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Abstract

This paper addresses a promising yet underexplored task,
Image-to-Sounding-Video (I2SV) generation, which ani-
mates a static image and generates synchronized sound si-
multaneously. Despite advances in video and audio gener-
ation models, challenges remain to develop a unified model
for generating naturally sounding videos. In this work, we
propose a novel approach that leverages two separate pre-
trained diffusion models and makes vision and audio influ-
ence each other during generation based on the Diffusion
Transformer (DiT) architecture. First, the individual video
and audio pretrained generation models are decomposed
into input, output, and expert sub-modules. We propose us-
ing a unified joint DiT block to integrate the expert sub-
modules to effectively model the interaction between the two
modalities, resulting in high-quality I2SV generation. Then,
we introduce a joint classifier-free guidance technique to
boost the performance during joint generation. Finally, we
conduct extensive experiments on three popular benchmark
datasets, and in both objective and subjective evaluation
our method surpass all the baseline methods in almost all
metrics. Case studies show our generated sounding videos
are high quality and synchronized between video and audio.

1. Introduction
The real world is constantly in motion and sound. Mim-
icking this dynamic nature is essential for content gener-
ation and foundational for building world models. For a
long time, the generative community has predominantly
focused on single-modality synthesis, exploring architec-
tures [16, 36], generative frameworks [29, 34], and scal-
ing properties [3, 10, 36] to enhance video or audio quality.
Though capable of producing high-fidelity video [3, 23, 51]
or audio [10, 32] separately, current single-modality gen-
erators struggle to create naturally paired sounding videos
Bridging two modalities to jointly generate sounding videos
remains understudied, persisting as an open challenge.

Figure 1. Cases for Image-to-Sounding-Video (I2SV) generation.
Comparison with the other four schemes shows that our method
significantly outperforms the other schemes regarding synchro-
nization between the generated video and audio when animating
and sounding an image in high quality. Zoom in to see details.

Several works initially address sounding video genera-
tion, either unconditionally or via text conditioning. Un-
conditional approaches [39, 43, 47] are limited to specific
domains, such as dance [26] or landscapes [25] scenes, hin-
dering an efficient exploration of open-domain capabilities.
The unconditional generation also falls short when com-
pared to conditional generation in terms of quality [27].
Text-conditioned approaches [18, 33, 44] offer more flex-
ibility but face bottlenecks in processing the text modal-
ity. The performance heavily relies on constructing high-
quality video-audio captions and modeling alignment with
caption. This diverts the model’s focus away from modeling
the interaction between video and audio modalities, lead-
ing to a lack of sufficient fine-grained cross-modal interac-
tions. Some works explore guidance techniques [13, 49]
to enhance performance of aforementioned approaches at
inference time, but do not directly address their problems.
Both paths achieve generating sounding videos in subopti-
mal quality, neither shows to be a scalable way to explore
sounding video generation with stable generation quality
and focusing on audiovisual interaction mechanisms.
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We propose formulating sounding video generation as an
image-to-sounding-video (I2SV) task, where a static image
serves as both the conditional input and the initial frame
for generating a synchronized audiovisual sequence. Un-
like unconditional or text-conditioned approaches, I2SV
emphasizes bridging visual and auditory modalities while
enabling open-domain sounding video generation. Based
on existing works, there are three potential solutions to
this task. (1) Independent parallel generation employs
separate image→audio [40] and image→video [3] mod-
els, but risks temporal or semantic inconsistencies (e.g., a
closed-mouth dog paired with barking sounds in Figure 1).
(2) Sequential generation via cross-modal [32, 48, 55, 56]
pipelines (image→audio→video or image→video→audio)
reduces inconsistencies but suffers from error propaga-
tion—erroneous video outputs could corrupt subsequent au-
dio generation. (3) Coarse-grained I2SV frameworks like
CoDi [44] utilize contrastive learning for modality interac-
tion, yet their semantic alignment remains insufficient for
high-dimensional, temporally precise audiovisual synchro-
nization. Developing a unified model that enables fine-
grained cross-modal interaction while preserving temporal
and semantic consistency remains a challenge.

