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Figure 1. SketchAgent leverages an off-the-shelf multimodal LLM to facilitate language-driven, sequential sketch generation through an
intuitive sketching language. It can sketch diverse concepts, engage in interactive sketching with humans, and edit content via chat.

Abstract

Sketching serves as a versatile tool for externalizing
ideas, enabling rapid exploration and visual communica-
tion that spans various disciplines. While artificial systems
have driven substantial advances in content creation and
human-computer interaction, capturing the dynamic and
abstract nature of human sketching remains challenging. In
this work, we introduce SketchAgent, a language-driven, se-
quential sketch generation method that enables users to cre-
ate, modify, and refine sketches through dynamic, conversa-
tional interactions. Our approach requires no training or
fine-tuning. Instead, we leverage the sequential nature and
rich prior knowledge of off-the-shelf multimodal large lan-
guage models (LLMs). We present an intuitive sketching
language, introduced to the model through in-context ex-
amples, enabling it to “draw” using string-based actions.
These are processed into vector graphics and then rendered
to create a sketch on a pixel canvas, which can be accessed
again for further tasks. By drawing stroke by stroke, our
agent captures the evolving, dynamic qualities intrinsic to
sketching. We demonstrate that SketchAgent can generate
sketches from diverse prompts, engage in dialogue-driven
drawing, and collaborate meaningfully with human users.

1. Introduction
Sketching is a powerful tool for distilling ideas into their
simplest form. Its fluid and spontaneous nature makes
sketching a uniquely versatile tool for visualization, rapid
ideation, and communication across cultures, generations,
and disciplines [26, 102]. For example, designers use
sketches to explore new ideas [39, 103], scientists employ
them to formulate problems [48, 72], and children engage
in sketching to learn and express themselves [27, 28] (see
Fig. 2). Artificial systems, in principle, have the potential
to support and enhance human creativity, problem-solving,
and visual expression through sketching, adapting flexibly
to their exploratory nature [22, 98, 122].

Traditionally, sketch generation methods rely on human-
drawn datasets to train generative models [5, 6, 16, 36, 42,
59]. However, fully capturing the diversity of sketches
within datasets remains challenging [26], limiting these
methods in both scale and diversity. Recent advance-
ments in vision-language models, such as CLIP [78] and
text-to-image diffusion [82], have enabled sketch genera-
tion methods that reduce reliance on human-drawn datasets
[29, 46, 105]. These methods leverage pretrained model
guidance and differentiable rendering [58] to optimize para-
metric curves, creating sketches that go beyond predefined
styles and categories.
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While representing a significant step toward a general-
purpose sketching system, these methods lack a crucial as-
pect of human drawing: the process itself. Current meth-
ods, though versatile, optimize all strokes simultaneously,
making the intermediate sketching steps meaningless. As
a result, the sketch cannot be decomposed into a coherent
sequence of strokes that reflects the drawing process. In
contrast, humans draw iteratively, stroke by stroke, incor-
porating visual feedback and continuously adapting—a dy-
namic, evolving process that fosters creativity, ideation, and
communication [52, 88, 101].

In this work, we introduce SketchAgent, a sketch genera-
tion agent that leverages the prior knowledge and sequential
nature of multimodal large language models (LLMs) to en-
able versatile, progressive, language-driven sketching. Our
agent can generate sketches across a wide range of textual
concepts—from animals to engineering principles (Fig. 1,
left). Its sequential nature facilitates interactive human-
agent sketching and supports iterative refinement and edit-
ing through a chat-based dialogue (Fig. 1, right).

Unlike vision-language models that directly generate im-
ages from text [75, 80, 82], multimodal LLMs [1, 2, 15,
56, 64, 74, 97] accept text and images as input but only
output text. To produce visuals, they either utilize exter-
nal “tools” (such as calling a text-to-image model) or are
prompted to generate executable code (e.g., Python [43],
SVG [9]) to create charts, diagrams, or graphics. How-
ever, prompting for such representations to directly produce
sketches often results in a mechanical appearance with uni-
form, precise shapes that lack the subtle irregularities and
spontaneous qualities characteristic of human sketches (see
Fig. 3B). Additionally, despite their robustness in textual
tasks, these models often struggle with fine-grained spatial
reasoning [41, 118] as they are primarily optimized for text,
making sketch editing more challenging.

