

0 (zt, C). As exhibited in Um and

Ye [52], the loss may become large if zt (represented by
ẑw
0 (zt, C)) contains highly-unique minority features that of-

ten vanish during the reconstruction process. The compre-
hensive details regarding the original metric due to Um and
Ye [52] are provided in the supplementary.

Considering Eq. (5) as the objective function, a natural
approach for minority-focused prompt tuning would be to
incorporate Cv and optimize for the best v:

v∗
t := argmax

v
J (zt, Cv). (6)

However, we argue that this naively extended framework
has theoretical issues that lead to limited performance
gain over standard samplers. Specifically, three aspects
of this objective weaken the desired connection to the tar-
get log-likelihood log pθ(z0|C) that we aim to capture: (i)
the reliance on the CFG-based clean predictions ẑw

0 ; (ii)
obstructed gradient flow through the second term in the
squared L2 loss due to sg(·); and (iii) the incorporation
of Cv within the second term in the loss. See the supple-
mentary on a detailed analysis on these points.

Hence, we propose the following optimization to address
the theoretical issues:

v∗
t := argmax

v
JC(zt, Cv)

where JC(zt, Cv) := Eϵ

[
∥ẑ0(zt, Cv)− ẑ0(zs|t,0, C)∥22

]
.

(7)

Here ẑ0(zt, Cv) := (zt −
√
1− αtϵθ(zt, Cv))/

√
αt, in-

dicating a non-CFG clean estimate. zs|t,0 is a per-
turbed version of ẑ0(zt, Cv) w.r.t. timestep s: zs|t,0 :=√
αsẑ0(zt, Cv) +

√
1− αsϵ. Notice that this formulation

eliminates the problematic components in Eq. (6): ẑw
0 ,

sg(·) and Cv in the second term. We found that the pro-
posed optimization maintains a close connection to the fo-
cused log-likelihood. Below we provide a formal statement
of our finding. See the supplementary for the proof.
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Proposition 1. The objective function in Eq. (7) is equiv-
alent (upto a constant factor) to the negative ELBO w.r.t.
log pθ(ẑ0(zt, Cv) | C) when integrated over timesteps with
w̄s := αs/(1− αs):

T∑
s=1

w̄sJC(zt, Cv) =
T∑

s=1

Eϵ[∥ϵ− ϵθ(zs|t,0, C)∥22]

⪆ − log pθ(ẑ0(zt, Cv) | C),

where zs|t,0 :=
√
αsẑ0(zt, Cv) +

√
1− αsϵ.

Intuitively, our optimization seeks to make the text-
conditioned clean view ẑ0(zt, Cv) of the current sample
zt as unique as possible, from the perspective of the log-
likelihood log pθ(ẑ0(zt, Cv)|C).
Techniques for improvement. In practice, we found that
our optimization could be further stabilized by introducing
a sg-related trick into the objective function:

J̃C := J 1
C + λJ 2

C , λ > 0

where J 1
C := Eϵ

[∥∥ẑ0(zt, Cv)− sg
(
ẑ0(zs|t,0, C)

)∥∥2
2

]
J 2
C := Eϵ

[∥∥sg (ẑ0(zt, Cv))− ẑ0(zs|t,0, C)
∥∥2
2

]
.

(8)

In our empirical results, setting λ = 1 consistently produces
the best performance across all considered T2I models. We
note that this technique allows the gradient flow through
the second term (contrary to the case of Eq. (6)), thereby
sidestepping the gradient blocking issue that we mentioned
earlier. Another significant improvement comes from the
use of an annealed timestep s, which was originally adhered
to a fixed value in Um and Ye [52]. We empirically found
that employing an annealing schedule based on the inverse
of the sampling step (e.g., s = T − t) outperforms other
fixed choices of s. Similar to Um and Ye [52], we con-
duct our prompt optimization intermittently (i.e., once ev-
ery N sampling steps) to reduce computational costs. We
found that during non-optimizing steps, employing the base
prompt C instead of Cv (with the most recently updated to-
ken embedding) yields improvements in text-alignment and
sample quality. See Algorithms 1 and 2 for the pseudocode
of our approach.
Enhanced semantic controllability. A key benefit of our
prompt optimization approach is its ability to provide an
additional dimension of semantic control over the gener-
ated samples. Specifically, by selecting an appropriate ini-
tial point for v (i.e., v(0)