To address this challenge, we propose a simple yet effec-
tive approach based on the diffusion transformer (DiT) [36]
architecture for modeling the interaction between video and
audio, using a single model to achieve image-to-sounding
video generation. The capabilities of the DiT model have
been recently validated across various generative domains,
able to generate high-quality single modality data [4, 6, 10]
and even fit unconditional video-audio joint [47] or text-
image joint [2] distributions. We further investigate the po-
tential of DiT in modeling sounding video. Rather than
directly estimating a joint video-audio distribution using a
DiT model trained from scratch, we leverage the power-
ful existing single modality generative models as submod-
ules. Specifically, given two expert diffusion models, a pre-
trained video generation model, and an audio generation
model, regardless of whether they are based on UNet [3, 31]
or DiT architectures, we decompose them into submodules
in different types and then use a Joint Block to combine
these submodules, forming a single DiT block. We find
that such approach can leverage the expertise of pre-trained
single-modality models while enabling the fine-grained in-
teraction between the two modalities, thereby achieving
high-quality image-to-sounding video generation.

We further improve the inference mechanism for I2SV
joint generation. The classifier-free guidance (CFG) [15]
for conditional generation is extensively employed in cur-
rent research, demonstrating strong capabilities in follow-
ing conditions and producing high-fidelity generation re-
sults. Typically, the CFG technique is applied for single-
modality generation. We observe that in the joint genera-

tion model, the standard vanilla CFG may not be optimal
as it only steers alignment with conditions without steer-
ing joint interactions. We introduce a joint classifier-free
guidance (JointCFG) technique that employs the compari-
son between marginal distribution and joint distribution to
refine the guidance effect. Further, we found that gather-
ing inference results from submodules into JointCFG fur-
ther improves guidance (JointCFG*).

Our contributions are: (1) We propose an innovative
JointDiT architecture that leverages pretrained video and
audio diffusion models and uses a Joint Block to model their
interaction. (2) We introduce an improved CFG technique
in joint generation scenarios that significantly enhances the
performance of JointDiT, which is also applicable to other
joint frameworks. (3) We benchmark I2SV task. Through
detailed experiments, our method achieves state-of-the-art
performance, as demonstrated on our demo page 1.

2. Related Work

Video and audio are inherently co-occurring modalities, and
modeling their paired relationships is crucial towards esti-
mating the real world. However, research on generation for
both modalities has taken a long journey before converging.
Video Generation. In visual generation domain, the focus
is on progressively modeling more complex visual distri-
butions. This has evolved from generating low-resolution
images [34] to producing high-resolution images [38] and
further extending image models towards video genera-
tion [6, 12, 41]. As for video, the community concentrates
on generating higher-fidelity, higher-resolution and longer-
duration videos [3, 23, 51, 54, 58]. Along with this, there
is a research line focuses on controllability, such as incor-
porating image conditions to significantly control the visual
content [23, 28, 51], as opposed to relying on text only.
Audio Generation. The audio domain shares a similar
trend. Development follows a path of generating higher-
quality audio at fixed lengths [10, 30, 50], covering more
types (e.g., sound, speech, music) [46], and extending au-
dio length [9]. With the exploration of more complex tasks,
along with scaling models and data, both video and audio
modalities can now estimate highly complex unimodal dis-
tributions, yielding impressive unimodal generation results.
Video-Audio Cross-Generation. While unimodal genera-
tion excels, simply combining the outputs of both modal-
ities does not yield a coherent result. To achieve fully
consistent (e.g., semantic and synchronization) audiovisual
outcomes, recent work has focused on conditioning be-
tween modalities to model their relationships. This includes
generating videos from sound [25, 52, 55], speech [14]
or music [7], or conversely, generating sound for a silent
video [8, 32, 48, 56]. Such approaches establish connec-

1https://anonymoushub4ai.github.io/JointDiT
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tions between the two modalities in a cross conditional man-
ner, aiming for harmonized cross-generation results.
Video-Audio Joint Generation. Direct joint distribution
modeling provides inherent modality consistency advan-
tages over sequential generation that risks error propagation
(e.g., video generation artifacts affecting subsequent audio
synthesis). Current joint generation paradigms fall into two
categories: (1) Leveraging two pre-trained video and au-
dio models, where additional classifiers [13, 49] or cross-
attentions [18, 33] guide joint generation. This way lacks
fine-grained bidirectional interaction between modalities.
(2) Training a new model from scratch to directly model
the joint distribution [39, 43, 47]. While this approach al-
lows finer-grained interactions, skipping unimodal learning
is often inefficient, leading to poor generation quality and
being limited to preliminary unconditional generation.

Efficiently modeling the joint distribution and capturing
fine-grained interactions between video and audio remains
an open challenge. Our work addresses this issue through
exploring the I2SV task, focusing on the interaction be-
tween visual and audio modalities, especially the efficient
interaction way of two pre-trained generative models.