To address these limitations, we introduce an intuitive
sketching language that enables an off-the-shelf multimodal
LLM agent to “draw” sketches on a canvas by providing
string-based actions, without additional training or fine-
tuning. We define the canvas as a numbered grid, allow-
ing the agent to reference specific coordinates (e.g., x2y8)
to enhance its spatial reasoning capabilities. We represent
a sketch as a sequence of semantically meaningful strokes,
each defined by a series of such coordinates. We leverage
In-Context Learning (ICL) [7, 51] to introduce the agent to
the new representation, and Chain of Thought (CoT) [108]
to enhance its planning capabilities. Given a sketching task,
the agent produces a textual response following our rep-
resentation, which we process by fitting a smooth Bézier
curve to each coordinate sequence. The curves are then ren-
dered onto the canvas to form the final sketch. We find this
approach useful in emulating a more natural sketch appear-
ance. For collaborative sketching, the canvas remains acces-

(4) The "Phaeno Science Center" in Germany

(2) Citibank logo by Paula Scher(1) "Chair” by Vincent Van Gogh (3) Leonardo Da Vinci’s sketchbooks

(4) Alexander Bell’s first drawing 
of the telephone

(A) Frank Gehry. Elevation 
Sketches. Guggenheim Museum

(B) Alexander Bell’s drawing 
of the telephone

(C) Children drawing

(D) Basketball strategy 
(pick and roll)

Figure 2. Examples of sketches used across disciplines and goals.
(A) Ideation and design: Process Elevation Sketches by the ar-
chitect Frank Gehry, Guggenheim Museum. (B) Engineering:
Alexander Bell’s telephone drawing. (C) Expressing emotions:
Children’s sketches. (D) Visual communication: Planning and
communicating game strategy in basketball.

sible to both the user and the agent throughout the session.
The agent generates strokes sequentially and pauses accord-
ing to an adjustable stopping token, allowing the user to add
their own strokes directly to the canvas. These strokes are
then integrated into the agent’s sequence, enabling it to con-
tinue drawing, with real-time canvas updates.

We demonstrate SketchAgent’s capability to generate
sketches of diverse concepts while capturing the inherently
sequential and dynamic nature of sketching. We showcase
our agent’s ability to collaborate effectively with humans
in real time to create novel and meaningful sketches. Our
method is the first to leverage pretrained multimodal LLMs
for sequential sketching without additional training, paving
the way for a general-purpose artificial sketching system
that supports iterative, evolving interactivity.

2. Related Work
Sketch Generation Early methods approached sketch
generation by designing image filters to simulate sketch-
like effects [10, 109]. With the advent of deep learn-
ing, data-driven approaches emerged to address a range of
sketch-related tasks [117], including category-conditioned
sketching [42, 76, 93], object sketching [59, 62], scene-
sketching [12, 57, 60, 114], sketch completion [6, 63,
94], portrait drawing [3, 120, 121], part-based generation
[6, 37, 42, 129], and more. While sketch data collec-
tion has been broadly explored [21, 34, 40, 71, 85, 113],
the wide variation in sketch styles and their adaptation
to specific tasks [23] makes collecting datasets that en-
compass this diversity challenging. For example, Quick-
Draw [47], the largest available sketch dataset with 50 mil-
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lion sketches, covers only 345 object categories and pri-
marily focuses on simple, iconic representations. This lim-
its data-driven methods to the style, abstraction level, and
concepts seen during training. Recently, large pretrained
vision-language models [75, 78, 80, 82, 84] have shown
remarkable text-to-image generation capabilities by lever-
aging extensive visual knowledge from billions of training
images [89]. While these models can be prompted to gen-
erate sketch-like images (see Fig. 3A), they do so in a sin-
gle step and in pixel space, lacking the sequential, stroke-
based process of human sketching. Subsequent approaches
[14, 29, 31, 46, 105, 106, 115, 116, 124] leverage the priors
of these models to guide an iterative optimization of para-
metric curves, with a differentiable rasterizer [58] linking
pixel and vector representations. While producing vector
sketches, the final strokes lack order and semantic meaning,
and the optimization-based approach overlook the sequen-
tial aspect of the sketching process, making these methods
suboptimal for collaborative sketching.

