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Abstract

Underwater (UW) robotics applications require depth and
restored images simultaneously in real-time, irrespective
of whether the UW images are captured in good lighting
conditions or not. Most of the UW image restoration and
depth estimation methods have been devised for images un-
der normal lighting. Consequently, they struggle to per-
form on poorly lit images. Even though artificial illumina-
tion can be used when there is insufficient ambient light,
it can introduce non-uniform lighting artifacts in the re-
stored images. Hence, the recovery of depth and restored
images directly from Low-Light UW (LLUW) images is a
critical requirement in marine applications. While a few
works have attempted LLUW image restoration, there are
no reported works on joint recovery of depth and clean
image from LLUW images. We propose a Self-supervised
Low-light Underwater Image and Depth recovery network
(SelfLUID-Net) for joint estimation of depth and restored
image in real-time from a single LLUW image. We have col-
lected an Underwater Low-light Stereo Video (ULVStereo)
dataset which is the first-ever UW dataset with stereo pairs
of low-light and normally-lit UW images. For the dual tasks
of image and depth recovery from a LLUW image, we effec-
tively utilize the stereo data from ULVStereo that provides
cues for both depth and illumination-independent clean im-
age. We harness a combination of the UW image formation
process, the Retinex model, and constraints enforced by the
scene geometry for our self-supervised training. To han-
dle occlusions, we additionally utilize monocular frames
from our video dataset and propose a masking scheme to
prevent dynamic transients, that do not respect the under-
lying scene geometry, from misguiding the learning pro-
cess. Evaluations on five LLUW datasets demonstrate
the superiority and generalization ability of our proposed
SelfLUID-Net over existing state-of-the-art methods. The
dataset ULVStereo is available at https://github.
com/nishavarghesel5/ULVStereo.

1. Introduction

Underwater (UW) image and depth recovery pose difficul-
ties due to color cast and haziness caused by absorption and
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scattering of light in water. The problem is compounded
when these images are captured in dim ambient light in-
fluenced by factors such as cloudiness, time of the season,
higher depths, etc. UW exploration [53, 58, 90] requires
restoration of images and depth maps from the captured UW
observations, regardless of whether they are well-lit or not.
Existing methods for UW depth [25, 62, 72] and restoration
[5, 15,47, 71] that work in adequately illuminated UW im-
ages are not well-suited for dimly-lit scenarios. Although
low-light enhancement methods [23, 36, 45, 55] for terres-
trial images have shown significant advancements, they can-
not be directly applied to low-light UW (LLUW) images
due to the presence of haze and color-cast. Our work en-
ables ‘sea-ing’ in low-light by real-time recovery of images
and depth maps from dimly lit underwater observations.

There exist a few works for LLUW image enhancement
[29, 34, 56, 84]. However, to the best of our knowledge,
there has been no attempt to jointly recover both depth and
clean image from a LLUW image. Another fundamen-
tal challenge in LLUW research is the need for a proper
dataset. The works [84, 95] propose paired UW low-light
datasets where low-illumination is added synthetically to
existing UW dataset [43]. But this does not characterize
a real UW low-illumination scenario. [57] proposes a real
low-light UW dataset. But it is quite small with only 183
images and the scenes are not diverse. [29] proposes a
dataset NUID by collecting real low-light UW images from
several existing UW datasets [31, 43, 57] and from the inter-
net. But these datasets [29, 57] contain only LLUW images,
which are better-suited for inference.

Down-stream tasks such as UW object classification, tar-
get recognition, and tracking require restored images and
depth maps in real-time. Although traditional methods
[5, 62, 63] based on the UW image formation model per-
form both UW image restoration and depth map estima-
tion, their processing time is very high. Deep-learning (DL)
methods are better-suited to meet the real-time requirements
of these tasks since they need only a single pass during in-
ference. Due to the unavailability of real paired datasets
with Ground Truth (GT) in UW scenario, supervised net-
works [43, 44,79, 84], trained on synthetic or paired dataset
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with pseudo-GT, are not reliable for UW image restoration
and depth estimation. Unpaired learning-based [25] and
Generative Adversarial Network (GAN)-based [26] meth-
ods, that use either terrestrial RGBD datasets [68] or syn-
thetically generated datasets for training, also pose domain
gap issues for UW images. To circumvent the need for real
paired or unpaired datasets, several works have emerged
with self-supervision [8, 15, 72, 88] where only real UW
images are used for training. But, they are devised for
normally-lit UW images.

In this paper, we propose a self-supervised learning strat-
egy for joint estimation of depth and latent image from a
single LLUW image in real-time. We refer to it as Self-
supervised Low-light Underwater Image and Depth recov-
ery network (SelfLUID-Net). Our method is primarily ap-
plicable for near-shore situations and when i) natural light
is insufficient while operating at low depths or ii) under nor-
mal ambient lighting but at relatively higher depths. To the
best of our knowledge, [72] is the only other self-supervised
approach that estimates both depth and restored image si-
multaneously from a single UW image. Akin to [72], we
also make use of cues from haze and geometry for esti-
mating depth. But there are major differences. [72] was
devised only for well-lit UW images. Our method han-
dles LLUW images by additionally utilizing Retinex the-
ory. For better depth estimation, we model scene geom-
etry using the illumination-independent reflectance com-
ponent whereas [72] uses geometry between scene radi-
ance without accounting for illumination effects. Our self-
supervision framework utilizes both stereo and monocu-
lar cues, unlike [72] that uses only monocular frames for
training. We additionally propose a moving pixel masking
scheme to account for moving transients (such as plants,
fishes, etc.) in monocular frames which do not respect the
static scene geometry. [72] does not address this issue.