3. Method

3.1. Preliminary: Unimodal Diffusion Models
Basics. Diffusion Models (DMs) are probabilistic gen-
erative models that learn to iteratively transform random
noise into clean data. Typical DMs estimate single modal-
ities (e.g., video or audio), using various frameworks like
DDPMs [34] or EDMs [20]. The forward diffusion process
gradually corrupts clean data into Gaussian noise following
a predefined schedule. During training, a DM Dθ learns
to reverse this corruption in several timesteps. We exem-
plify this with a video DM Dθv under the EDM-framework
and an audio DM Dθa under the DDPM-framework. EDM
directly adds Gaussian noise nσ with σ2-variance to clean
video latents v0 at continuous timestep t(σ) = 0.25logσ,
where logσ is sampled from N (Pmean, P

2
std) (Pmean, Pstd are

predefined hyperparameters [3]). DDPM combines Gaus-
sian noise ϵ and clean audio latents a0 linearly at discrete
timestep t following a predefined schedule ᾱt. Both frame-
works train denoising networks to predict clean latents from
noisy inputs conditioned on cv or ca at each continuous or
discrete timestep. The training objective minimizes an L2
loss between predicted and ground-truth latents:

L(θv) =E
[
∥v0 −Dθv (v0 + nσ; cv, t(σ)) ∥2

]
, (1)

L(θa) =E
[
∥a0 −Dθa

(√
ᾱta0 +

√
1− ᾱtϵ; ca, t

)
∥2
]
. (2)

Guidance Methods. Widely used Classifier-free guidance
(CFG) [15] is a technique for DM inference that enhances
generation quality and conditional alignment. It adjusts the
denoising direction through linear extrapolation between
conditional and unconditional predictions at each timestep.

Take a video DM as illustration:

DCFG
θv (vt; cv, t) =Dθv (vt; cv, t)

+ ω (Dθv (vt; cv, t)−Dθv (vt;∅, t)) ,
(3)

where ω governs guidance strength and ∅ indicates null
conditions for unconditional generation. In practice, both
conditional and unconditional DMs can be implemented
through a shared network Dθv by randomly replacing cv
with null embeddings during training (e.g., 10% of time).
Recent Autoguidance (AG) [21] introduces guidance with
a bad version of conditional DM rather than with an uncon-
ditional version in CFG. It substitutes the unconditional DM
term in Equation 3 with an early training-stage checkpoint
(less-optimized bad version) of the conditional DM. This
way demonstrates performance comparable to CFG while
eliminating the need for explicit unconditional training.

3.2. JointDiT Architecture

Let i denote conditional image data, v0 ∈ RTv×Sv×Cv and
a0 ∈ RTa×Sa×Ca represent paired clean latents of video
and audio data respectively, where T , S, and C denote tem-
poral, spatial (or frequential for audio), and channel dimen-
sions. Given input image i and noised inputs vt and at at
each timestep (see Section 3.1), the goal of JointDiT is to
model cross-modal interactions and predict the clean paired
latents (v̂0, â0), i.e., I2SV, as illustrated in Figure 2(b).
Architecture Overview. As shown in Figure 2(b), Joint-
DiT consists of three main components: an Input Block,
multiple Joint Blocks, and an Output Block. To effectively
model the two modalities within one model while address-
ing their heterogeneity, JointDiT incorporates both shared
interaction layers and modality-specific layers.

The Input Block contains two independent input layers,
the V-Input and A-Input layers, which preprocess video and
audio data respectively. The Joint Block comprises three
types of layers: (1) modality-specific layers (V-Expert and
A-Expert) that focus on intra-modal interactions, such as
self-attention and conditional image processing (e.g., con-
catenation or cross-attention, see Supplementary A); (2) a
global full attention layer that models fine-grained cross-
modal interactions across temporal, spatial, and frequen-
tial dimensions using global attention without inductive
biases; and (3) modality-specific feedforward layers (V-
Feedforward and A-Feedforward), following the standard
DiT design [36]. Each layer is followed by modality-
specific adaptive layer normalization (AdaLN) [36]. Fi-
nally, the Output Block includes two independent layers,
V-Out and A-Out, which decode the processed representa-
tions into the clean latents v̂0 and â0, respectively.
Input, Expert, and Output Layers. To efficiently model
modality-specific pattern, JointDiT directly leverages pre-
trained unimodal DMs Dθv and Dθa (from any architecture
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Figure 2. JointDiT. (a) Pretrained Unimodal Denoisers. JointDiT integrates pretrained video and audio denoisers by first decoupling them
into specific submodules and then treats them as three types of layers for joint modeling: input layer, expert layer and output layer. (b)
JointDiT Structure. The architecture consists of three types of blocks: Input Block contains two independent modality-specific input layers
derived from the pretrained denoisers. Joint Block features a full attention layer to facilitate cross-modal interactions between video and
audio. Output Block includes two modality-specific output layers to generate the final denoising results for each modality. (c) Implemen-
tation of Full Attention Layer in the Joint Block. The Perceiver Joint Attention mechanism is designed to handle the heterogeneous nature
of video and audio data, effectively managing the significant channel dimension disparity between the two modalities while interaction.

