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As the three 
women chat, Lisa 

lifts her gaze 
from the watch.

Current Video Clip

Character Information

Context AD

Target AD

Context Video Clip

Possible characters: Lisa played by Reese Witherspoon, Annie 
played by Kathryn Hahn, Terry played by Shelley Conn.

... Inside, Lisa strolls past three chatting women. Lisa shows 
them.

AD-
Narrator

Figure 1. Taking video clip, text, character bank and context information as the inputs, the narrator generates corresponding audio
description (AD) for video comprehension. Rather than describe all characters appearing in the video, the narrator should focus on
characters that truly contribute to the storyline.

Abstract

The Audio Description (AD) task aims to generate
descriptions of visual elements for visually impaired indi-
viduals to help them access long-form video content, like
movies. With video feature, text, character bank and context
information as inputs, the generated ADs are able to cor-
respond to the characters by name and provide reasonable,
contextual descriptions to help audience understand the sto-
ryline of movie. To achieve this goal, we propose to leverage
pre-trained foundation models through a simple and unified
framework to generate ADs with interleaved multimodal
sequence as input, termed as Uni-AD. To enhance the
alignment of features across various modalities with finer
granularity, we introduce a simple and lightweight module
that maps video features into the textual feature space.
Moreover, we also propose a character-refinement module
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to provide more precise information by identifying the main
characters who play more significant roles in the video
context. With these unique designs, we further incorporate
contextual information and a contrastive loss into our
architecture to generate smoother and more contextually
appropriate ADs. Experiments on multiple AD datasets
show that Uni-AD performs well on AD generation, which
demonstrates the effectiveness of our approach. Our code
is available at: https://github.com/ant-research/UniAD.

1. Introduction

Audio Description (AD) [1, 14, 39, 46] provides descriptive
narration of visual content in videos. Unlike subtitle or
transcription, AD focuses more on describing the scene,
characters, actions and storyline of the input video. As
a rich visual description, AD can effectively supplement
the dialogue and provide viewers with a comprehensive
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description of the video content, which not only helps the
visual impairments better engage with video content [1], but
also benefits the sighted individuals in their media compre-
hension activities [21, 34], such as language learning for
kids and sight-free video consuming while driving. Despite
that AD is important for video comprehension, particularly
for those professionally produced media contents (movies,
TV series etc.), currently most videos do not have cor-
responding AD [5], mainly due to the considerable costs
of manual annotation and differences in understanding be-
tween annotators [16]. Therefore, studying how to generate
ADs automatically is quite meaningful and necessary.

With the advances in computer vision and natural lan-
guage processing, nowadays the research community is
paying growing attention to generating ADs automatically,
which requires a model to understand multi-modal in-
formation and perform contextual reasoning over video
storyline [15, 47]. Compared with the conventional video
captioning task [9, 11, 19, 30, 37], Audio Description (AD)
is not only a scene description of the video clip, but also
a narration that includes characters’ names and actions to
generate a coherent plot description, as shown in Fig. 1.
This brings two characteristics of the AD generating task:
(i) Multiple modality inputs. Video clip, text, character
portraits and names are provided for AD generating. (ii)
Rich contextual information. Context video and past AD
can be applied to assist the current AD generation.

Previous methods [15, 16] introduce learnable adapters
into GPT-2 to generate ADs. However, the amount of
parameters in these adapters will rapidly increase with
larger LLM [16], thus not conducive to scaling up. Instead,
AutoAD-III [17] applied Q-former architecture to bridge
the visual space with the language space. Training-free
methods like MM-Narrator [47] and AutoAD-Zero [46]
directly prompt GPT-4 or LLaMA3 [13] with specialized
expert tools for AD generation, which suffers from com-
plex prompt engineering and hallucination problem. In
this work, we propose Uni-AD, a simple architecture that
takes interleaved multimodal sequence as input to leverage
completely open-source LLMs [35, 43] for AD generation
by aligning various modality inputs to a unified semantic
space. Formulating data as interleaved multimodal se-
quence makes it convenient to integrate various modality
inputs and add contextual information for AD generation.
Besides, interleaved multimodal sequence converts visual
elements into multiple embedding tokens while maintaining
the relative order between data, which ensures embeddings
and tokens with the same semantic are naturally close to
each other so that more fine-grained feature alignment can
be learned spontaneously.