We have captured a UW stereo dataset, Underwater Low-
light Stereo Video (ULVStereo), using two cameras, with
different exposure settings. The cameras are positioned
with a known baseline on a stereo-rig which is designed
ruggedly to prevent any camera shake during data capture
under water. ULVStereo is the first-ever low-light UW
dataset containing low-light and normally-lit stereo pairs
of real UW scenes. To facilitate LLUW image restora-
tion and depth estimation, we judiciously leverage the in-
herent characteristics of ULVStereo. We effectively uti-
lize the stereo pair to extract cues for both depth and clean
image. We combine the physics of UW image formation,
Retinex theory, and constraints induced by the scene geom-
etry for self-supervised training. The input LLUW image
is disentangled into its latent components to get the scene
illumination, reflectance of the scene (which is indepen-
dent of the scene illumination) which we take to be the
clean image (following [55][50][93]), transmission maps,

and global background light. According to Retinex model, a
low-light and a normally-lit image of a scene share the same
reflectance. This view-consistency of reflectances disentan-
gled from the stereo pair of our dataset is enforced during
self-supervision. Depth is first estimated directly from the
transmission map based on their relationship, which is re-
fined using the geometric relationship between reflectance
of image pairs. Since the view-consistency constraint inher-
ently involves depth as well as reflectance, their coupling
is mutually beneficial during self-supervision. To accom-
modate any occluded pixels in stereo view, we additionally
utilize the geometry between monocular frames from the

LLUW video of ULVStereo. However, monocular frames

may contain small moving objects that do not respect the

geometry of the underlying static scene. To address this is-
sue, we propose a moving pixel masking scheme.
Our main contributions are given below.

1. We propose a self-supervised network (SelfLUID-Net)
that effectively utilizes constraints from the physics
of image formation model (UW image formation and
Retinex theory) and scene geometry (relation connect-
ing two images via depth map) for LLUW image and
depth recovery.

2. Unlike existing UW works that ignore the effect of il-
lumination in modeling scene geometry, we utilize the
illumination-independent image components in the ge-
ometry constraint to accurately estimate the depth map.

3. Ours is the first work to jointly recover image and depth
from a single LLUW image in real-time. It is the first to
propose depth estimation directly from a LLUW image.

4. We propose a masking scheme to prevent moving tran-
sients from hampering the training process.

5. We propose the first-ever Underwater Low-light Stereo
Video (ULVStereo) dataset with low-light and normally-
lit UW image pairs that can be used by researchers for
diverse underwater applications.

6. SelfLUID-Net is computationally very efficient (62 fps)
and outperforms the state-of-the-art methods for image
restoration as well as depth estimation. Its generaliza-
tion ability is verified on real LLUW datasets captured
under actual lowlight conditions (in shallow water with
insufficient light and at higher depths upto 10m).

2. Related works

2.1. UW image restoration and depth estimation

For UW image restoration, traditional methods either use
UW image formation model [12] or they simply enhance
the visual image quality using Rayleigh-stretching [19],
contrast correction [30, 92, 99], Retinex [14, 91, 98], etc.
Works that utilize UW image formation model [5, 10, 11,
46, 63,78, 83] estimate both depth and restored image using
suitably-chosen priors in their optimization process. [2] uti-
lizes the depth map for restoration. Traditional methods are
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time-consuming and return inaccurate results due to mis-
match between the adopted prior and actual UW conditions.

Supervised DL-based methods for UW image restoration
and depth are unreliable due to scarcity of real UW datasets
with GT. Supervised UW image enhancement works such
as [43], [44], [79], [37] and [94] used the paired UW dataset
UIEB [43] which has subjectively selected ground truth for
supervised training. [27] proposed a paired dataset HICRD
with image GT generated from the measured attenuation co-
efficients and assumed depth. [74] and [86] used syntheti-
cally generated UW datasets for supervision. The depth es-
timation methods [89] and [73] used a paired UW dataset
USODI10K [28] that contains GT depth maps of UW im-
ages returned from a transformer model for terrestrial depth
estimation [65]. However, GT in the paired datasets used
by these aforementioned methods is not real. To circum-
vent the requirement of paired data, unsupervised or GAN-
based methods for image restoration ([24, 42, 47]) and
depth ([25, 26]) utilizing unpaired datasets have evolved.
However, these unpaired datasets do not fully depict real
UW situations. Recently, several self-supervised methods
[8, 15, 71, 72] have been proposed that utilize only the in-
put UW images for training. Image restoration methods
[8, 15, 71] utilize UW image formation model for super-
vision. [72] returns both the depth map and restored im-
age simultaneously by integrating the UW image formation
model with the geometry constraint between neighboring
frames in a UW video. Recent works [3, 72, 75, 88] uti-
lizes a self-supervised approach proposed in [20] for UW
depth estimation. But all these networks are designed only
for normally-lit images.