or training framework), as the modality-specific Input, Ex-
pert, and Output layers. Based on previous works [53] that
prove intermediate representations of DMs contain high-
level semantics, we hypothesize that earlier layers of DMs
focus on representation and understanding, while later lay-
ers are dedicated to decoding and generation. Based on
this intuition, earlier (understanding) layers from Dθv and
Dθa are used as Input and Expert layers, where cross-modal
interactions (needs understanding) are introduced among
these layers, while later (generation) layers are employed
as Output layers for modality-specific decoding.

Figure 2(a) illustrates this with a six-layer UNet-based
DM (each UNet block is treated as a layer in this paper).
The first layer serves as the Input layer, the second and third
layers act as Expert layers within the first and second Joint
Blocks, and the fourth to sixth layers collectively form the
Output layer (detailed layer setting in Supplementary A).
JointDiT thus provides a framework for decoupling single-
modality DMs and effectively integrating them into a uni-
fied joint modeling architecture.
Full Attention Layer. At full attention layer in Joint Block,
JointDiT firstly flattens video vt and audio at data into
vt ∈ R(Tv×Sv)×Cv and at ∈ R(Ta×Sa)×Ca and concate-
nates them into a sequence of [vt,at]. For their interaction,
due to the inherent heterogeneity and different redundancy
of video and audio data (e.g., vt has ∼200 times higher
spatial dimension but ∼4 times lower temporal dimension

compared to at, and ∼2 times channels in our setting), a
naive full attention mechanism—where both modalities are
projected to the same channel dimension and vanilla self-
attention is applied to the concatenated sequence—fails to
effectively model cross-modal interactions, as evidenced by
our experiments (Section 4.5).

To address this limitation, we introduce a balanced in-
teraction mechanism, termed Perceiver Joint Attention,
which is designed to accommodate modality-specific char-
acteristics as shown in Figure 2(c). Inspired by prior
work [19], we modify the shared Q (query) K (key) V
(value) projections to be modality-specific. Separate QK
projections for video and audio project vt and at into the
same QK dimension for Query-Key calculation, while sep-
arate V projections map them into a Value dimension dis-
tinct from QK. Finally, separate out-projections return them
to their original channels after attention operation.

3.3. Training of JointDiT

JointDiT integrates the optimization objectives of two pre-
trained DMs: DDPM formulation in Dθa (AudioLDM [31])
and preconditioning EDM formulation in Dθv (SVD [3]),
as detailed in Section 3.1. Our unified training strategy pre-
serves both objectives while enabling joint optimization.

A key distinction between DDPM and EDM lies in their
timestep parameterization: DDPM uses discrete timesteps
t ∼ U{1, ..., 1000}, while EDM uses continuous timesteps
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t(σ) = 0.25 log σ with log σ ∼ N (Pmean, P
2
std). To sched-

ule noise across modalities, we introduce a unified timestep
tuni ∼ U(0, 1) that controls both processes through:

t = ⌈1000tuni⌉, for DDPM, (4)

log σ = Pmean + Pstd · Φ−1(tuni), for EDM, (5)

where Φ−1 is the inverse cumulative distribution function
of the standard normal distribution. This parameterization
enables JointDiT to inherit the original training objectives
of both base DMs (under any diffusion frameworks) with
minimal adaptation, maintaining their pretrained knowl-
edge. The joint optimization objective combines both losses
through linear interpolation:

(v̂0, â0) = Dθjoint (vtuni ,atuni ; i, tuni) , (6)

L(θjoint) = E
[
λ1∥v0 − v̂0∥2 + λ2∥a0 − â0∥2

]
, (7)

where vtuni and atuni are noisy data introduced in Equation 1
and 2 with tuni, λ1 and λ2 control modality weighting. This
formulation preserves the mathematical foundations of both
diffusion frameworks while enabling efficient joint training
through a shared timestep coordinate system.