Given that the development of storyline is always
character-centered [20, 42], it is necessary for ADs to in-
clude character names to describe their expressions, actions

and status. Previous method [16] tried to identify all charac-
ters appearing in the given video as character information,
without considering who are the main story drivers that
should be included in AD. For example, in Fig. 1, though
there are multiple characters in the scene, the expression
change of Lisa is the main content thus only her name is
involved in the target AD. With such an observation, we in
this paper design a character-refinement module to figure
out the AD-related characters. After training, this module
can be applied to any videos to recognize main characters
who contribute to the storyline and provide more accurate
character information.

We further investigate the contextual information on our
framework by combining past visual contents and ADs
into the interleaved multimodal sequence, rather than only
concatenating past ADs like previous works [15, 16, 47].
We find that when the input video is similar to the past video
clip, the model tends to generate identical ADs. To address
this, we introduce a contrastive loss as an auxiliary to avoid
repetition and encourage diversity in AD generation.

To sum up, we develop an AD narration system called
Uni-AD which achieves finer-grained feature alignment and
supports extension to larger LLMs by formulating multiple
inputs as interleaved multimodal sequence. To produce
more accurate, coherent audio descriptions, we introduce
a character-refinement module and incorporate contextual
information along with a contrastive loss. Our Uni-AD
outperforms previous methods on multiple AD datasets.

2. Related Work

2.1. Audio Descriptions Generation

Audio Description (AD) describes the key visual elements
in videos to form coherent storyline narration. With the
development of media technology, captioning for videos has
emerged as a growing area in the computer vision research
community [2, 19, 25]. Nonetheless, the production of Au-
dio Description (AD) for video content remains a relatively
untapped area of research. Initial works designed special-
ized authoring tools [6] and evaluation mechanisms [27, 31]
to collect manually annotated ADs. Several annotation
platforms like LiveDescribe [6], Rescribe [33] also emerged
to facilitate AD generation. Recently, some works have
studied how to generate AD at scale automatically with
deep learning models. AutoAD-I [15] introduced the task
of AD generation for movies and addressed it by prompting
GPT-2 with learnable visual prompt vectors. [16] later
incorporated an external character bank to provide character
information for more accurate AD generation. Researchers
further applied Q-former architecture to bridge the visual
and language space [17] for this task. Training free
methods [46, 47] proposed designs which extract infor-
mation from inputs with multimodal experts and queries
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GPT-4 [32] or VideoLLaMA2 [10] in a few-shot manner.
However, these methods suffer from drawbacks like poor
scalability, complex prompt engineering and weak modality
alignment, which we in this paper address with the inter-
leaved multimodal sequence design and larger LLM.

2.2. Interleaved Sequence for Multimodal Learning
Traditional vision language datasets for multimodal learn-
ing are mainly composed of image-text pairs collected
from Internet [36, 38]. Text contents in these datasets
are mostly short, less descriptive and independent, result-
ing in relatively poor text embeddings. Recent works
like Flamingo [4], BLIP-2 [22] and CM3 [3] presented
to conduct learning on the entire multimodal webpages,
formulating interleaved images, videos and text as cohesive
sequences. Such sequences offer long-form visual-text
pairs for modeling and naturally retain the semantic corre-
lation between different modality information, boosting the
development of multi-modal learning. Other works [12, 41,
45] conducting pre-training on large amounts of interleaved
multi-modal data further demonstrate the importance and
effectiveness of this way. Inspired by these works, we
cast inputs for audio description as interleaved multimodal
sequences, leveraging the semantic relevance to achieve
finer-grained modality alignment.

2.3. LLMs for Video Understanding
The recent surge in large language models (LLMs) [7, 32,
35, 43, 49] has inspired the study of video perception and
understanding with LLMs. Models like ChatCaptioner [8],
VideoChat [23] and MM-Vid [26] integrate visual experts
with LLMs to construct multimodal perception systems for
video representation, long-term video comprehension and
dialog-centric interaction, etc. All these works can be
divided into three categories: (i) Prompt tuning [8, 29] is
a lightweight approach to transfer LLMs to downstream
tasks with learnable prompt vectors. (ii) Adapter-based
methods [23] typically insert additional trainable param-
eters into the LLM at different positions to achieve deep
modality alignment, but the amount of introduced parame-
ters increases with the size of LLM, making adapter-based
methods difficult to scale up. (iii) Querying LLMs in a
training free manner [26], which employs visual experts
to transform video into text, thereby guiding LLMs in
reasoning on specific tasks. Our Uni-AD follows the visual-
conditioned prompt tuning manner to extend our approach
to larger LLMs with its memory-friendly characteristic to
generate better ADs.