Sequential and Collaborative Sketching Collaborative
human-machine sketching holds promise in enhancing cre-
ativity, ideation, communication, and learning, as explored
in various fields, including human-computer interaction
(HCI) [17, 45, 49, 50, 53, 54], computer graphics [55, 96],
robotics [86, 87], cognitive science [24, 25, 35, 67], learning
sciences [18, 38, 104], and more. Central to collaborative
sketching is its sequential, adaptive, and dynamic process,
with each action carrying intent. Existing methods employ
diverse training strategies to account for the discrete nature
of sequential sketches, including reinforcement and adver-
sarial learning [32, 68, 129], multi-agent referential games
[69, 77], transformers [5, 6, 11, 33, 61, 81, 112], and more.
SketchRNN [42] is a pioneering work in this area, introduc-
ing the QuickDraw dataset [47], a crowd-sourced collection
of real-time sketch sequences made by users. They utilize
this dataset to train a recurrent neural network for sequential
sketch generation, which was later shown [24, 73] to have
potential for human-machine collaboration. However, this
approach remains constrained by the predefined categories
encountered during training.

Multimodel LLMs for Content Creation LLMs [7, 19,
79, 100] and multimodal LLMs [1, 2, 15, 56, 64, 74, 97]
receive text as input (or text and images for multimodal)
and output text. To enable visual content generation, these
models are often paired with external “tools” that extend
their functionality [44, 90, 111, 119]. For example, Chat-
GPT [74] generates images by internally calling a separate
model, DALLE-3 [4]. Another approach involves prompt-
ing models to produce code in languages like Python [43],
Processing [92], SVG [9], or TikZ [8] that can be ren-
dered into visuals such as graphs, charts, and vector graph-
ics. However, such code-generated content often looks

(A) DALLE3 [4]
(B) LLMs [2]

(SVG)
(C) SketchAgent (D) Human [47]

Figure 3. Sketch appearance. (A) Text-to-image diffusion models
operate in pixel space, lacking the sequential nature of sketches.
(B) Prompting LLMs to produce visuals with SVG results in a
uniform, mechanical appearance. (C) Sketches produced by our
agent appear less mechanical, more closely resembling the nature
of (D) Human sketches, which are often spontaneous and irregular.

rigid, with uniform and overly precise shapes that lack the
subtle irregularities and spontaneous qualities characteris-
tic of freehand sketches (see Fig. 3B). In contrast, we pro-
pose a sketching language grounded in spatial informa-
tion that encourages the model to produce a more natu-
ral sketch appearance, which we then process into vector
graphics. Common strategies for enhancing LLMs capa-
bilities include Chain-of-Thought prompting [13, 70, 83,
91, 127], which breaks down tasks into smaller, logical
steps to mimic human reasoning, and In-Context Learning
(ICL) [7, 20, 95, 123, 125], where examples of input-output
pairs are provided to help the model infer task patterns.

3. Preliminaries

P0

P1
P2

P3

Sample at t
Control points

t=0.25

Figure 4. Cubic
Bézier curve.

Vector Graphics and Bézier
Curves Vector graphics allow
us to create visual images directly
from geometric shapes such as
points, lines, curves, and polygons.
Unlike raster images (represented
with pixels), vector graphics are
resolution-free, more compact, and editable. SVG [110] is
an XML-based format for storing vector graphics, popular
for its scalability and compatibility with modern web
browsers. The process of transferring vector graphics into
pixel images is called rasterization or rendering. Cubic
Bézier curves are commonly used to represent sketches in
vector graphics. A cubic Bézier curve (Fig. 4) is a smooth
parametric curve defined by four points: a start point P0,
an end point P3, and two control points P1 and P2 that
shape the curvature . The set P = {P0, P1, P2, P3} is
often referred to as the curve’s control points. The curve is
described by the following polynomial equation:

B(t) = (1−t)3P0+3(1−t)2tP1+3(1−t)t2P2+t3P3, (1)

where t ∈ [0, 1] is a parameter that moves the point along
the curve from P0 at t = 0 to P3 at t = 1.
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User Prompt

System Prompt

SketchAgent

“<thinking>To draw a shark..
<strokes>
 <s1>
   <points>‘x5y8’ ‘x12y20’..
   <t_values>’0’ ‘0.3’..
   <id>dorsal fin</id>
 </s1>
 <s2>
   <points>...
   <t_values>...
 ...
<strokes>”

(xj,yj), t

Processing Render
Human
Sketcher

P0

P1
P2

P3

3
2
1

1  2  3 . . . . . . . . 50

50

. .
 . 

. .
 . 

.

3
2
1

1  2  3 . . . . . . . . 50

50

. .
 . 

. .
 . 

.