3.4. Inference of JointDiT
For unimodal generation (e.g., videos), vanilla classifier-
free guidance (CFG) operates as the following formulation:

Dθv (vt; i, t)︸ ︷︷ ︸
Target distribution

+ω
(
Dθv (vt; i, t)−Dθv (vt;∅, t)︸ ︷︷ ︸

Guidance correction

)
,

(8)

where the first term estimates the conditional distribution,
while the second term enhances sample quality by steering
predictions toward conditional outputs and away from un-
conditional counterparts, serving as a correcting term.
Extending this to joint generation, we substitute Dθv and vt

with Dθjoint and (vt,at). Vanilla CFG correction becomes:

Dθjoint (vt,at; i, tuni)−Dθjoint (vt,at;∅, tuni) . (9)

JointCFG and JointCFG*. While effective for condi-
tion alignment, the vanilla correction term above neglects
modality-interaction enhancement. To address this, we re-
design the negative term by simultaneously removing con-
ditional inputs and modality interactions (through block-
diagonal attention masking on full attention layer):

Dθjoint (vt,at; i, tuni)−
[
Dθjoint (vt;∅, tuni) , Dθjoint (at;∅, tuni)

]
,

(10)
where the full-attn-masked model generates modality-

isolated predictions. This redesigned correction term ex-
tends CFG to joint generation, introducing a joint guid-
ance, namely joint-classifier-free guidance (JointCFG).
This mechanism simultaneously enforces condition adher-
ence and cross-modal consistency, visualized in Figure 3.

Inspired by Autoguidance [21] (Section 3.1) that bad
version DMs serve as effective guides, we further develop

(##, %#), ', (

( )#$, )%$) ( )#$, )%$) ( )#$, )%$)

(##, %#), ∅, ( (##, %#), ∅, ((##, %#), ∅, (

( )#$, )%$)

vanilla CFG JointCFG JointCFG*

!!!"#$%∗!!!"#$%!!!"#$%

V/A- Input/Output Block Joint Block Joint Block w/o full attn.

Figure 3. Comparison between refined Joint Classifier-Free Guid-
ance (Joint-CFG*) and conventional CFG in the context of joint
generation. We utilize bad versions of two unimodal generation
results to boost the CFG performance in the joint generation.

modality-specific bad model D∗
θjoint

upon JointCFG by re-
moving full attention layers in Joint Blocks. This partial
model produces suboptimal single-modality predictions due
to the lack of parameters for modality interaction. The en-
hanced correction term becomes:

Dθjoint (zv,za; i, tuni)−
[
D∗

θjoint (zv;∅, tuni) , D
∗
θjoint (za;∅, tuni)

]
.

(11)
JointCFG with this correction term is named JointCFG*.

It further improves joint generation quality.

4. Experiments
4.1. Experimental Setup

Implementation Details. For video and audio represen-
tations v0 and a0, we utilize latents sampled from the
Variational Autoencoder (VAE) from SVD [3] and Audi-
oLDM2 [31], respectively. For processing conditional im-
ages: (1) V-Expert layer: Following SVD, the image is en-
coded using its VAE, duplicated to latent frame length, and
concatenated with noisy video latents along the channel di-
mension. Additionally, CLIP [37] embeddings are extracted
for cross-attention. (2) A-Expert layer: We modify Au-
dioLDM2 by encoding the image using CLIP and add the
image embeddings to the timestep embeddings. In the full-
attention layer, without any conditional image input, this
layer focuses on the interaction between the time sequences
of the two modalities. We apply 3D and 2D rotary posi-
tion embeddings (RoPE) [42] to vt and at, respectively, for
QK computation in this layer. For integrating pretrained
unimodal DMs, we preserve the original Input, Expert, and
Output layer designs [3, 31] for simplified implementation.
Dataset. We establish the I2SV task using three bench-
mark datasets: AVSync15 [55], Landscape [25], and Great-
estHits [35]. (1) AVSync15: Derived from VGGSound [5],
this dataset features synchronized audio and video across 15
categories, with video durations ranging from 2 to 10 sec-
onds. It includes 1350 training videos and 150 test videos.
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GenProcess Method Video Quality Audio Quality VA Consistency Condition Alignment
FVD↓ KVD↓ FAD↓ KL↓ IB-VA↑ AV-Align↓ IB-IV↑ IB-IA↑

I → V ∥ I → A SVD[3] + IM2Wav[40] 444 37.7 34.9 3.08 12.8 1.866 87.0 13.6
SVD[3] + AudioLDM[31]-v 444 37.7 30.3 2.58 24.9 1.352 87.0 24.7

I → V + V → A

SVD[3] + Diff-Foley[32] 444 37.7 32.2 3.31 19.8 1.693 87.0 18.8
SVD[3] + FoleyCrafter[56] 444 37.7 31.6 2.19 29.8 1.792 87.0 28.7
SVD[3] + TiVA[48] 444 37.7 35.5 3.70 17.4 1.834 87.0 17.1
SVD[3] + SeeingHearing[49] 444 37.7 35.2 3.40 29.6 1.569 87.0 27.4