Several attempts have been made to address dynamic
scenes in self-supervised depth prediction from terrestrial
images. [20] proposes a masking scheme to remove station-
ary pixels that move with the same velocity as the camera.
[35] utilizes information from several source images. [39]
uses semantic guidance, [17] utilizes radar information, and
[21] makes use of optical flow.

2.2. LL image enhancement and depth estimation

Traditional low-light image enhancement methods [59, 67,
70] that use modifications of histogram equalization suffer
from saturation effects. Retinex decomposition [41, 77] im-
proves contrast by decomposing the input image into illumi-
nation and reflectance. [23] first refines the initial illumina-
tion map and then combines it with the denoised reflectance
to obtain the output. Supervised DL-based methods that
utilize Retinex decomposition [7, 52, 81, 82] heavily de-
pend on paired data. The unsupervised method of [55] pro-
poses a self-calibrated illumination learning framework for
fast and robust image restoration. [50] proposes an archi-
tecture search strategy. A zero-shot work [9] uses different
no-reference training losses. The self-supervised work of
[96] incorporates bilateral learning into the Retinex model.

Without any paired or unpaired data, the works [22, 45] de-
sign a network to learn an image-specific curve, that can
effectively map the low-light image to an enhanced image.

Self-supervised approaches have been proposed for
depth estimation from dark or night-time images. [69] ad-
dresses it by learning a cross-domain dense feature repre-
sentation. By exploiting radar as a supervision signal, [17]
shows better performance in night scenes. [76] uses an im-
age enhancement module and a prior-based regularization.
A partially shared network for day and night images is used
by [49]. [18] proposes a training strategy to enhance the ro-
bustness of depth estimation models in diverse conditions.

2.3. Low-light UW image enhancement

Recently, DL-based works [34, 84, 85, 95, 97] and tradi-
tional methods [29, 48, 56, 57, 60] have been proposed for
LLUW image enhancement. Traditional methods [56] and
[57] utilize the UW image formation model and the local
contrast information in the input image patches. [29] incor-
porates the Retinex model within an illumination-channel
sparsity prior (ICSP) guided optimization framework. [60]
addresses non-uniform illumination in UW by equalizing
the illumination component, using non-linear guided filter-
ing. An inverted UW image is used to model the low-light
characteristics of UW images in [48]. [84] and [95] are
DL-based supervised networks for LLUW image restora-
tion where they synthetically add low-illumination to real
UW images for the training data. Supervised network [34]
synthesized LLUW-paired data by introducing haziness to
terrestrial low-light datasets. However, the low illumination
or haziness in these datasets is not real. The unsupervised
approach in [97] proposes a GAN-based network that learns
the mapping from LLUW images to normal terrestrial im-
ages. But this mapping to land images is not realistic for
UW images. [85] includes a low-light enhancement branch
similar to [45] with no-reference loss functions for training.
However, it has a pre-defined exposure level at the output
that is not generalizable to different images.

To the best of our knowledge, there are no reported
works for depth estimation directly from a LLUW image. A
recent work [51] achieves depth estimation from a LLUW
image but it does so in two steps. It first estimates the clean
image from a LLUW image using the pre-trained weights
from a UW image restoration method [16] (strictly speaking
this is not correct as [16] is not devised for LLUW images),
and then estimates depth map from the clean image utilizing
monocular depth estimation methods for terrestrial images
[66] [20]. Hence, the performance suffers as the quality of
the estimated depth map is directly linked to the output of
[16] which is poor for low-light input images.

3. ULVStereo dataset

Underwater Low-light Stereo Video (ULVStereo) dataset
captured by us is the first-ever dataset of normally lit and
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low-light UW stereo-videos. It contains pairs of videos
of 10 different submerged UW 3D structures found at a
depth of 4-7 m from the sea surface. All videos were cap-
tured using two GoPro Hero10 cameras at 30 fps. The two
cameras are separated by a known baseline and fixed to a
rugged stereo rig. With a minimum ISO, exposure time of
both cameras is adjusted (the least exposure time 1/480 sec
for Camera 1 and Auto mode in Camera 2) such that one
captures LLUW videos while the other captures the corre-
sponding normally lit counterpart. Exposure control is a
common practice in paired data generation for LL terres-
trial image restoration [4, 40, 81]. When ambient light is
dim, one can capture a normally-lit image by increasing the
exposure time of the camera. But such an image will con-
tain motion blur due to the transients in water. It may be
noted that the normally-lit image in the pair is not the ex-
act GT of the clean image corresponding to LLUW image,
but is a UW hazy image captured in normal light. Sample
frames and the statistics of the 10 pairs of videos from UL-
VStereo dataset are given in the supplementary. A stereo
image pair is shown in Fig. 1.