T in Algorithm 1), such as a word
embedding with relevant semantics, one can impart the de-
sired semantics to the generated output; see Fig. 3 for in-
stance. Note that the controllability is not achievable with
existing minority samplers that rely upon latent-space op-
timizations [44, 51, 52]. We found that properly choosing

Figure 3. Improved semantic controllability by Minori-
tyPrompt. The samples in the first column are generations due
to DDIM using the two base prompts (e.g., “A chef in a white
coat leans on a table” for the second row). The second and third
columns exhibit generated samples from our framework, where
we selected the corresponding word embeddings as the starting
points of the prompt optimizations. In the the last column, we also
present DDIM samples produced using attached prompts with the
corresponding words for comparison. All samples were obtained
using SDXL-Lightning [29].

initial words can yield improved minority generation per-
formance compared to approaches that rely upon random
starting points; see the supplementary for detailed results.

4. Experiments

4.1. Setup
T2I backbones and dataset. Our experiments were
conducted using three distinct versions of Stable Diffu-
sion (SD) [41], encompassing both standard and distilled
versions to demonstrate the robustness of our approach.
Specifically, we consider: (i) SDv1.5; (ii) SDv2.0; (iii)
SDXL-Lightning (SDXL-LT) [29]. For all pretrained mod-
els, we employed the widely-adopted HuggingFace check-
points trained on LAION [43] without any further modifi-
cations. As convention, we randomly selected 10K captions
from the validation set of MS-COCO [30] for our main re-
sults (e.g., in Tab. 1). While for analyses, smaller subsets of
captions were used to enhance efficiency.
Baselines. The same four baselines were considered over
all SD versions: (i) the standard DDIM [46]; (ii) a null-
prompted DDIM; (iii) CADS [42]; (iv) SGMS [52]. The
null-prompted DDIM serves as a baseline that leverages
T2I models’ capability to visualize specific concepts for
minority generation by incorporating an appropriate null-
text prompt (e.g., “commonly-looking”). CADS [42] is
the state-of-the-art diversity-focused sampler that may ri-
val our approach in minority generation, while SGMS [52]
is the state-of-the-art of minority generation outside the T2I
domain. We adhered to standard sampling setups for all
methods. Specifically, 50 DDIM steps (i.e., T = 50) with

20931



Figure 4. Sample comparison on SDXL-Lightning. Generated samples from three different approaches: (i) DDIM [46]; (ii) SGMS [52];
(iii) MinorityPrompt (ours). Six distinct prompts were used for this comparison, and random seeds were shared across all three methods.

w = 7.5 were used for SDv1.5 and SDv2.0, while w = 1.0
was employed for the 4-step SDXL-Lightning model.
Evaluations. For evaluating text-alignment, we con-
sider three distinct quantities: (i) ClipScore [17]; (ii)
PickScore [25]; (iii) Image-Reward [53]. We note that the
latter two metrics also describe quality of generated sam-
ples, in the perspectives of user-preference [25, 53]. In ad-
dition, we employ two pairs of metrics for quality and di-
versity: (i) Precision and Recall [26]; (ii) Density and Cov-
erage [34]. For the likelihood of generated samples, we rely
upon the exact likelihood computation method based on PF-
ODE as proposed by [48]. We also conduct user study to
more investigate human preferences. Notably, we do not
include Fréchet Inception Distance (FID) [18] as an evalua-
tor, since FID measures closeness to baseline real data (e.g.,
the MS-COCO validation set), which diverges from our fo-
cus on promoting generations in low-density regions.