I → A + A† → V
IM2Wav[40] + AVSyncD[55] 645 64.4 34.9 3.08 12.9 1.352 83.2 12.7
AudioLDM[31]-v + AVSyncD[55] 610 64.4 30.3 2.58 25.5 1.285 83.7 24.4

I → T → V+
I → T → A

Qwen.[1] + CogV.-2B[51] + SDA[10] 1172 157 32.3 3.29 24.8 1.970 68.6 22.1
Qwen.[1] + CogV.-5B[51] + SDA[10] 1148 138 32.3 3.29 24.9 1.928 70.5 22.1
Qwen.[1] + Hunyuan.[23] + SDA[10] 1094 140 32.3 3.29 26.0 2.155 70.2 22.1

I → VA CoDi[44] 1873 369.3 44.8 5.61 5.3 1.772 51.9 4.8
JointDiT (ours) 326 15.2 23.9 1.36 37.5 1.296 87.7 36.3

Table 1. Automatic evaluation on the AVSync15 dataset, assessing video-audio quality, semantic and temporal consistency, and conditional
alignment (with input image). Best and second-best results are highlighted. A† indicates models requiring text input assistance despite
audio. Abbreviations: SVD and SDA denote Stable Video Diffusion [3] and Stable Audio Open 1.0 [10], while Qwen., CogV., Hunyuan.
denote Qwen-VL-7B [1], HunyuanVideo [23], CogVideoX [51] (1.0) . For fairness, only T2V mode (not TI2V) is used for HunyuanVideo
and CogVideoX respectively. JointDiT achieves state-of-the-art results across all metrics, with competitive synchronization scores.

(2) Landscape: Comprising 928 videos across nine natu-
ral landscape categories. (3) Greatest Hits: Contains 977
videos of humans striking objects with drumsticks. Both
AVSync15 and Landscape provide category labels in text,
but no text information is used in any setting. Training and
testing are conducted using the video’s first frame as the
conditional image and the full video as the ground truth.
The task emphasizes the model’s ability to understand static
visual information and generate dynamic and synchronized
visual and audio outputs, without relying on textual cues.
Baseline. We evaluate five I2SV methods: (1) I → V ∥
I → A: Video and audio are independently generated using
Stable Video Diffusion (SVD) [3] for I2V and IM2Wav [40]
or AudioLDM-v for I2A. AudioLDM-v is adapted from Audi-
oLDM2 [31] by replacing text features with image features and
fine-tuning on VGGSound. (2) I → V + V → A: Video is gen-
erated via SVD, followed by audio generation using V2A models
(e.g., Diff-Foley [32], FoleyCrafter [56], TiVA [48], Seeing-and-
Hearing [49]). Videos are repeated to match V2A requirements
and then truncated to target length. (3) I → A + A → V: Au-
dio is generated via IM2Wav or AudioLDM-v, then used with
AVSyncD [55] for video generation, requiring audio, image, and
text prompts as inputs. Dataset category labels serve as text
prompts. (4) I → T → V + I → T → A: Captions are generated
using vision large language models (e.g., Qwen-VL [1]), then used
for T2V generation via HunyuanVideo [23] or CogVideoX [51],
and T2A generation via Stable Audio Open [10]. This pipeline is
evaluated on diverse AVSync15 scenarios. (5) I → VA, i.e., I2SV:
CoDi [44], a general any-to-any generation model, is tested for
direct I2SV generation.
Evaluation Metrics. We assess the generated sounding videos
across four perspectives: (1) Video Quality: We employ FVD [45]
and KVD [45]metrics, commonly used in the video generation do-
main. (2) Audio Quality: Melception [17] computes FAD [22],

Method GreatestHits LandScape
FVD↓ FAD↓ AV↓ FVD↓ FAD↓ AV↓

I → V ∥ I → A
SVD[3] + A.LDM[31]-v 441 26.65 1.392 402 2.28 1.414
SVD[3] + IM2Wav[40] 441 29.14 1.886 402 1.61 2.005

I → V + V → A
SVD[3] + Diff-Foley[32] 441 27.99 1.706 402 2.81 1.830
SVD[3] + FoleyCrafter[56] 441 29.26 1.936 402 1.60 1.996
SVD[3] + TiVA[48] 441 29.51 1.925 402 4.18 1.919
SVD[3] + SeeingHearing[49] 441 24.86 1.666 402 3.59 1.634

I → A + A† → V
A.LDM[31]-v + AVSyncD[55] 287 26.65 1.219 697 2.28 1.196
IM2Wav[40] + AVSyncD[55] 320 29.14 1.777 707 1.61 1.256