3. Methodology
The audio description (AD) task is challenging mainly
due the requirement that generated results should include
characters’ names to depict their expressions, actions to

advance the plot and should be contextually coherent within
the storyline. To meet this, we present Uni-AD to formulate
various inputs for current video clip along with contextual
information as interleaved multimodal sequence and com-
bines a character-refinement module. In this section, we
will give a detailed description of our approach. First,
we provide an overview of Uni-AD in Sec. 3.1. Then
we present how to prompt a LLM for AD generation in
Sec. 3.2. Next, we show the design and training details
of our proposed character-refinement module in Sec. 3.3.
Afterwards, we describe the usage of contextual informa-
tion for AD generation in Sec. 3.4. Finally, in Sec. 3.5 we
further introduce the learning object of our framework.

3.1. Method Overview
The overall framework of our Uni-AD is illustrated in
Fig. 2, which contains two key stages: visual modality
alignment and multimodal prompt generation. Given a
video clip and its corresponding character, contextual infor-
mation, our model first filters the input character informa-
tion to retain the AD-related individuals. Then we map all
visual contents into embeddings, which will be combined
with text tokens to create prompt for LLM. Contextual
information can also be involved in this sequence. Finally,
this interleaved multimodal prompt will be fed to a frozen
LLM to generate audio description. Contrastive loss can be
applied to avoid generating duplicate ADs.

3.2. Uni-AD Pipeline
Visual Mapping Network. The visual input for AD
generation includes two components: (1) video clip con-
sisting of N frames with timestamp t, denoted as vt =
{I1, I2, ..., IN}; (2) characters’ portrait images, denoted
as {A1,A2, ...,AC}, where C is the number of related
characters in video clip vt. To produce corresponding
AD for vt, we need to transform visual elements into
embeddings with visual mapping network to achieve cross-
modal alignment. Inspired by ClipCap [29] and AutoAD-
I [15], we here apply a multi-layer transformer encoder
with a fixed number of learnable vectors as our mapping
network (shown in Fig. 3) based on the following findings:
First, video frames are able to interact with each other to
model the temporal relation via the attention mechanism,
which is essential given that effective interaction between
visual tokens is hard to achieve in a frozen LLM. Second,
the introduction of learnable vectors allows us to control
the length of the visual representation and using more
embeddings to preserve visual details. Finally, such a
structure requires no addition of adapters inserted into the
LLM for modality alignment, making it easier to scale to
larger LLMs compared to methods like AutoAD-II [15].

Specifically, we first extract visual features of the in-
put video clip and character images with the pre-trained
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Target AD: 
As the three women chat, Lisa lifts her gaze from the watch.

Character-
refinement 

module

!

❄

Image mapping 
network

!

Multimodal Modeling 
with LLM

❄

Character Information Context Video Clip {… 	$!"#}

Current Video Clip $!

> 0.5

Lisa played by Reese 
Witherspoon. 

AD-related 
character

Image tokens &$

Video tokens &%!

Video mapping 
network

!

Annie played by 
Kathryn Hahn 

Terry played by 
Shelley Conn

❌ ❌
< 0.5 < 0.5

Figure 2. Overall architecture of our proposed Uni-AD. Our model first filters the input character information to retain the AD-related
characters. Then all visual contents are mapped into the unified semantic space to form the interleaved multimodal sequence with text and
contextual information. Afterwards, we prompt a frozen LLM with this sequence to generate the corresponding AD.