4.2. Results
Qualitative comparisons. Fig. 4 presents a comparison
of generated samples of our approach with two baselines.
Notice that our MinorityPrompt tends to yield highly more
distinct and complex features (e.g., intricate visual ele-
ments [2, 45]) compared to the baseline samplers. A sig-
nificant observation, also reflected in Fig. 1, is that Minor-
ityPrompt often counters the inherent demographic biases

of T2I models, e.g., by adjusting age or skin color. See
the samples in the second and third rows of the figure. A
more extensive set of generated samples, including those
from SDv1.5 and v2.0, can be found in the supplementary.
Quantitative evaluations. Tab. 1 exhibits performance
comparisons across three distinct T2I models. Observe
that our sampler outperforms all baselines in generating
low-likelihood samples while maintaining reasonable per-
formance in text-alignment and user preference; see the
supplementary for the corresponding log-likelihood distri-
butions. An important point is that MinorityPrompt sig-
nificantly improves the previous state-of-the-art in minority
generation (i.e., SGMS [52]) in almost all cases, highlight-
ing the effectiveness of our approach in the T2I context. As
expected, our advantage often comes with some compro-
mise in image quality, e.g., evidenced by lower PickScore
and Density values compared to the DDIM sampler. We
leave the user study results in the supplementary.
Ablation studies. Tab. 2 exhibits the impacts of the three
theoretical flaws in the naive framework in Eq. (6). Ob-
serve that incorporating any of these flaws into our frame-
work results in immediate performance degradation, vali-
dating our claim made in Sec. 3.3. See the supplementary
for theoretical evidence. A more comprehensive analysis
and ablation study, including explorations of other design
choices and applications to trending sampling techniques
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Model Method CLIPScore ↑ PickScore ↑ ImageReward ↑ Precision ↑ Recall ↑ Density ↑ Coverage ↑ Likelihood ↓

SDv1.5

DDIM 31.4801 21.4830 0.2106 0.5907 0.6328 0.6072 0.7492 1.0367
DDIM + null 31.1007 21.5391 0.2422 0.5660 0.6236 0.5362 0.7134 1.0339
CADS [42] 31.4178 21.2836 0.1012 0.5696 0.6346 0.5562 0.7388 1.0127
SGMS [52] 31.1665 21.2126 0.1230 0.4943 0.5960 0.4357 0.6470 0.9540
MinorityPrompt 31.5376 21.3111 0.2352 0.5671 0.6228 0.5375 0.7328 0.8971

SDv2.0

DDIM 31.8490 21.6801 0.3821 0.5930 0.6292 0.6592 0.7760 1.1100
DDIM + null 31.7223 21.7190 0.4024 0.5861 0.6308 0.5959 0.7378 1.0769
CADS [42] 31.7687 21.5225 0.2981 0.5811 0.6194 0.5865 0.7388 1.0851
SGMS [52] 31.4750 21.4457 0.2981 0.5166 0.6130 0.4713 0.6718 0.9898
MinorityPrompt 31.9586 21.5958 0.4249 0.6047 0.6100 0.6192 0.7602 0.9143

SDXL-LT

DDIM 31.5238 22.6733 0.7331 0.5323 0.6116 0.5206 0.6686 0.6082
DDIM + null 31.5259 22.6884 0.7368 0.5256 0.6144 0.5368 0.6700 0.6077
CADS [42] 31.0418 22.3554 0.5017 0.5211 0.6176 0.5220 0.6560 0.6019
SGMS [52] 31.2961 22.5784 0.6801 0.4823 0.6616 0.4018 0.5852 0.5462
MinorityPrompt 31.3366 22.6050 0.7098 0.4777 0.6580 0.3856 0.5770 0.5457

Table 1. Quantitative comparisons. “SDXL-LT” denotes SDXL-Lightning (4-step version) [29]. “DDIM + null” indicates a baseline that
leverages a properly-chosen null-prompt to encourage minority generations, where we used “commonly-looking” for the results herein.
“CADS [42]” is the state-of-the-art in diverse sampling, while SGMS [52] denotes a minority sampler similar to ours, representing the
state-of-the-art outside the T2I context. “Likelihood” represents log-likelihood values measured in bpd (bits per dimension).