Canvas

Sj

(x,y) coordinates
Control points

Figure 5. Method Overview. SketchAgent (blue) receives drawing instructions and generates a string representing the intended sketch.
Inputs include: (1) a system prompt (orange) introducing the sketching language and canvas, (2) a user prompt (pink) specifying the task
(e.g., “draw a shark”), and (3) a numbered canvas. The agent’s response outlines a sketching strategy (in thinking tags) and a sequence of
strokes defined by coordinates, which are processed into Bézier curves and rendered onto the canvas.

4. Method

Our goal is to enable an off-the-shelf pretrained multi-
modal LLM to draw sketches based on natural language
instructions. An overview of our pipeline is illustrated in
Fig. 5. We utilize a frozen multimodal LLM (“SketchA-
gent” shown in blue), which receives three inputs: (1) a sys-
tem prompt containing guidelines for using our new sketch-
ing language, (2) a user prompt with additional task-specific
instructions (e.g., “Draw a shark”), and (3) a blank can-
vas on which the agent can draw. Based on the given task,
the agent generates a textual response, representing the se-
quence of strokes to be drawn, which we then process into
vector graphics and render onto the canvas. The canvas can
then be reused in two ways: it can be fed back into the
model with an updated user prompt for additional tasks and
editing, or it can be accessed by a human user who can draw
directly on it to facilitate collaborative sketching. Next, we
describe each component of the pipeline.

The Canvas Although multimodal LLMs demonstrate re-
markable reasoning abilities, they often struggle with spa-
tial reasoning tasks [30, 66, 99]. We present a simple exam-
ple (see Fig. 6) to illustrate how this limitation affects the
naive use of these models for sketch generation and inter-
active sketching. We provide GPT-4o [74] with an image
depicting a simple line drawing of a partial house featuring
five numbered points (from 1 to 5), and ask it to identify
which points should be connected to complete the house.
While the model correctly identifies the pair of points, it
fails to select the correct pixel coordinates when given a ba-
sic draw line tool that connects two points, even after
multiple attempts. To enhance the model’s spatial reason-
ing ability, we utilize a numbered canvas that forms a grid.
This grid features numbers (1 to 50) along the x-axis and
the y-axis (Fig. 5, left). Each cell is uniquely identified by
a combination of the corresponding x-axis and y-axis num-
bers (e.g., the bottom-left cell is x1y1). The agent interacts
with the canvas by specifying desired (x,y) coordinates.

User: 
“Complete the 
drawing to form 
a house”

Agent: 
“Draw a line 
between points 1 
and 5.”

Figure 6. Although excelling in visual reasoning, multimodal
LLMs often struggle to translate these abilities into spatial actions.
In this example, GPT-4o [74] intends to draw a line between points
1 and 5 but fails to execute this with a draw line function that
accepts pixel coordinates.

Sketch Representation We define a sketch as a sequence
of n ordered strokes S = {S1, S2, ...Sn}. Each stroke
Si is defined by a sequence of m cell coordinates on the
grid: Si = {(xj , yj)}mj=1, represented in string format as:
<points>x1y1, x15y20, ...</points>.

A naive approach to processing the textual sequence of
coordinates would be to use a polyline, connecting con-
secutive points with line segments. However, our grid-
based representation sparsifies the canvas, resulting in a
non-smooth and unnatural appearance when using polylines
(see Fig. 7, left). To achieve a smoother appearance, an al-
ternative approach is to treat the coordinates as a sequence
of control points defining smooth curves. However, as illus-
trated in Fig. 4, the control points often do not lie directly
on the curve. Consequently, if the agent aims for a stroke
that passes through specific coordinates, it must derive the
control points that define this stroke, which is challenging.

We propose an alternative approach: we treat the spec-
ified (x,y) coordinates as a set of desired points sam-
pled along the curve, and fit a smooth Bézier curve to them
(Fig. 7, right). To accommodate curves with complex cur-
vature, we also task the model with determining when each
point on the curve should be passed through, correspond-
ing to the t value described in Eq. (1). Thus, for each
stroke Si, the agent provides a set of m sampled points
Si = {(xj , yj)}mj=1, along with a corresponding set of t
values: Ti = {tj}mj=1. Based on these, we fit a cubic Bézier
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(A) Polyline (B) Control Points (C) Ours

Figure 7. Methods for processing the agent’s coordinate sequence
(in red): (A) Polyline results in an unnatural appearance. (B) Di-
rectly using coordinates as Bézier control points is challenging as
they do not lie on the curve. (C) Fitting a Bézier curve to sampled
coordinates provides smoother results.