CLIP [36] visual encoder:

zvt = fCLIP (vt),

{z1, z2, ..., zC} = fCLIP ({A1,A2, ...,AC}).
(1)

In order to reduce the impact of difference between an
actor’s portrait and appearance in films, we follow [16]
to adopt exemplar feature as character image information.
The exemplar feature is obtained by averaging features of 5
frames that are most similar to the actor’s portrait within the
same movie. CLIP feature of the ith character zi is used as
signature to compute similarity with movie CLIP features.
Afterwards, we convert the visual input into embeddings
with our visual mapping network Mv:

xvt = Mv(Proj(zvt)),

{x1, x2, ..., xC} = Mv(Proj(e1), ..., P roj(eC)),
(2)

where ei denotes the ith character’s exemplar feature and
Proj represents a Linear Layer that transforms the channel
number of visual features to match the LLM. Note that
exemplar features are mapped via Mv separately, meaning
there is no need for interaction between characters here.

Formulating Interleaved Multimodal Prompt. With vi-
sual embeddings xvt and {x1, x2, ..., xC}, we now combine
them with the text query to get our interleaved multimodal
prompt. We apply the prompting template in [16] to query
the frozen LLM, and our prompt is formulated as:

⟨ Possible characters: char1 played by actor1 x1, char2
played by actor2 x2, ... Describe xvt : ⟩,

where chari, actori, xi, xvt denote the ith character’s
name, real actor name, image feature and video embed-
dings, respectively. Our main thought here is to rep-
resent visual content with multiple tokens and preserve
the positional relationships between different modalities of
information, hoping to achieve a finer-grained alignment.

3.3. Character-Refinement Module
Character information provides names, portraits of active
characters to help model generate person-centric descrip-
tions, making it important to be incorporated into AD
generation. Previous work achieved this by introducing an
external character bank [16]. With an aim to recognize
all active characters who appear in the given video clip,
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Figure 3. Structure of Visual Mapping Network and Character-
Refinement Module.

researchers trained a character recognition module on the
annotated MovieNet [18] dataset to predict the active char-
acters given their exemplars and the movie clip. Then the
output of this module is used to build the character bank to
provide character information for AD generation.

Introducing the external character bank significantly
improves the quality of AD generation. However, this
approach overlooks the difference between active charac-
ters and AD-related characters. That is, a character who
appears in the current video clip may not necessarily be
mentioned in the corresponding AD, especially in scenes
with multiple characters. ADs usually prioritize the main
characters who drive the story forward and do not mention
secondary characters to avoid overburdening audiences with
too much information. In such cases, taking all characters
appearing in the video as character information will confuse
the AD narrator and generate descriptions not align with the
development of the storyline.

Given observations mentioned above, we adapt our goal
to identify the AD-related characters in the video clip based
on their behavior and mannerisms. Since these characters
are likely to appear in the video clip, we design a character-
refinement module to perform further identification based
on the external character bank provided by AutoAD-II [16].
Our character-refinement module consists of 3 Multi-Head
Cross-Attention (MHCA) and FeedFoward Network (FFN)
layers (shown in Fig. 3), which takes characters’ exemplar
features in external character bank as query, video features
as key&value and outputs the probability for each character
on whether they are AD-related. A projection layer is added
to transform the output feature to a probability value. We
train this module with a binary classification loss. Training
labels are obtained from the AD annotations by retrieving
all names that appear in both the movie’s cast list and the
annotation [16]. After trained, we apply this module to the
test movies and treat characters whose probability exceeds
0.5 as AD-related characters.

3.4. Contextual Information Modeling
We in this section show how to use contextual information
to generate more coherent ADs with our model. With
the design of interleaved multimodal sequence, we can
easily incorporate past context ADs and video clips into our
prompt for LLM.

Context ADs contain descriptions of preceding story
plot that leads up to the current scene, thus can help the
model better follow the storyline for narration. We here
utilize context AD by directly concatenating our prompt in
Sec. 3.2 with the past K ADs {Tt−K , Tt−K , ..., Tt−1}. In
this way, we provide more text conditional information for
AD generation. To separate context ADs from current AD,
we add a BOS token in our prompt to start AD generation.

