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Figure 1. Continuous 3D Perception. Given a stream of RGB images as input, our approach enables dense 3D reconstruction in an online,

continuous manner, estimating both camera parameters and dense 3D geometry with each incoming frame. Our framework supports various

3D tasks, processes inputs from video sequences and sparse photo collections, and can handle both static and dynamic scenes.

Abstract

We present a unified framework capable of solving a broad
range of 3D tasks. Our approach features a stateful recurrent
model that continuously updates its state representation with
each new observation. Given a stream of images, this evolv-
ing state can be used to generate metric-scale pointmaps
(per-pixel 3D points) for each new input in an online fashion.
These pointmaps reside within a common coordinate system,
and can be accumulated into a coherent, dense scene re-
construction that updates as new images arrive. Our model,
called CUT3R (Continuous Updating Transformer for 3D
Reconstruction), captures rich priors of real-world scenes:
not only can it predict accurate pointmaps from image ob-
servations, but it can also infer unseen regions of the scene
by probing at virtual, unobserved views. Our method is sim-
ple yet highly flexible, naturally accepting varying length of
images that may be either video streams or unordered photo
collections, containing both static and dynamic content. We
evaluate our method on various 3D/4D tasks and demon-
strate competitive or state-of-the-art performance in each.
Project page: https://cut3r.github.io/.

1. Introduction

Humans are online visual learners. We continuously process

streams of visual input, building on what we have learned in

the past while learning in the present. Our prior knowledge

enables us to interpret the world from minimal information;

e.g., upon entering a new restaurant, it only takes a glance

to start inferring its layout and atmosphere. But it doesn’t

stop there—as we accumulate more observations, we con-

tinuously refine our mental model of the 3D environment.

This ability to reconcile our prior knowledge of the world

with a continuous stream of new observations is crucial for

functioning effectively in an ever-changing visual world.

Building on these insights, we introduce an online 3D

perception framework that unifies three key capabilities: 1)

reconstructing 3D scenes from few observations, 2) contin-

uously refining the reconstruction with more observations,

and 3) inferring 3D properties of unobserved scene regions.

We achieve these capabilities by integrating data-driven pri-

ors with a recurrent update mechanism. The learned prior

enables our method to address challenges encountered by tra-

ditional methods (e.g., dynamic objects, sparse observations,

degenerate camera motion), while the ability to continuously

update allows it to process new observations online, and

improve the reconstruction continuously over time.

Specifically, given an image stream, our recurrent model

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Reconstruction from Image Observations + Virtual View

Figure 2. Querying Unseen Regions. In addition to reconstructing

a scene from images, our method can also infer structure for unseen
parts of the scene, given a virtual camera query (shown in blue).

maintains and incrementally updates a persistent internal

state that encodes the scene content. With each new observa-

tion, the model simultaneously updates this state and reads

from it to predict the current view’s 3D properties, including

an estimate of that view’s dense 3D geometry (as a pointmap;

a 3D point per-pixel in a world coordinate frame) and camera

parameters (both intrinsics and extrinsics). Accumulating

these pointmaps enables online dense scene reconstruction,

as illustrated in Fig. 1. Additionally, our framework sup-

ports inferring unobserved parts of the scene: by querying

the internal state with a virtual (unseen) view, parameterized

as a raymap, we can extract the corresponding pointmap and

color for the query view, as depicted in Fig. 2.

Our framework is designed to be general and flexible,

making it well-suited for training on an extensive collec-

tion of datasets and adaptable to diverse inference scenarios.

During training, we leverage a wide variety of 3D data, in-

cluding single images, videos, and photo collections with

partial or full 3D annotations. These datasets span a broad

spectrum of scene types and contexts—static and dynamic,

indoor and outdoor, real and synthetic—enabling the model

to acquire robust and generalizable priors. During inference,

our recurrent framework naturally accepts varying numbers

of images, and supports a wide range of input data settings:

from streaming video to unstructured image collections, in-

cluding wide-baseline or even non-overlapping images. Be-

yond static scenes, it seamlessly handles videos of dynamic

scenes, estimating accurate camera parameters and dense

point clouds for moving parts of the scene.

We evaluate our method on various 3D tasks: monoc-

ular and consistent video depth estimation, camera pose

estimation, and 3D reconstruction, achieving competitive or

state-of-the-art performance in each. We also show that our

method can infer previously unseen structures and continu-

ously refine the reconstruction as new observations arrive.

2. Related Work
Tabula rasa 3D Reconstruction. Many 3D reconstruction

pipelines operate as tabula rasa1, starting from scratch for

1tabula rasa (lat.) – blank slate.

each new scene, and relying solely on the observations

currently available. Notable examples include traditional

methods such as Structure from Motion (SfM) [1, 2, 28,

47, 65, 66, 70, 71, 80] and Simultaneous Localization and

Mapping (SLAM) [11, 16, 19, 22, 37, 51, 53], as well as

more recent approaches such as Neural Radiance Fields

(NeRF) [12, 24, 49, 50, 84] and 3D Gaussian Splatting [36].