Strictly speaking, in ULVStereo, LLUW images cap-
tured by altering the exposure settings of the camera do not
depict exact LLUW conditions. However, acquiring real
low light and the corresponding normally lit image pairs
from the same viewpoint is not practically feasible, more
so in UW scenarios. Moreover, safety concerns preclude
capturing UW images in the deep sea or at night. The
captured videos from both cameras are time-synchronized
with DaVinci Resolve software [6] utilizing sound waves.
We manually selected pairs (normally lit and low-light) of
video segments from the synchronized videos where each
segment contains a single UW structure. The two cam-
eras were calibrated with a 10x7 checkerboard pattern. It
was found that the stereo rig has a small but non-negligible
translation in directions other than the intended baseline.
Along with the dataset, we also provide camera intrinsics
as well as extrinsic parameters (obtained from MATLAB
stereo camera calibrator app). For evaluation, we have used
real LLUW images captured at depth of upto 10m from four
other datasets along with ULV Stereo.

4. Proposed method

For a scene radiance (clean image) J and global background
light A, with transmission maps 7p and Tz corresponding
to direct signal and backscatter, respectively, the observed
UW image [ at a pixel z is given by [1]

(&) = J@)Tp(2) + (1~ Te@)A (1)

If D(z), 8% and 8% are the depth of the image pixel z,
and channel-wise extinction coefficients for direct signal
and backscatter, respectively, then Tp (z) = e~ PpP(®) and
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Figure 1. Schematic of our SelfLUID-Net. Input LLUW image /7, from Camera
1 is disentangled into its latent components (A, R, L, Tp, and T) using the
disentanglement block where R, is the restored image. Depth D of I, is estimated
directly from the transmission maps and 3. The reflectance R n from the correspond-
ing normally-lit UW image I v from Camera 2 is warped to the viewpoint of Camera
1 using D and the known relative pose Tereo between the two cameras. The consis-
tency between Ry, and the warped reflectance from R is used for self-supervision.
The consecutive frames from the low-light video are used to solve for occluded pixels
and a masking scheme is proposed to address dynamic transients in the video. The
network structure of each block is given in the supplementary.

According to classical Retinex theory [23, 41], the ob-
served scene radiance can be represented as a product of re-
flectance R and illumination L where the reflectance is the
desired clean image (which is independent of the scene illu-
mination). Inspired by this theory, LLUW image enhance-
ment works [29, 84] represent the original scene radiance of
a LLUW image J as the product of its reflectance R, and
illumination L. Following this representation, a low-light
UW image I}, can be written as

IL(I') = RL({L‘)LL(:L‘)TD(IE) + (1 - TB(ac))A (2)

The block diagram of our SelfLUID-Net is given in Fig. 1.
We aim to determine reflectance R, which we treat as the
clean image and depth D from a single LLUW image [;..
Consider a time-synchronized image pair (I, and I) from
our ULVStereo dataset. The corresponding reflectances dis-
entangled from Iy and Iy are Ry and Ry. We impose
reflectance consistency constraint on Ry and Ry, i.e., the
low-light/normally-lit pair must share the same reflectance.
Since the images in a stereo pair are related by a known
geometry (with relative pose Tgereo), Rz can be predicted
from the viewpoint of Ry utilizing depth D. Hence, D also
gets refined by the reflectance consistency constraint. Train-
ing with only the stereo image pairs suffers from issues due
to occlusions and out-of-view pixels. We address this by
utilizing adjacent frames from the low-light UW monocu-
lar video and propose a pixel masking scheme to prevent
moving transients from adversely influencing the learning
process. An outline of our training strategy is given below:

1. Input LLUW image I, is disentangled into its latent
components. R-Net, L-Net, TD-Net, and TB-Net esti-
mate Ry, Ly, Tp, and T'g, respectively. The A-block
estimates the global background light A by using Gaus-
sian filtering with a high standard deviation [15, 72]. We
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impose illumination smoothness constraint [22, 81] to
derive L. To accomodate wavelength dependent atten-
uation of light intensity that falls on UW objects, we as-
sume a three channel illumination map L. Ry, 1p,
T's, and A also contain three separate channels. The dis-
entangled components are combined using the LLUW
image formation model (Eq. 2) to get I, back.

. Depth of I, is estimated from transmission maps 7p
and T using the relation D = {—log(T.)/f« : * =
D or B} where 3, the extinction coefficient is estimated
using 5-Net. [3-Net returns a 6-valued vector as each 3-
value vector is used with Tp or Ts. We constrain depth
maps, derived from all the pairs of 8 and transmission
map channels, to be equal [72].

. Reflectance consistency constraint: We utilize the
illumination-independent reflectance to model the scene
geometry.  Reflectance Ry corresponding to the
normally-lit UW image Iy is also disentangled using
the same R-Net. R, which we refer to as source re-
flectance, if viewed from the pose of the low-light cam-
era, must resemble Ry, (derived from [;), which we re-
fer to as target reflectance. Using the estimated depth D,
the known intrinsic matrices of two cameras K7 and K,
and the relative pose between the two cameras Tyiereo,
Ry is warped to Ry, using the reprojection formula [20],

/L = RN<pr0j(Da7;leremK17K2)> (3)
where proj() maps the target image coordinate xp, to
the source image coordinate = i, using the relation,

TRy = K27;tereop(xRL)K;1$RL 4)

We use locally sub-differentiable bilinear sampling from
a spatial transformer network [32] to sample source im-
ages. We impose reflectance consistency constraint be-
tween Ry and warped reflectance R’ which forces a)
R-Net to return an improved reflectance, and b) TD-Net,
TB-Net, and 3-Net to estimate a better depth map D.