Although context ADs can provide the most accurate
description of the preceding story plot, the ADs we generate
during inference will inevitably differ from the ground
truth, leading to an inaccurate guidance. Therefore, we
consider to introduce past videos into our Uni-AD as
contextual information. Specifically, we take frame features
from the past K video clips {zvt−K

, zvt−K+1
, ..., zvt−1} and

concatenate them with the current video clip in temporal
order. Then these concatenated visual features will be fed
to the visual mapping network Mv for interaction, resulting
in the contextual video representation xt context:

xt context = Mv(Proj(zvt−K
; zvt−K+1

; ...; zvt)), (3)

where [·; ·] denotes the concatenation operation. Then we
can use xt context instead of xvt as video embedding to get
our video-context prompt. Fig. 2 shows our prompt with
both visual and text contextual information.

In practice, we find that when the input video does not
vary much from the past video clip, LLM tends to generate
very similar, or even identical ADs. This is unreasonable for
the AD generation task, since current AD should carry on
the narration from previous content rather than repeating.
To address this, we add a contrastive loss to our training
process:

s =

∑
n logPΘ(an|prompt; a<n)

||T ||
,

Lct = max(0, slast − scurrent),

(4)

where T denotes an AD, an denotes the nth token in T ,
a<n denotes tokens preceding an in T ; prompt denotes our
interleaved multimodal sequence fed to LLM; Θ denotes
learnable parameters in our visual mapping network; s
represents the average likelihood score of the generated AD.
Our contrastive loss Lct is calculated as Eq. (4). Thus our
model is constrained to ensure that the score of generating
last AD (slast) is always lower than score of the current
ground-truth AD (scurrent). In this way, we encourage the
model to generate more accurate and non-repetitive ADs.
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3.5. Objective Function
Overall, given a video clip with timestamp t, our goal
is to query a frozen LLM for AD generating with our
visual-conditioned prompt. The supervision we apply is the
commonly used auto-regressive loss function:

Lauto = −
∑
n

logPΘ(an|prompt; a<n), (5)

where an denotes the nth token in the target AD and
prompt denotes our interleaved multimodal prompt.

As mentioned in Sec. 3.4, we further introduce a con-
trastive loss to avoid repetitive AD generation. In this case,
our complete loss is: LΘ = Lauto + Lct.

4. Experiments
In this section, we evaluate Uni-AD on multiple AD
generation benchmarks and show the experiment results.
We first introduce our implementation details in Sec. 4.1.
Then we compare our performance with state-of-the-art
AD generation approaches in Sec. 4.2. We further con-
duct a detailed ablation study on the impact of character-
refinement module and visual mapping network on our
model in Sec. 4.3. Next in Sec. 4.4, we confirm the
effectiveness of incorporating contextual information into
Uni-AD and show how different contextual information
affects our model. Finally, we provide qualitative examples
of our Uni-AD in Sec. 4.5.

4.1. Implementation Details
Dataset. We follow AutoAD-I [15] to conduct partial-
data pre-training on the AudioVault-AD dataset [15]. We
train our model on the MAD-v2-Named dataset and eval-
uate on MAD-eval-Named [15, 40]. For evaluation on
CMDAD [17] and TVAD [46], we train our model with
the CMDAD [17] training set. We use both classic cap-
tioning metrics and newly proposed metrics for evaluation.
The former metrics include ROUGE-L [24] (R-L) and
CIDEr [44] (C) to measure the quality of our generated ADs
versus human-annotated ones. The latter metrics include
R@k/N [16], CRITIC [17] and LLM-AD-eval [17]. More
information about datasets and metrics is provided in the
supplementary material.
Training details. We train our GPT-based model with a
batch size of 96 movie clips and the learning rate is 10−3,
while our LLaMA-based model is trained with a batch size
of 12 movie clips and the learning rate is 5.0 × 10−5.
We use the AdamW [28] optimizer to train our model for
10 epochs, with a cosine-decayed learning rate schedule
and linear warm-up. All training is conducted on 8 A100
GPUs. For external character information, we use the
prediction results from AutoAD-II [16] as input for our
character refine module on MAD-eval-Named dataset and

Table 1. Comparison with the state-of-the-art methods on MAD-
eval-Named. The Context column denotes whether contextual
information is applied. The V-Feature column indicates the type
of visual expert used for extracting movie frame features.