The tabula rasa nature of these approaches poses challenges

in handling scenarios with sparse observations or ill-posed

conditions. In contrast, our method leverages data-driven

priors to enable dense 3D reconstruction directly from video

sequences or photo collections, eliminating the need for

known camera extrinsics or intrinsics. The data-driven na-

ture of our method enables it to address challenging cases of

degeneracy, make predictions from as few as a single image,

and infer structures that are unobserved in the input.

Learning-Based 3D Reconstruction. Unlike tabula rasa
reconstruction, many methods integrate data-driven priors

into 3D reconstruction. One prominent direction focuses

on improving traditional reconstruction pipelines, includ-

ing replacing hand-crafted components with learning-based

alternatives (e.g., substituting conventional feature descrip-

tors [6, 47] with learned ones [17, 20, 63, 73]), integrating

data-driven priors [13, 77–79, 93, 97, 105] into the systems,

or optimizing entire systems end-to-end [76, 78, 83, 94].

Another substantial body of work aims to predict dense 3D

geometry directly from single or paired images. Extensive

research [7, 27, 42, 55, 58, 59, 85, 92] focuses on estimating

monocular depth. While depth maps provide valuable 3D

information, converting them into 3D point clouds typically

requires camera intrinsics [8, 32, 55], with camera extrinsics

often left unmodeled. Notably, DUSt3R [86] predicts two

pointmaps from an image pair within the same coordinate

frame, inherently accounting for both camera intrinsics and

extrinsics. However, DUSt3R is tailored for image pairs

and does not inherently support multiple views. While it

can be extended to handle multi-view tasks via an additional

global alignment process, this process operates offline, is

time-consuming, and cannot dynamically update the recon-

struction as new observations are added. In contrast, our

method flexibly handles a varying number of images, pre-

dicting pointmaps for each image in a shared coordinate

frame as they are received.

Continuous Reconstruction Methods. Many traditional

and learning-based methods share the ability to continu-

ously predict 3D structure in an online manner. Monocular

SLAM pipelines [22, 23, 78, 105] recover ego-motion and

3D point clouds in real-time from video sequences but typ-

ically require known camera intrinsics. Our approach is

related to learning based methods [14, 34, 74, 100], such as

3D-R2N2 [14], which utilize recurrent neural network archi-

tectures [21, 31, 33] for online 3D reconstruction. However,
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these methods are either object-centric [14, 34, 96] or require

posed images as input [9, 34, 64, 74, 100]. Spann3R [81],

developed concurrently with our work, also demonstrates

continuous reconstruction capabilities using a spatial mem-

ory mechanism. However, while Spann3R’s memory serves

primarily as a cache for observed scenes, our compressed

state representation not only captures observed scene content

but also enables inferring unobserved structures. Finally, un-

like the methods discussed in this paragraph that only operate

on static scenes, our method also seamlessly reconstructs

dynamic scenes.

Reconstructing Dynamic Scenes from Monocular Videos.
Recovering camera parameters and consistent dense geom-

etry from monocular videos of dynamic scenes presents

significant challenges for traditional SLAM pipelines. Re-

cent approaches address this by leveraging learned depth

priors. Robust-CVD [38] uses deformation splines to align

the depth maps, while CasualSAM [101] finetunes a monoc-

ular depth network on a single video. These methods involve

time-consuming per-video optimization. Concurrent to our

work, MonST3R [98] extends DUSt3R to predict pointmaps

for dynamic scenes by finetuning it on dynamic datasets.

However, it still follows DUSt3R’s pairwise formulation

and requires global alignment as post-processing. Another

concurrent work, MegaSaM [43], achieves highly accurate

and robust estimation of camera poses and scene structure

for casually captured dynamic videos. Unlike our approach,

MegaSaM is optimization-based (i.e., not feedforward), uses

an explicit 3D state and does not make online predictions.

3D Scene Priors. Predicting 3D content beyond observed

views has long been studied, but it has recently gained sig-

nificant attention due to advancements in generative mod-

eling. Regression-based few-shot novel view synthesis ap-

proaches [39, 68, 69, 96] typically only generalize across a

class of 3D scenes. With rapid advances in image and video

generative models [57, 61, 62], much of the current research

in 3D generation focuses on transferring priors from images

and videos to 3D [45, 48, 56, 91]. However, most image-

based 3D generation methods require camera parameters as

input, focus on limited data domains (e.g., object-centric), or

require additional 3D distillation processes to extract 3D con-

tent. In contrast to these view-centric approaches that gener-

ate novel views as a proxy for 3D, our method is geometry-

centric: It directly generates metric-scale pointmaps for a

virtual camera query in a scene reconstructed from a set of

images, without requiring their camera intrinsics or poses.