I → VA
CoDi[44] 1314 24.97 1.143 1233 5.20 1.250
JointDiT 173 1.08 1.462 262 1.60 1.178

Table 2. Performance on GreatestHits and Landscape. AV denotes
AV-Align metric here. Best and second-best are highlighted.

while PasST [24] calculates the KL score [48]. (3) Video-Audio
Quality: Semantic alignment is measured using ImageBind [11]
(IB-VA), and temporal synchronization is evaluated with a refined
AV-Align score [52] (details in Supplementary B). (4) Condition
Alignment: ImageBind assesses the alignment of generated video
or audio with the input image (IB-IV, IB-IA). Additionally, we em-
ploy Motion Score (MS) [3] in the ablation study to indicate the
dynamics of the generated video.

4.2. Comparison with Baselines
Table 1 presents a performance comparison between our model
and the baseline models on the AVSync15 dataset. In objective
evaluations, our model surpasses all baselines in terms of video
quality, audio quality, and semantic alignment between video and
audio, indicated by FVD, KVD, FAD, KL, and IB-VA metrics.
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Figure 4. Qualitative Results. We present three instances from AVSync15, each generated by a different model. Instances produced by
JointDiT exhibit high visual quality and dynamics, preserving details (e.g., finger movements in Case 2), and ensuring high correlation
between audio and video in terms of semantics and temporal synchronization (e.g., rooster raising its head when crowing in Case 1 and
cap gun firing when shooting in Case 3). More cases can be viewed at our demopage https://anonymoushub4ai.github.io/JointDiT.

This demonstrates that the generation of video and audio can
mutually enhance each other, which also validates the effective-
ness of the JointDiT framework. Only AV-Align metric indicates
that JointDiT slightly underperforms the AudioLDM-v+AVSyncD
model in the image-to-audio-to-video pipeline, achieving second
place with a score of 1.296, slightly worse than 1.285. Notably, al-
though HunyuanVideo and CogVideoX demonstrate stronger T2V
capabilities, the process of converting images to text in the I2SV
task results in significant information loss. This, in turn, makes
it challenging for the second-stage T2V results to align with the
original image information, as indicated by low FVD, KVD, and
IB-IV scores. Table 2 shows different models’ performance on the
GreatestHits and Landscape dataset. JointDiT achieves the best
results on every metric of LandScape dataset, and leads in FVD
and FAD metrics of GreatestHits dataset. Comprehensive experi-
ment results on multiple datasets validate that JointDiT is capable
of generating high-quelity, semantics-aligned and synchronized
video and audio.

4.3. User studies

We also conducted subjective evaluations on AVSync15 in Ta-
ble 3. We evaluated from five dimensions: Video Quality (VQ),
Audio Quality (AQ), Semantic Matching between Video and Au-
dio (Sem), Synchronization between Video and Audio (Sync),
and Overall Sounding Video Effect (Overall). The evaluation
scores ranged from 0 to 5, with 0.5 as the scoring unit and higher

Method User Study ↑
VQ AQ Con Sync Overall

SVD[3] + AudioLDM[31]-v 1.28 1.33 1.31 1.25 1.26
SVD[3] + SeeingHearing[49] 1.30 1.25 1.24 1.21 1.23
AudioLDM[31]-v + AVSyncD[55] 1.19 1.33 1.36 1.30 1.28
CoDi[44] 0.91 0.95 0.87 0.87 0.92
JointDiT 1.48 1.55 1.60 1.51 1.52

Table 3. User study results on AVSync15 dataset. We compare
with baseline models from different I2SV generation approaches
across: VQ (Video Quality), AQ (Audio Quality), Con (Seman-
tic Consistency), Sync (Synchronization), and Overall (Composite
Performance). Human ratings are averaged per metric, with best
and second-best highlighted. JointDiT achieves superior perfor-
mance across all evaluation dimensions.

scores indicate better results. We sample 100 results from each
model with same condition and have them rated by 10 annota-
tors, with the final score being the average of their ratings. The
results of the subjective evaluations demonstrate that JointDiT
outperforms other methods in all five dimensions. Interestingly,
the the automatic metrics are not entirely consistent with human
evaluation results. For example, for video-audio synchroniza-
tion, our method achieved the best human evaluation result, with
AudioLDM-v+AVSyncD coming second, but the objective met-
rics ranked them in reverse order. This further suggests that despite
our improvements on objective metrics (Supplementary B), they
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Figure 5. Case study on GreatestHits and Landscape datasets.
JointDiT is capable of generating temporally and semantically
consistent sounding videos across diverse I2SV scenarios.

still cannot perfectly align with human evaluations. We leave po-
tential improvements to the automatic evaluation for future work.