curve to the sampled points by solving a system of linear
equations using least squares, where the unknowns are the
control points P = {P0, P1, P2, P3}:

P = argminP ||AP −B||, (2)

where A ∈ Rm×4 contains the cubic Bézier basis
functions evaluated at specific tj values (as described in
Eq. (1)), and B ∈ Rm×2 contains the m sampled points
{(xj , yj)}mj=1. The least squares solution minimizes the er-
ror between the fitted Bézier curve and the sampled points.
For long sequences resulting in a large fitting error, we
recursively split the curve. Additionally, we account for
Bézier curves of lower degrees, including quadratic curves,
linear lines, and points. Upon completing this process, we
render the parametric curves onto the canvas.

Drawing Instructions We provide the model with a sys-
tem prompt and a user prompt (marked in orange and pink
in Fig. 5). In the system prompt, we supply the agent with
context about its expertise (“You are an expert artist spe-
cializing in drawing sketches”) and introduce it to the grid
canvas along with examples of how to use our sketching
language for drawing single-stroke primitives (full prompts
are provided in the Appendix). The system prompt is fixed
and can be applied to a variety of sketching tasks. The user
prompt includes a description of the desired task and an ex-
ample of a simple sketch of a house drawn with our sketch-
ing language. We find this to be crucial in assisting the agent
with preserving the correct format that could be parsed di-
rectly [7]. The agent is tasked with responding in the format
shown in the gray text box in Fig. 5. In the <thinking>
tags, the agent is tasked to outline the overall sketching
strategy [108]. This typically includes describing the dif-
ferent components of the sketch, the intended sketching or-
der, and the overall placement of each part. The agent is
also tasked with providing an ID tag following each stroke,
which is useful for further analysis and for producing anno-
tated sketches in scale.

4.1. In-Chat Editing and Collaborative Sketching

The above process can be repeated iteratively to support
multiple sketching tasks and interactions. Text-based sketch
editing in a chat dialogue is enabled by feeding the rendered

Golden Gate
Bridge

Mount
Fuji

Eiffel
Tower

DNA Dou-
ble Helix

Pendulum
Motion

Double-Slit
Experiment

Flowchart
Tic-tac

toe

Figure 8. Sketches produced by SketchAgent for concepts beyond
pre-defined categories. The textual input describing the desired
concept shown below each image.

canvas back to the agent (see dashed arrow in Fig. 5) and
updating the user prompt with the desired edits. To support
collaborative human-agent sketching, the canvas remains
accessible to both the human user and the agent throughout
the entire sketching session. We define an adjustable stop-
ping token, </s{j}>, which instructs the agent to pause
generating the sequence at stroke number j. We then pro-
cess and render the generated strokes onto the canvas up to
that point, then the user can add strokes directly to the can-
vas to continue the sketch. The user-drawn strokes are pro-
cessed and converted into the agent’s format by reversing
our fitting process, i.e., sampling each stroke at multiple t
values (as shown in Eq. (1)), and selecting the points closest
to each cell’s center on the grid. The converted user strokes
are then chained with the agent’s sequence, after which the
agent resumes sketching until the next stopping token.

5. Results
We evaluate the performance of our method qualitatively
and quantitatively across a selected set of sketching tasks.
Additional tasks, evaluations, and examples are provided in
the Appendix. All results presented in the paper were gen-
erated using Claude3.5-Sonnet [2] as our backbone model,
unless stated otherwise.

5.1. Text-Conditioned Sketch Generation
Figures 1 and 8 demonstrate SketchAgent’s capability to
generate sketches of various concepts that extend beyond
standard categories, which includes scientific concepts
(e.g., “the double-slit experiment”, “pendulum motion”),
diagrams (e.g.,“circuit diagram”, “a flowchart”), and no-
table landmarks (e.g., “Taj Mahal”, “Eiffel Tower”). More
examples are provided in the Appendix. To quantitatively
evaluate text-conditioned generation we utilize the Quick-
Draw dataset [47]. We randomly sample 50 categories (out
of 345), and apply our method to generate 10 sketch in-
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GPT-4o GPT-4o
-mini

Claude3
Opus

Claude3.5
-Sonnet*

Claude3.5
-Sonnet
(SVG)

Human
(QD [47])

Top1 0.15 0.04 0.13 0.23 0.23 0.27
±0.04 ±0.03 ±0.04 ±0.05 ±0.04 ±0.07

Top5 0.30 0.10 0.27 0.44 0.43 0.49
±0.06 ±0.04 ±0.05 ±0.03 ±0.06 ±0.06

Vis.