. Addressing occluded or out-of-view pixels: In the
stereo data, there can be pixels that are visible in the low-
light target image but are not visible (are either occluded
or out-of-view) in the corresponding normally-lit source
image. During training, even if our network estimates
the correct depth in the target image, the absence of such
pixels in the source image can adversely affect the re-
projection error (difference between the target pixel in-
tensity and warped pixel intensity from source image).
[20] introduces a per-pixel minimum reprojection error
where they calculate reprojection error for several source
images, and for each pixel, they take the minimum pho-
tometric reprojection error. In a similar vein, for any tar-
get reflectance Ry, we also take two source reflectances.
One is Ry which is from the normally-lit image cap-
tured and the other is R4 which is the reflectance from
the adjacent monocular frame of the LLUW image I .

For warping Ry, we use equations similar to Eqns.
(3) and (4), but with K1 = K5 and the relative camera
pose between consecutive frames (Tr, R, , ) estimated
from Pose-Net. By utilizing the geometry cue from both
stereo and monocular video, we take full advantage of
our stereo video dataset.

5. Moving pixel masking scheme: Although our training
data from the ULV Stereo dataset contains images with a
majority of static pixels, there are frames with small and
dynamic transients such as fish, swaying plants, etc. Be-
cause we incorporate monocular video frames for train-
ing (to account for occluded pixels as explained in the
previous point), we need to mitigate the effect of mov-
ing pixels on the reprojection error. Here, we introduce a
masking scheme that removes the pixels with a high re-
projection error from the loss calculation. We introduce
a threshold 7 = p + ko where k is a hyperparameter,
while i and o are the mean and standard deviation of
the reprojection errors for all the pixels in the target im-
age. Pixels that have per-pixel reprojection error greater
than 7 are masked for the final loss calculation. Hence,
our final per-pixel photometric reprojection loss is taken
to be the minimum of per-pixel reprojection loss from
stereo Lry and the masked per-pixel reprojection loss
M LRy, from monocular video frames (see Fig. 1).

4.1. Loss functions

Reconstruction Loss, L..: We combine the disentangled
components of the input low-light UW image I, using Eq.
2 to get I;. Similarly, we obtain Iy, from the disentangled
components of /. Hence, the reconstruction loss L is

SNENDY  pe = |11, — Tl + 1Ty — Il )
Photometric reprojection loss, £z: The reflectance con-
sistency constraint between Ry, and R/ can be written as
the per pixel reprojection loss from stereo Lrr = |Rpp —
Tp| for any pixel p. Similarly, R7 is estimated from Ry
using a similar relation as in Eq. 3, and the corresponding
per pixel reprojection loss from monocular video is given
by Lrr» = |Rpp — RY,|. Our proposed mask for remov-
ing moving pixels, M can be written as M = [Lrr» < 7]
where [ ] is the Iversion bracket. Our final per pixel repro-
jection loss is
‘CRp zmin(ﬁRL/,MﬁRLn) (6)
Lrp is averaged over all pixels to get final photometric re-
projection loss Lp.
Ilumination smoothness loss, L;i;: We enforce smooth-
ness of illumination L using the loss £;s which is given by,

Lis= > IV Lil|y (7
i=low light, normally lit
Edge-aware depth smoothness loss, L4s: Edge-aware

depth smoothness loss Lgs [20, 72] imposes depth smooth-
ness except at image gradients.

Lys = |0, D*|e”19%=RLl 19, D*|e~19RLl —(g)
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where D*, the mean-normalized depth is used to avoid
shrinkage of depth [20].

Channel-wise depth consistency loss, L4.: To arrive at a
single depth D from the 3 channel transmission maps (Ip
and T'g) and 6-valued vector 3, as in [72], we use channel-
wise depth consistency loss Lgc as

Ly = Z HDg

z={R,G,B};y={D,B}

where Dy = —log(T})/Bx-

Color loss, L, To correct for potential color deviations in
R, a color loss L, [15] is added based on the gray-world
assumption of natural image statistics. If @ denotes mean
and Q = {R, G, B} is the color channels in R,

Lar =Y |ln(R?) = 0.5][3 (10)
ceQ
Spatial consistency loss, Lg,,: To mitigate the effect of
noise in the reflectance R, we impose spatial consistency
loss that preserves the difference of neighboring regions be-
tween the scene radiance J (= R-L) and its restored version
R and this is given by,

Lon =4 Z S0 (7 = T — (R = BY)))°

i=1jeS(i)
Y

where ¢ is a local region (/N number of local regions) and
j € S(i) are its four neighbouring regions. J*'¢ and R*'¢
are the average intensity values of the local region in J and
R, respectively. We choose the size of local region as 4x4.
Total Loss: The total loss of our network is given by

L= aAcrec+'7['R+<£is+n£ds+)\£dc+6ﬁclr+w'€spa (12)

where a, 7, (, 1, A, §, and w are the weights corresponding
to different losses. We set « = 1.5, v = 0.05, ( =

n = 50, A = 0.02, § = 0.2, and w = 0.001 using grid-
search.

During test time, a single low-light UW image is passed
to R-Net to get the restored image R and the depth D is
estimated from the transmission map (7p or Tz returned
from TD-Net or TB-Net) and 3 returned by 3-Net.