Methods Context LLM & V-Feature RL↑ C↑ R@5/16↑
ClipCap [29] ✗ GPT-2 & CLIP-B32 8.5 4.4 36.5

AutoAD-I [15] ✗ GPT-2 & CLIP-B32 10.3 12.1 39.8
AutoAD-II [16] ✗ GPT-2 & CLIP-B32 13.1 19.2 51.3
AutoAD-III [17] ✗ LLaMA2 & EVA-CLIP - 24.0 52.8

AutoAD-Zero [46] ✗ LLaMA3 & VideoLLaMA2 - 22.4 -
Uni-AD(ours) ✗ GPT-2 & CLIP-B32 15.9 24.0 50.5
Uni-AD(ours) ✗ GPT-2 & CLIP-L14 16.4 25.7 51.5
Uni-AD(ours) ✗ LLaMA2 & CLIP-L14 16.8 27.3 53.3
AutoAD-I [15] ✓ GPT-2 & CLIP-B32 11.9 14.3 42.1
AutoAD-II [16] ✓ GPT-2 & CLIP-B32 13.4 19.5 50.8

MM-Narrator [47] ✓ GPT-4 & CLIP-L14 13.4 13.9 49.0
MM-Narrator [47] ✓ GPT-4V & CLIP-L14 12.8 9.8 -

Uni-AD(ours) ✓ LLaMA2 & CLIP-L14 17.1 28.2 54.2

Table 2. Comparison with the state-of-the-art methods on CM-
DAD and TVAD. The gray row shows the results of AutoAD-III
pretrained on the 3.4M HowTo-AD dataset, which is not public.

Method Dataset CIDEr↑ CRITIC↑ LLM-AD-eval↑
AutoAD-II [16] CMDAD 13.5 8.2 2.08
AutoAD-III [17] CMDAD 21.7 25.2 2.85
AutoAD-III [17] CMDAD 25.0 32.7 2.92

AutoAD-Zero [46] CMDAD 17.7 43.7 2.83
Uni-AD(Ours) CMDAD 21.8 41.9 2.92

AutoAD-III [17] TVAD 26.1 15.9 2.78
AutoAD-Zero [46] TVAD 22.6 27.6 2.94

Uni-AD(Ours) TVAD 26.6 28.3 2.89

prediction results from AutoAD-Zero [46] as input for
character refine module on CMDAD and TVAD. We apply
the visual branch of VideoLLaMA [48] as visual mapping
network on experiments of CMDAD and TVAD, as in [17].

4.2. Comparison with state-of-the-art approaches
Multiple models for AD generation are involved in our
comparison. Descriptions for these methods are available
in the supplementary material. Tab. 1 shows the evaluation
results of our Uni-AD and these state-of-the-art methods
on the MAD-eval-Named benchmark. For fair comparison,
we first evaluate Uni-AD under the same setting (GPT-2
as language decoder and CLIP ViT-B/32 as visual feature)
with previous methods [15, 16, 29]. Our Uni-AD outper-
forms all previous methods by a notable margin, which
demonstrates the effectiveness of our model. Afterward, we
apply a stronger CLIP ViT-L/14 model as visual encoder
to extract movie features, and the results of Uni-AD show
growth on all metrics. Utilizing the design of lightweight
visual mapping network, we then extend our method to a
more powerful LLM LLaMA2-7B, which further enhances
the performance (1.6 growth points on Cider, 0.4 on Rouge-
L and 1.8 on Recall@5/16).

Next, we conduct comparison with AD generation ap-
proaches under the contextual setting. Uni-AD achieves
the state-of-the-art performance (17.1 on Rouge-L, 28.2 on
Cider and 54.2 on Recall@5/16) by incorporating context
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Table 3. Study the effectiveness of character-refinement module
without pre-training or contextual information. Char.? shows
whether this module is applied. * means our re-implemention.

Methods Char.? RL↑ C↑ R@5/16↑

AutoAD-II
(GPT-2-B32) [16]

✗ 14.7∗ 19.0∗ 46.0∗

✓ 15.1 21.0 47.8
gt 19.4 33.8 68.0

Uni-AD
(GPT-2-B32)

✗ 14.0 18.5 45.7
✓ 15.7 23.7 49.4
gt 19.7 36.1 69.2

Uni-AD
(GPT-2-L14)

✗ 14.0 19.7 47.2
✓ 16.0 25.5 50.3
gt 20.3 37.8 70.4

Uni-AD
(LLaMA2-L14)

✗ 15.3 22.6 53.1
✓ 16.5 25.9 52.5
gt 21.2 40.0 72.0

video features and contrastive learning. We further evaluate
Uni-AD on CMDAD and TVAD and obtain competitive
results, shown in Tab. 2. These outstanding performances
show the effectiveness and flexibility of our model.