Table 1. Sketch recognition evaluation. Average Top-1 and Top-5
sketch recognition accuracy computed with CLIP zero-shot clas-
sifier on 500 sketches from 50 categories. The last row visualizes
one sample from each experiment. *Indicates our default settings,
which receives the highest accuracy among all models.

stances per category, resulting in 500 sketches in total. Fol-
lowing common practice [105, 106, 115, 116], we utilize
a CLIP zero-shot classifier [78] to evaluate how well the
generated sketches depict the intended category. We com-
pare the performance of different multimodal LLMs by re-
peating the same process with GPT-4o-mini [74], GPT-4o
[74], and Claude3-Opus [2] as our backbone model (in ad-
dition to Claude3.5-Sonnet [2], our default backbone). As a
baseline, we include human-drawn sketches sampled from
the QuickDraw dataset [47]. The average Top-1 and Top-5
sketch classification accuracy are presented in Table 1. As
can be seen, human sketches achieve the highest recognition
accuracy, with Claude3.5-Sonnet performing best among
all models, approaching human-level rates under the CLIP-
score metric. More evaluation of confusion patterns and
visualization of the data are provided in the Appendix.

We additionally compare to prompting Claude3.5-
Sonnet to directly generate SVGs using the following
prompt: “Write SVG string that draws a sketch of a
<concept>. Use only black and white colors”. The cor-
responding scores are shown in the fifth column of Tab. 1.
While this approach achieves recognition scores compara-
ble to those of SketchAgent, the outputs are often char-
acterized by uniform and precise shapes, failing to repli-
cate the fluidity and natural irregularity of free-hand hu-
man sketches (e.g., Fig. 3). To evaluate how “human-
like” our agent’s sketches appear, we conduct a two al-
ternative forced choice (2AFC) user study with 150 par-
ticipants. Each participant was presented with pairs of
sketches depicting the same object class produced by dif-
ferent methods, and asked to choose the sketch they be-
lieved was human-drawn. 150 sketches across 50 ob-
ject classes were tested, comparing three methods: direct
prompting, SketchAgent, and human sketches from Quick-
Draw (see Appendix for details). Results indicate SketchA-
gent’s drawings appeared more human-like, being chosen
as human-drawn in 74.90±3.35% of cases when compared
with direct prompting. When compared to human drawings,

• Body
• Head
• Left eye
• Right eye
• Left front leg
• Right front leg
• Left back leg
• Right back leg
• Mouth

• Body and hump
• Neck 
• Head
• Ear
• Front left leg
• From right leg
• Back left leg
• Back right leg
• Tail 

Figure 9. SketchAgent gradually draws stroke-by-stroke, each
stroke is annotated by the agent with a semantic meaning.

simple ↑complexity 

String length

Id
en

tif
ic

at
io

n 
ra

te

Figure 10. Recognition rate as a function of sketch complexity.

users slightly preferred human sketches (54.68 ± 4.61%)
over SketchAgent’s, while direct prompting was chosen
only 38.9± 5.55% of the time.

Lastly, to quantitatively analyze the effect of concept
complexity, we study the case of drawing letters. We sys-
tematically increase sketch complexity by adding letters to
the target concept (e.g., from ’ABC’ to ’ABCDEFGH’) and
count the number of correctly recognized letters in each
sketch. The graph in Fig. 10 shows that performance de-
creases as the complexity increases.

5.2. Sequential Sketching

Figure 9 shows stroke-by-stroke sketch generation by
SketchAgent, with the labels on the right indicating the
sketching order and the meaning our agent associates with
each generated stroke (see Appendix for more examples).
Stroke annotation during generation is enabled by utilizing
the prior of the backbone LLM, providing a valuable fea-
ture for analysis and data collection [37, 65, 107, 126, 128].
In Fig. 11, we illustrate why accounting for the sequen-
tial nature of sketching more closely emulates the process
of human drawing. We present the sketch creation process
of SketchAgent alongside SVGDreamer [116], SketchRNN
[42], and a human sketch sampled from QuickDraw [47].
SVGDreamer (first row), is an optimization-based method,
where a set of randomly initialized parametric curves (left-
most column) are iteratively refined to form a sketch,
guided by a pretrained text-to-image diffusion model [82].
This process is time-consuming, taking 2000 iterations (1.6
hours), which makes it unsuitable for interactive sketching.
While the final sketch (rightmost column) appears detailed
and artistic due to the powerful vision backbone, the in-
termediate sketching and individual strokes lack clear se-
mantic meaning. In contrast, SketchRNN (second row)
is a sequential generative model trained on human-drawn
dataset, producing sketches in real-time with strokes added
progressively, emulating closer a human-like sketching pro-
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SVGDreamer [116]. ≈ 1.6 hours