Method CLIPScore ↑ PickScore ↑ ImageReward ↑ Precision ↑ Recall ↑ Density ↑ Coverage ↑ Likelihood ↓
DDIM 31.4395 21.4570 0.1845 0.6070 0.7094 0.6460 0.8410 1.0465
Eq. (7) (proposed) 31.7369 21.3522 0.2839 0.5420 0.7340 0.5534 0.7860 0.9230
Eq. (7) + ẑw0 30.5193 20.7307 -0.1468 0.4890 0.7182 0.4910 0.7450 0.9399
Eq. (7) + sg 31.6597 21.3114 0.2738 0.5230 0.7284 0.4986 0.7470 0.9290
Eq. (7) + Cv 31.6676 21.3652 0.2808 0.5550 0.7262 0.5414 0.7500 0.9281
Eq. (7) + all (i.e., Eq. (6)) 30.2994 20.4840 -0.1944 0.4760 0.6864 0.4762 0.7220 0.9245

Table 2. Ablation study results. “+ ẑw0 ” indicates the case that further incorporates the CFG clean predictions into Eq. (7). “+ sg” refers
to the one employing the stop-gradient on ẑ0(zs|t,0, C). “+ Cv” represents the setting of feeding Cv in the computations of ẑ0(zs|t,0, C)
in place of C. “+ all” is the case that employs all the above three flawed choices, i.e., Eq. (6). We observe clear performance benefits of our
theory-driven design choices over the naive framework in Eq. (6). The results were obtained on SDv1.5.

Method CS ↑ PS ↑ Prec ↑ Rec ↑ Den ↑ Cov ↑ IBS ↓
DDIM 31.4393 21.2478 0.5860 0.6390 0.7688 0.8220 0.6164
CADS [42] 31.2692 21.0262 0.5620 0.5980 0.7964 0.8180 0.5494
Ours 31.2724 21.0404 0.5480 0.6316 0.7672 0.8460 0.5439

Table 3. Effectiveness of our diversity-focused prompt opti-
mization framework in Eq. (9). “IBS” refers to In-Batch Simi-
larity, a diversity metric [8] that measures cosine similarity in the
DINO feature space [3]. We employed SDv1.5 for the results.

(like CFG++ [7]), is presented in the supplementary.
Further application. Beyond our primary focus on minor-
ity generation, we explore a distinct realm of diverse gener-
ation with our optimizer in Eq. (4) to demonstrate the ver-
satility of the proposed optimization framework for solving
various tasks. Our specific goal herein is to encourage diver-
sity in an inference batch that shares the same text prompt
P , similar to the focus in Corso et al. [8]. To achieve this,
we introduce a new objective function that enforces repul-
sion between intermediate instances, formally written as:

J̄ :=

B∑
i=1

∑
k ̸=i

∥ẑ0(z
(i)
t , Cv)− ẑ0(z

(j)
t , Cv)∥22, (9)

where B is the batch size, and {z(i)
t }Bi=1 denotes the inter-

mediate samples in the batch at t. We found that incorpo-
rating Eq. (9) into Eq. (4) yields impressive results, even ri-
valing the state-of-the-art diverse sampler [42] (see Tab. 3).
We leave generated samples in the supplementary.

5. Conclusion

We developed a novel framework for generating minor-
ity samples in the context of T2I generation. Built upon
our prompt optimization framework that updates the em-
beddings of additional learnable tokens, our minority sam-
pler offers significant performance improvements compared
to existing approaches. To accomplish this, we meticu-
lously tailor the objective function with theoretical justifica-
tions and implement several techniques for further enhance-
ments. Beyond our focus of minority generation, we further
demonstrated the potential of our framework in promoting
diversity in generated samples. During this process, we also
showed that the proposed optimization framework can serve
as a general solution, with potential applicability to various
optimization tasks associated with T2I generation.
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