4.3. Ablation Study

Study on character-refinement module. By recogniz-
ing the main characters contributed to the storyline, the
character-refinement module provides more precise char-
acter information for AD generation. Evaluation results
in Tab. 3 show the general performance improvements
character-refinement module brings under different settings,
confirming the universality of this module.

We further use characters involved in AD annotations as
character information to conduct experiments (gt rows in
Tab. 3). The gap between character-refinement results and
gt results also show that the current character-refinement
performance (0.41 on Precision, 0.77 on Recall, evaluated
on MAD-eval-Named dataset) is far from sufficient and
there is still significant room for improvement.
Study on Visual Mapping Network. To verify whether
our Uni-AD can achieve finer-grained feature alignment,
we in this section study how the visual mapping network
affects AD generation. Our main comparison target is the
Flamingo-style method AutoAD-II. Specifically, we adjust
the number of latent vectors output by the visual mapping
network, which also corresponds to the number of visual
tokens fed to the LLM, to observe the impact on AD
generation. The evaluation results are shown in Tab. 4. It
can be seen that as the number of latent vectors increases,
the performance of Uni-AD improves under both settings
(GPT-CLIP-B32 and LLaMA-CLIP-L14), while the result
of AutoAD-II method remains basically unchanged. This
confirms our hypothesis that AutoAD-II, which achieves
cross-modal alignment by concatenating characters’ por-
traits with video frames followed by perceiver resampler
and gated cross-attention modules, tends to extract global
feature of the visual contents. In contrast, our Uni-AD is

Table 4. Study the impact of visual mapping network on AD gen-
eration without pre-training or Contextual information. Character-
refinement module is applied by all methods. #Latent denotes the
number of learnable vectors in the visual mapping network.

Methods #Latent RL↑ C↑ R@5/16↑

AutoAD-II [16]
(GPT-2-B32)

1 15.1 20.5 47.5
5 15.1 20.8 48.0

10 15.1 21.0 47.8
30 15.1 20.1 47.4

Uni-AD
(GPT-2-B32)

1 13.7 19.0 45.4
5 15.3 22.8 47.9

10 15.4 22.4 49.0
30 15.7 23.7 49.4

Uni-AD
(LLaMA-L14)

1 16.2 24.9 51.5
5 16.3 24.9 52.0

10 16.4 25.0 52.0
30 16.5 25.9 52.5
60 16.3 25.3 53.7

Table 5. Study on contextual information. We conduct experi-
ments with our AudioVault pre-trained LLaMA-CLIP-L14 model.

Context-V C-Loss RL↑ C↑ R@5/16↑
0 ✗ 16.8 27.3 53.3
1 ✗ 16.8 27.5 54.7
3 ✗ 17.0 27.4 54.2
0 ✓ 16.9 27.3 53.7
1 ✓ 17.1 28.2 54.2
3 ✓ 16.9 27.3 54.9

capable of retaining more visual details by increasing the
number of latent vectors, thereby achieving finer-grained
feature alignment and better AD generation results.

4.4. Integrating Contextual Information
For contextual information, we first study the effectiveness
of integrating context video and contrastive loss into AD
generation. Results in Tab. 5 suggest that adding context
video clips and contrastive loss can both enhance model’s
performance. Among these results, incorporating the most
recent context video along with contrastive loss is the best,
since current AD is most relevant to its preceding content.

Then we conduct experiments to introduce past ADs
as additional contextual information under recurrent set-
ting (using predicted past ADs) and oracle setting (using
ground-truth past ADs). As shown in Tab. 6, the recurrent
setting leads to a decrease in model performance. We
attribute this to the discrepancy between the predicted ADs
and the ground truth, which provides inaccurate information
for AD generation during inference, thus further enlarges
the gap between training and testing. For oracle setting,
the performance of our model improves with more context
ADs, indicating that context AD is the most significant
influencing factor for AD generation.