SketchRNN [42]. ≈ 4 seconds

SketchAgent (Ours). ≈ 20 seconds

Human [47]. ≤ 20 seconds

Figure 11. Sequential sketching process. SVGDreamer [116] re-
quires 2000 iterations (1.6 hours) with intermediate steps lacking
semantic meaning. SketchRNN [42] operates in real-time with co-
herent steps but is limited to QuickDraw categories. SketchAgent
draw gradually with meaningful strokes and no category restric-
tions. Human sketches evolve through gradual, meaningful steps.

cess (as shown in the last row). Similarly, SketchAgent
(third row) produces sketches gradually, with each stroke
carrying a semantic meaning, by utilizing the sequential na-
ture of its backbone model. While SketchRNN is restricted
to generating sketches only within the 345 categories it
was trained on, SketchAgent leverages the extensive prior
knowledge of its backbone multimodal LLM, enabling it to
create sketches of general visual concepts.

We use the set of 500 samples described in Sec. 5.1 to
quantitatively analyze the sequential nature of our agent’s
sketches compared to human drawings. On the left of
Fig. 12, we present histograms comparing the number of
strokes in QuickDraw sketches (orange) and our sketches
(blue). Most QuickDraw sketches contain 1 to 6 strokes,
while our sketches show a broader distribution, peaking
between 5 to 10 strokes. This suggests that, on average,
QuickDraw sketches appear more abstract. To ensure a
balanced comparison of sketches with similar levels of ab-
straction, we select sketches from both groups with a sim-
ilar number of strokes (the largest intersection is found in
sketches with 4-7 strokes, comprising 204 of our sketches
and 120 from QuickDraw) and measure the change in CLIP-
Score as a function of the accumulated number of strokes
(Fig. 12, right). Both QuickDraw and our sketches exhibit
a generally similar pattern, with CLIPScore increasing as
more strokes are added, suggesting that sketches become
progressively more recognizable as they evolve.

Human
SketchAgent

Figure 12. Sequential sketching analysis of SketchAgent (blue)
and Humans [47] (orange). Left: Histograms of stroke distribu-
tion per sketch, showing QuickDraw sketches are more abstract
on average. Right: CLIPScore as a function of the accumulated
number of strokes for sketches containing 4-7 strokes, showing a
similar recognition pattern over time.

5.3. Human-Agent Collaborative Sketching

We demonstrate the potential of our system for facilitating
interactive human-agent collaboration, resulting in seman-
tically meaningful and recognizable sketches. We design a
web-based collaborative sketching environment (Fig. 13A)
where users and SketchAgent take turns drawing on a
shared canvas to create a recognizable sketch from a given
textual concept. Following the evaluation protocol in col-
labdraw [24], we select 8 simple concepts, based on the
agent’s demonstrated ability to draw them independently, to
focus evaluations on assessing the impact of collaboration.
Participants sketched concepts in two modes: solo, where
users drew independently, and collab, where users and
SketchAgent collaborated, adding one stroke at a time until
either was satisfied with the drawing. We collect sketches
from 30 participants, resulting in 480 sketches in total. Av-
erage CLIP recognition rates are shown in Figure 13B. Col-
laboratively produced sketches (blue) achieve recognition
levels close to those made solely by users and higher than
those produced by the agent alone (dashed lines). To assess
the contribution of each party in collaborative mode, we an-
alyze partial sketches with only agent-made strokes (pink)
or user-made strokes (green), resulting in a significant re-
duction in recognizability. This suggests that both user and
agent contribute meaningfully to the recognizability of the
complete sketch.

5.4. Chat-Based Sketch Editing

We next demonstrate the effectiveness of our method in per-
forming interactive text-based sketch editing within a chat
dialogue, where the input to the agent combines both text
and images. Inspired by [92], we explore edits that involve
spatial reasoning and object relations. We focus on three ob-
ject categories: outdoor, indoor, and animals, with three ob-
jects each, and design editing prompts to add objects to the
input sketches. For outdoor and indoor objects, we specify
relative locations of added concepts, e.g., “left to”, “on top
of” (see Fig. 14 left). For the animals category, we tasked
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Figure 13. Collaborative sketching evaluation measured using
CLIP classification. Sketches created collaboratively (blue) ap-
proaching those made solely by users (dashed lines). In collab-
orative sketches, keeping agent-only strokes (pink) or user-only
strokes (green) significantly reduces recognizability.