1 )

5. Experiments

5.1. Training and evaluation settings

Our model is trained using cropped patches of 800 x 800
pixels with a learning rate of 3 x 106 for 20 epochs using
Adam optimizer with a batch size of 1. We took k =
in calculating 7 = p + ko as it was found to be good
empirically. Experiments are conducted on a PC with an
Intel Xeon CPU, 24 GB RAM, and an NVIDIA GeForce
RTX3090 GPU.

Datasets: For training, we have used 6000 frames from
both low-light and normally-lit videos of ULVStereo
dataset. For testing, we have used: ULV Stereo (65 images),
Sea-thru [2] (50 images), NUID [29] (115 images), FLSea

Table 1. Quantitative comparisons of enhanced image quality on datasets ULV Stereo,
Sea-thru [2], NUID [29], and UIEB g, [43]. PSNR is in dB. The best and the second-
best entries are highlighted in red and blue, respectively. Trad.: Traditional, SS.: Self-
supervised, UnS.: Unsupervised. URN: USe-ReDI-Net, ZD: ZeroDCE.

Dataset | Ours: ULVStereo |  Sea-thru[2] | NUID[29] | UIEBg [43]

Category | Method | UCIQE] UIQMT | UCIQE] UIQM{| UCIQET UIQM] PSNR? SSIMT
063 465 | 068 456 | 061 365 | 1538 035

Taauw | HEPIOS) 065 247 | 064 443 | 063 204 | 1234 037
rad. UNTV [83] 0.56 284 0.63  4.65 051 249 | 1601 050
MMLE [52) 061 316 | 066 400 | 038 236 | 1701 035

CBLA [33] 062 308 | 0S8 400 | 035 198 | 1670 033

g USUIR [15] 061 283 | 062 481 | 060 263 | 1692 054
- URN [72] 052 213 | 052 444 | 060 201 | 1613 030
ICSP [29] 061 417 | 058 267 | 058 211 | 1472 052

Trad. LLUW‘LQUWE[%J ‘ 063 484 ‘ 059 2386 ‘ 0.60 263‘ 1482 054
Trad LL | LIME[23] | 052 212 | 046 167 | 054 128 | 1324 041
ZD 2] 039 201 | 044 502 | 048 132 | 1211 049

UnS.LL 7D+ [45] 044 196 | 045 229 | 051 273 | 1245 040
RUAS [50] 052 161 | 047 138 | 036 137 $28 033

SCI [35] 031 246 | 050 28 | 033 138 | 139 032

Ours | SelfLUID-Net | 0.66 280 | 074 482 | 063 318 | 1721 058

[64] (50 images), and UIEB 4,k Where UIEBg, is formed
from 50 dark images of UIEB [43] dataset. Sea-thru and
FLSea has GT for depth and UIEBg,« has pseudo-GT (se-
lected subjectively) for restored images. It is to be noted that
the datasets that we have used for testing (NUID, UIEB gy,
Sea-thru, and FLSea) are real UW datasets with poorly il-
luminated images which are captured under normal camera
settings in actual low light conditions whereas our training
dataset ULV Stereo contains LLUW images captured by ad-
justing the exposure settings of the camera.

Methods for comparison are provided in Tables |1 and
2. All DL methods are re-trained using images from UL-
VStereo dataset. We have not taken any supervised meth-
ods since those methods cannot be trained using ULV Stereo
due to the unavailability of GT. Since there is no other
real dataset with LL and normally-lit UW image pairs,
SelfLUID-Net cannot be trained on any other dataset. Re-
sults of all baselines are obtained from the source codes pro-
vided by the respective authors.

Evaluation metrics: For image quality assessment, we
have used 1) no-reference metrics: UIQM [61] and UCIQE
[87] for datasets without GT; 2) PSNR/SSIM for UIEBg,.
Since all methods produce depth maps up to a scale,
for evaluating depth prediction accuracy, two scale invari-
ant metrics are used. 1) SI-MSE: scale-invariant mean
squared error [13]; 2) Pearson correlation coefficient (p) [5]:

PDy.Dy = % Cov(D1, D) is the covariance be-
tween depth malps 12))1 and D», and o is standard deviation.

5.2. Qualitative and quantitative evaluations

In the figures and tables, we have used these abbrevia-
tions for different methods. UR: USUIR[15], URN: USe-
ReDI-Net[72], ZD: ZeroDCE[22], RS: RUAS[50], Mn2:
Mono2[20], HD: HR-Depth[54], MD: Manydepth[80],
UWN: UW-Net[25].