4.4. Case study on Joint-DiT

Figure 4 illustrates a case comparison between JointDiT and the
baseline models. The two types of methods, image-to-video +
image-to-audio and image-to-video-to-audio, first generate videos
from images. However, the video dynamics produced by SVD, a
unimodal video generation model, often lack entity dynamic other
than lens and perspective movings. For instance, for an input im-
age of a chicken (case1) and a gun (case3), the SVD-generated
results merely move the lens slightly and do not include entity ac-
tions such as the chicken raising its head or the gun shaking when
fired. The pipeline method of I2A2V often leads to the accumu-
lation of errors and confuses the model in the later stages of the
pipeline. For example, in the third line of case 3, the I2A model
generated a radio voice but the condition image was of a gun,
causing the subsequent IA2V model to produce some unstable im-
ages, as shown in the dashed box. The early I2VA method, CoDi,
due to its coarse-grained interaction, leads to poor overall genera-
tion quality. In contrast, the cases generated by our JointDiT have
good visual quality and dynamics, and also maintain details (fin-
ger movements in case 2), and can generate sound that matches
the video semantics and is synchronized (case 1 crowing when the
chicken raises its head, case 3 gun firing when smoke appears).
In addition to the general generation performance of AVSync15,
Figure 5 further presents the generation results of JointDiT on the
GreatestHits and Landscape datasets. The results demonstrate that
JointDiT is capable of effectively handling data from specific do-
mains, such as natural scenery near ocean waves and human ac-
tions while striking objects. Moreover, it can produce coherent
and natural paired video and audio contents that meets with physi-
cal laws within the contexts provided by the first frame of a scene.

JointDiT FVD↓ FAD↓ IB-VA↑ AV-Align↓ MS→
w/ JointCFG* 653.7 27.6 37.4 1.288 10.73
w/ JointCFG 661.6 28.1 36.9 1.273 10.15
w/ vanilla CFG 662.8 28.2 36.1 1.266 10.19

w/o Joint Block 819.5 30.1 36.2 1.363 5.32
w/o Perceiver Attn 921.2 29.3 34.4 1.240 5.54

Table 4. Ablation studies on guidance methods and architecture,
evaluated on a randomly sampled subset of AVSync15 test for ef-
ficiency. MS represents motion scores. The w/o Joint Block set-
ting refers to removing the Joint Block from JointDiT, resulting in
the fine-tuned setting of two pretrained DMs. The w/o perceiver
attn setting replaces perceiver joint attention with standard self-
attention. These two architecture-ablation settings are inferenced
with vanilla CFG as w/o Joint Block not applicable with JointCFG.

4.5. Ablation Studies
Guidance Techniques. Table 4 compares three CFG techniques:
Enhanced JointCFG (w/ joint-CFG*), vanilla CFG and JointCFG.
The table reveals that the enhanced JointCFG* significantly im-
proves image quality, sound quality, and IB-VA, albeit at a slight
cost to AV-Align metrics. However, it also consistently enhances
the motion score, introducing more dynamic changes to the video.
JiontDiT Architecture. In the bottom part of Table 4, we con-
ducted an ablation study on the JointDiT architecture, comparing
three settings: our final version (w/ joint-CFG*), a version with-
out the Joint Block trained on AVSync15 (essentially fine-tuning
independent video and audio denoisers on AVSync15), and a ver-
sion substituting perceiver full attention with vanilla full attention.
Tests are performed on the same randomly selected 75 images.
The results demonstrate that our final version achieves the high-
est image quality, audio quality, and IB-VA audio-video seman-
tic matching. Interestingly, our architecture introduces more dy-
namic changes, as indicated by the motion score, addressing the
challenge of lacking of dynamic variation in the image-to-video
task [57]. This suggests that a well-designed interaction facilitates
more visual dynamics in the joint generation of video and audio.

5. Conclusion and Future Work
To solve the task of Image-to-Sounding Video (I2SV) generation,
we propose a novel approach using the DiT architecture to model
the interaction between video and audio modalities. We combine
the expert pretrained diffusion generation submodules using a uni-
fied Joint Block. We further introduce introduce a joint classifier-
free guidance technique to refine the guidance effect.

In future work, we plan to extend JointDiT to joint or cross-
generation tasks involving the text modality. We also intend to
further investigate the relationships among the three modalities
and explore the scalability of JointDiT using larger-scale datasets
across additional modalities, aiming to develop a more founda-
tional text-video-audio model towards the world model.
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