“Building” “Nightstand” “Cat”
Tree to
the left
Sun on
top right
Building
on right

Mug
on top
Lamp
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Plant to
the left

Add
glasses
Add
a hat
Add
a skirt

Figure 14. Chat-based sketch editing. We iteratively prompt
SketchAgent to add objects to sketches through chat dialogues.

the agent with adding accessories to each animal without
guidance on their exact placement, testing its ability to in-
fer placement based on semantics (e.g., placing a hat on a
head (see Fig. 14 right). The full list of object and editing
instructions is provided in the Appendix. We produced a
total of 54 sketches. Evaluating the edited sketches reveals
that SketchAgent correctly follows instructions 92% of the
time, with 94% accuracy for specified relations and 88%
accuracy for inferred semantic relations.

6. Ablation

We evaluate the impact of each component of our method by
systematically removing them and measuring sketch recog-
nition rates as detailed in 5.1. We assess the effects of re-
moving the system prompt, omitting the CoT process (i.e.,
excluding thinking tags and ’think step-by-step’ instruc-
tions), and modifying ICL (the complete sketch example
provided in the user prompt). When modifying ICL, we use
a correctly formatted single-stroke example instead of the
complete sketch, as fully removing ICL results in outputs
that do not follow the expected format making them un-
parsable. The results in Table 2 show that the full SketchA-
gent pipeline achieves the highest performance, highlight-
ing the importance of each component. Interestingly, not
providing a complete sketch example significantly reduces
performance. We additionally ablate the impact of the grid
resolution, by varying the resolution from 10 to 100 (see
Tab. 2, bottom). Extremely low resolutions degrade perfor-
mance, while mid-level resolutions outperform 100× 100.

w/o System
Prompt w/o CoT

Modified
ICL

SketchAgent
(full)

Top1 0.20± 0.04 0.14 ±0.02 0.07± 0.02 0.23± 0.04
Top5 0.42± 0.03 0.29± 0.04 0.16± 0.03 0.43± 0.06

Grid Size 10× 10 25× 25 50× 50 75× 75 100× 100

Top1 / Top5 0.14 / 0.28 0.19 / 0.42 0.23 / 0.43 0.23 / 0.41 0.19 / 0.37

Table 2. Ablation study. Average Top-1 and Top-5 CLIP recogni-
tion accuracy. Top: We systematically remove each component in
our pipeline, showcasing all components contribute to the agent’s
full performance. Bottom: Grid resolution ablation.

7. Limitations and Future Work
SketchAgent has several limitations. First, it is constrained
by the priors of the backbone model, primarily optimized
for text rather than visual content. As a result, the agent
often produces rich textual descriptions of object parts but
struggles to convert these into effective sketching actions,
resulting in overly abstract and unrecognizable outputs. For
example, in Fig. 15A, the agent effectively describes key
parts of a unicorn (e.g., the horn), but the sketch is unrec-
ognizable. This constraint also impacts the depiction of
human figures (Fig. 15B). While distinctive features (e.g.,
Frida Kahlo’s eyebrows or Michael Jordan’s dunk) may be
captured well in language, the resulting sketches are overly
simple, with an amateur style, lacking expressivity. We ex-
pect this issue to improve as future models advance in vision
capabilities. Lastly, the agent may struggle with drawing
letters and numbers. This could be improved in future work
by providing relevant in-context examples.
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Figure 15. Limitations. Sketches of complex concepts (A) and
human figures (B) appear too abstract and unrecognizable with
non-professional style. (C) Fail to depict letters and numbers.

8. Conclusions
We presented a method for language-driven, sequential
sketch generation, that can produce versatile sketches in
real-time and meaningfully engage in collaborative sketch-
ing sessions with humans. We show that the prior knowl-
edge embedded in pretrained multimodal LLMs can be ef-
fectively leveraged for sketch generation through an in-
tuitive sketching language and a grid canvas, without
requiring additional training or fine-tuning. We hope
our work represents a meaningful step toward develop-
ing general-purpose sketching systems with the potential
to enhance human-computer communication and computer-
aided ideation.
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