4.5. Qualitative Results
We show our qualitative AD generation results on the
MAD-eval dataset in Fig. 4. Specifically, we conduct analy-
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GT AD: Charlie shows her his keel sketch. 
ClipCap: the sketch of person and the book.
AutoAD-II: Charlie writes on a piece of paper.
MM-Narrator: Connors and Charlie closely examine a sketch of a whale tail keel 
design, discussing its innovative structure and potential benefits for their sailboat.
Ours: Charlie smiles as he looks at the drawings.

GT AD: As the three women chat, Lisa lifts her gaze from the watch.
Char Info w/o char-refine: Lisa played by Reese Witherspoon, Annie played by 
Kathryn Hahn, Terry played by Shelley Conn.
Pred AD w/o char-refine: Lisa and Annie look at each other.
Char Info with char-refine: Lisa played by Reese Witherspoon.
Pred AD with char-refine: Lisa's brow furrows.

GT AD for the first two frames: Charlie smile fades.
GT AD for the last two frames : Charlie glares.
Pred AD w/o contextual info: Charlie nods. Charlie nods.
Pred AD with contextual info: Charlie's eyes narrow. Charlie stares at her.

GT AD: Charlie gently runs her thumb over her pregnant belly, then throws down 
the cigarette sharply.
Pred AD(num latent=1): Inside, Charlie lights a cigarette.
Pred AD(num latent=5): Charlie lights a cigarette.
Pred AD(num latent=10): Charlie lights a cigarette and sits on the edge of her bunk.
Pred AD(num latent=30): In the bathroom, Charlie lights a cigarette and stares at 
her reflection in the mirror.

(a) (b)

(c) (d)

Figure 4. Qualitative analysis on character-refinement module, contextual information, number of learnable vectors and comparison with
other approaches. Movies are selected from (a): How Do You Know(2010), (bc): Legion(2010), (d): Charlie St. Cloud (2010).

Table 6. Study the effectiveness of context AD. Context-AD
denotes the number of past context ADs. V&C-Loss indicates
whether past videos and contrastive loss are applied.

Context-AD V&C-Loss RL↑ C↑ R@5/16↑

1(recurrent) ✗ 16.4 25.8 51.9
✓ 16.4 25.8 52.3

3(recurrent) ✗ 15.6 23.1 50.9
✓ 16.1 24.0 52.2

1(oracle) ✗ 17.7 31.3 55.3
✓ 17.9 31.7 56.5

3(oracle) ✗ 18.6 34.9 55.9
✓ 18.6 34.8 55.6

sis on character-refinement module, contextual information
and the number of learnable vectors in visual mapping
network. Results show that: (1) The character-refinement
module can recognize the AD-related people and provide
more precise character information for AD generation. For
example in (a), AD-narrator without this module mistakes
the main character as Lisa and Annie, thus generates AD
deviated from the ground truth. (2) Incorporating contextual
information and the contrastive loss can effectively avoid
repeated AD generation and get more coherent results. In
sample (b) where the contents of two consecutive movie
clips vary little, model without contextual information
just generates two identical ADs, while descriptions with
progressive relationship are generated when contextual
information is available. (3) More visual tokens retain
more visual details. In sample (c), the corresponding AD
becomes more detailed as the number of learnable vectors
increases. Finally, we compare our generated ADs with

other methods in sample (d). The description generated
by Uni-AD is more consistent with the video content than
results of AutoAD-II and ClipCap. We find that result
of MM-Narrator, which generates AD by prompting GPT-
4, contains a lot of details that don’t actually exist. We
speculate that this is because GPT-4 is trained on longer
texts with a large number of detailed descriptions, which
results in a serious hallucination problem.

5. Conclusion
In this work, we present a simple and unified framework
called Uni-AD for Audio Description (AD) generation task
by prompting pre-trained LLMs with interleaved multi-
modal sequence as input. Compared with previous work,
our Uni-AD is able to leverage more precise character
information provided by the character-refinement module
and fully utilize rich contextual information to generated
ADs. Uni-AD achieves the state-of-the-art performance
on multiple AD generation benchmarks. We also conduct
comprehensive ablation studies to validate the effectiveness
of different components, which demonstrates that fine-
grained feature alignment, precise character information,
and contextual data can benefit AD generation. We hope
our work could facilitate research in this community.
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