Image restoration: In Fig. 2, we provide restoration re-
sults from different methods for one LLUW image each
from ULVStereo, Sea-thru [2], NUID [29], and UIEB g«
[43] datasets. Traditional UW image restoration methods
HL [5], HLRP [98], UNTV [83], and MMLE [92] struggle
to handle LLUW images. Lowlight image restoration meth-
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ULVStereo Sea-thru [2] NUID [29] UIEBgar [43]
Figure 2. Comparison of enhanced underwater images from different methods.
Pseudo-GT for UIEBgu is given in the second-to-last row instead of SCI output.

ods LIME [23], ZeroDCE++ [45], RUAS [50], and SCI
[55] remove lowlight effects, but are unable to remove UW
haze from images. The output of the LLUW image restora-
tion method ICSP [29] is not good whereas L?>UWE [56]
brightens the darker areas, but is unable to remove haze.
Self-supervised methods USe-ReDI-Net [72] and USUIR
[15] struggle in darker regions. Only our method enhances
darker regions along with color restoration for all four im-
ages. For the first two images, our output has the most
visibility compared to others. For the third image, our

1(a)input l(b)UDCP[n]T?E)'GDCP[&] I(MHL[5]  1(e)IBLA[62] 1(DH

1(MD[80] 1(WRNW[76] 1()UWN[25] 1(j) yars 1MGT
& N Z ¥4 y

o -

- e SN ns" =) 3
2(a)input  2(b)UDCP[11] 2(c)GDCP[63] 2(d)HL[5] 2(e)IBLA[62] 2(HH!

o [%3

2(g)MD[80] 2(h)RNW[76] 2(i))UWN[25] ‘Z(j)URN[72] {(k)OursA 2(hGT

3(a)input  3(b)UDCP[11] 3 DCP63]  3(HL: BLA[62] 3(HMn2[20]

3(g)HD[5 3(h)MD[80] 3(1)RNW[76] L§(j)UWN[25] 3(k)URN[72] 3(1)Ours
Figure 3. Input UW image (a) from datasets: (1) - Seathru [2], (2) - FLSea [64], and
(3) - ULVStereo. Ground truth depth map (1(I) and 2(1)) is given for Seathru (GT
is obtained using stereo images) and FLSea datasets. The depth map obtained from
different methods are shown. Note that SelfLUID-Net returns plausible depth maps
[(1(k) and 2(k)) are closer to GT (1(1) and 2(1))]. It is to be noted that GT image for
Seathru dataset contains black regions where depth is undefined due to the inability of
stereo to predict GT depth for the homogeneous sky region. Such undefined regions
must be discarded while comparing the results.

method reveals some orange-colored fishes and background
regions. For the fourth image (UIEBg, dataset), our output
is close to GT (provided in the second-to-last row).

For quantitative comparisons, average metric values
are given in Table 1. Our SelfLUID-Net has the best PSNR
and SSIM scores for UIEBy,x. Our UCIQE [87] values are
the best. We have the second best UIQM values for Sea-
thru [2] and NUID [29] datasets. It is well-known that, for
an accurate assessment of image quality, UIQM should be
used alongside other metrics and subjective evaluations as
well. For ULVStereo, even though L?UWE [56] and HL [5]
have the highest UIQM scores, their outputs are not visually
good. Our method consistently gives excellent results (both
visually and quantitatively) on all four datasets.

Depth estimation: The depth map estimated from different
methods are given in Fig. 3 and the average metric values
are given in Table 2. Depth prediction of IBLA is wrong
for FLSea [64] (Fig. 3:2(e)) and ULVStereo (Fig. 3:3(e))
datasets whereas GDCP returns wrong depth maps for Sea-
thru [2] (Fig. 3:1(c)) and FLSea [64] (Fig. 3:2(c)) datasets.
UDCP and HL struggle in predicting good depth map for
Sea-thru dataset (Fig. 3:1(b,d)). HR-Depth [54] and Many-
depth [80] predict wrong depth values in dark regions, es-
pecially for Sea-thru and FLSea datasets (Fig. 3:(1,2)(f,g)).
RNW [76] is devised for depth estimation from LL terres-
trial images and it struggles to predict good depth map from
LLUW images (see Fig. 3:(1,2)(h) and (3)(i)). The depth
maps returned by UW-Net [25] are also not good. USe-
ReDI-Net [72] struggles to output the transitions in depth.
Our method returns plausible depth maps for ULVStereo
dataset (see Fig. 3:(3)(a) with a red rectangle at a lower
depth and a blue rectangle where the sea-bed is at a higher
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Table 2. Quantitative comparisons of depth estimation accuracy on Sea-thru [2] and
FLSea [64] datasets for the methods UDCP [11], GDCP [63], HL [5], IBLA [62],
Mn2 [20], HD [54], MD [80], RNW [76], UWN [25], URN [72], and Ours. Trad.:

Table 4. Ablation study. Average PSNR (in dB)/SSIM on UIEBgu [43] is given in
the first row and p/SI-MSE on FLSea [64] dataset is given in the second row.

Self LUID-Net Remove Lz Remove L%, Remove M LY, Remove mask M Remove Ly,

Traditional, SST: Self-supervised method for Terrestrial images, UnS.: Unsupervised. 17.21/0.58 16.33/0.52 16.20/0.50 16.82/0.53 16.93/0.55 16.50/0.53
Category | | Trad. UW | SST | SSTLL | UnS.UW | 0.71/0.18 0.32/0.30 0.50/0.27 0.58/0.23 0.64/0.20 0.68/0.19
Method | | 001 ] (631 | (5] | (621 | [20] | [541 | [80] | [76] | [25] | [72] | Ours Masking
Sea-thru g 039 | 033 | 044 | 049 | -0.11 | 004 | 0.08 0.25 042 | 043 | 052 Input

‘ stfISE) ‘ 046 ‘ 056 | 058 ‘ 043 ‘ 092 ‘ 074 ‘ 081 | 062 ‘ 0.82 ‘ 042 | 040
FLSea ‘ ol ‘ 049 | -0.01 ‘ 061 ‘ 029 ‘ -0.06 ‘ 002 | -004 | 033 ‘ 0.49 ‘ 059 | 071

SI-MSE| 0.25 0.55 0.23 0.24 0.52 0.78 0.75 0.49 0.28 0.22 0.18

Table 3. Execution time in milliseconds for a 512x512 image.
UR URN ZD ZD+ RS SCI Mn2 HD MD RNW UWN  Ours
14 18 8 5 28 30 25 40 54 20 25 16

(d) UR[15] (e) Ours

(b) URN [72]
Figure 4. Segmentation output (pink in row 1 and blue in row 2) from SAM using
point-prompts (green stars indicated for diver in the first row and fishes in the second
row) on (a) LLUW images and (b)-(e) restored outputs from different methods. Please
note that segmentation mask generated is better on our restored images.

(a) LLUW image (c) MMLE [92]

depth.) Our outputs are closer to GT for Seathru [2] and
FLSea [64]. In Table 2, our method has the best metrics
scores for both datasets.

Execution time for all DL methods is given in Table 3.
Our method provides both depth and image in just 16ms.
[72] also returns both outputs in 18ms, but our results are
significantly better.

To demonstrate the effectiveness of SelfLUID-Net on a
downstream task, we performed prompt based segmentation
using the foundation model SAM [38] on two input LLUW
images, and the corresponding restored images from the top
4 methods: USeReDINet, MMLE, USUIR, and ours. The
results are given in Fig. 4. Segmentation on the first LLUW
image only segments half of the diver. In the outputs from
USeReDINet and MMLE, SAM merges fishes also in the
segmented output. Compared to USUIR, segmentation out-
put from our restored output is better as it could capture the
hand region of the diver clearly. For the second example,
segmentation on only the restored image from SelfLUID-
Net has the full structure of fish, including its fins. Seg-
mented output on the restored image from USUIR erro-
neously contains other portions also along with the fishes.

5.3. Ablation studies

We conducted ablation studies specifically on the photo-
metric reprojection loss, the effect of stereo and monocular
cues, proposed mask, and spatial consistency loss. Recon-
struction loss, illumination smoothness loss, and channel-
wise depth consistency loss cannot be excluded from loss
calculations since they enforce constraints on the physics of
image formation model. Edge-aware depth smoothness loss
and color loss are commonly used in literature [15, 20, 72].
The subfigures (2) to (6) in Fig. 5 are the outputs obtained
after removing the specific losses that are given in the fig-
ure caption. The average PSNR (in dB)/SSIM on UIEB g«

4| Target image

Figure 5. Left (ablation study): Input UW image from ULVStereo and outputs (re-
stored images in the first row and depth maps in the second row) from different com-
binations of our proposed losses (1-6). (1): SelfLUID-Net, (2): Remove Lg, (3):
Remove E'RI, (4): Remove ]\/Illlél, (5): Remove mask M, (6): Remove Lgpq.
Right: For a target image, the predicted mask to avoid moving pixels is shown.

[43] and p/SI-MSE on FLSea [64] dataset for each configu-
ration is given in Table 4. If we remove Lg (Fig. 5:(2)),
the network does not utilize the geometry cue for depth
estimation and struggles to predict depth only from haze.
Without the reflectance and stereo geometry cue from the
normally-lit UW image (Fig. 5:(3)), the network is unable
to produce a good reflectance and depth from the LLUW
image. Fig.5:(4) shows that, if we only utilize stereo pairs
for training, the performance is marginally less than that
with both stereo and monocular frames. If we do not use
the proposed masking scheme (Fig. 5:(5)), the network per-
formance is lower. Spatial consistency loss Ly, improves
the result (Fig. 5:(6)) by removing noise in the reflectance
returned from R-Net. In Fig. 5 (right-side), the mask pre-
dicted for a target image is also shown. It can be seen that
the mask removes the adverse effect of moving pixels in the
areas of rope and moving plants inside the sea.

In supplementary, a discussion on lowlight underwater
scenarios, results on more LLUW images, network com-
plexity, additional ablations, and limitations are included.
We also show that sequential processing of LLUW images
(UW haze removal followed by LL restoration, and vice
versa, and depth estimation from restored images) yields
suboptimal results compared to our method.

6. Conclusions

In this paper, we addressed the twin tasks of image restora-
tion and depth estimation from a single LLUW image us-
ing a self-supervised network that was trained with our pro-
posed ULVStereo dataset that contains time-synchronized
UW stereo image pairs captured under low-light and nor-
mal illumination. We exploit the physics of UW image for-
mation model in conjunction with the Retinex model to dis-
entangle the input LLUW image into its latent components.
The constraint that reflectance is invariant to change in il-
lumination settings is enforced for self-supervision, to re-
fine the reflectance (clean image) as well as the depth map.
Extensive experiments and evaluations, on LLUW datasets
captured under actual lowlight environments, reveal the ef-
ficacy of our proposed method. Our proposed dataset can
be harnessed by the research community.
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