3. Method
Our approach takes as input a stream of images without any

camera information. The image streams can come from ei-

ther video or image collections. As a new image comes in

through the model, it interacts with the latent state represen-

tation, which encodes the understanding of the current 3D

scene. Specifically, the image simultaneously updates the

state with new information and retrieves information stored

in the state. Following the state-image interaction, explicit

3D pointmaps and camera poses are extracted for each view.

The state can also be queried with a virtual view to predict

its corresponding pointmap, capturing unseen parts of the

scene. See Fig. 3 for our method overview.

3.1. State-Input Interaction Mechanism
Our method takes a stream of images as input. For each

current image, It, it is first encoded into token representation

by a ViT encoder [18]:

Ft = Encoderi(It). (1)

We represent the state also as a set of tokens. Prior to seeing

any image input, the state tokens are initialized as a set of

learnable tokens shared by all scenes. The image tokens

interact with the state in two ways: they update the state with

information from the current image and read the context from

the state, incorporating stored past information. We refer to

these interactions as state-update and state-readout, respec-

tively. This bidirectional interaction is implemented using

two interconnected transformer decoders [86, 88], which

jointly operate on both image and state tokens:

[z′
t,F

′
t ], st = Decoders([z,Ft], st−1). (2)

Here st−1 and st represent the state tokens before and after

interaction with the image tokens. F ′
t denotes the image

tokens enriched with state information. z is a learnable

“pose token” prepended to the image tokens, whose output z′
t

captures image-level information related to the scene, such

as ego motion. Within the decoders, the outputs from both

sides cross-attend to each other at each decoder block to

ensure effective information transfer.

After this interaction, explicit 3D representation can

be extracted from F ′
t and z′

t. Specifically, we pre-

dict two pointmaps with corresponding confidence maps,

(X̂self
t ,Cself

t ) and (X̂world
t ,Cworld

t ). These maps are defined

in two coordinate frames: the input image’s own coordinate

frame and the world frame, respectively, where the world

frame is defined as the coordinate frame of the initial image.

Additionally, we predict the relative transformations between

the two coordinate frames, or, the ego motion, P̂t:

X̂self
t ,Cself

t = Headself(F
′
t ) (3)

X̂world
t ,Cworld

t = Headworld(F
′
t , z

′
t) (4)

P̂t = Headpose(z
′
t), (5)

where Headself and Headworld are implemented as DPT [58],

and Headpose is implemented as an MLP network, respec-

tively. Please see the supplement for details. We extract
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Figure 3. Method Overview. Our method performs online dense 3D reconstruction from a stream of images (video frames or a photo

collection) by using a persistent state. Each input image is encoded into visual tokens via a shared-weight ViT encoder. These tokens interact

with state tokens, where state update integrates the current image into the state, and state readout retrieves the past context stored in the state

for predictions. Both processes occur simultaneously through two interconnected ViT decoders. Outputs include pointmaps in world and

camera frames (only world pointmaps are shown) and the camera-to-world transformation. On the right, we demonstrate our method’s

ability to predict unseen views: given a query camera (as a raymap), it reads information from the state to predict its corresponding pointmap,

even for unobserved regions. For these readouts, we do not update the state. The hallucinated pointmap is highlighted with a blue border.

6-DoF pose P̂t from the pose token z′
t, the rigid transforma-

tion from the current frame to the world. All pointmaps and

poses are in metric scale (i.e., meters).

Although predicting X̂self
t , X̂world

t , and P̂t may seem

redundant, we found this redundancy simplifies training.

It enables each output to receive direct supervision, and

importantly, it facilitates training on datasets with partial

annotations, such as those containing only pose or single-

view depth, thereby broadening the range of usable data.

3.2. Querying the State with Unseen Views
Leveraging past 3D experiences, humans can envision parts

of a scene beyond what is directly observed. We emulate this

ability by extending the state-readout operation to predict

unseen portions of the scene from a virtual camera view.

Specifically, we use a virtual camera as a query to extract

information from the state. The virtual camera’s intrinsics

and extrinsics are represented as a raymap R, a 6-channel

image encoding the origin and direction of rays at each

pixel [25, 90, 99].

Given a query raymap R, we first encode it into token

representations Fr using a separate transformer Encoderr:

Fr = Encoderr(R). (6)

Then, the rest of the process aligns largely with what is de-

scribed in Sec 3.1. Specifically, we have Fr interact with the

current state through the same decoder module (i.e., shared

weights) as in Eq. 2 to read from the state into F ′
r. Note

that, unlike in the state-image interaction, the state is not

updated here, as the raymap serves solely as a query without

introducing new scene content. Finally, we apply the same

head networks to parse F ′
r into explicit representations, as in

Eq. 3-5. Additionally, we introduce another head Headcolor

to decode color information: Îr = Headcolor(F
′
r) which

corresponds to the color of each ray in the raymap R.

Querying the scene with raymaps has an interesting anal-

ogy to Masked Autoencoders (MAE) [30]. In MAE, comple-

tion occurs at the patch level, using the global context of the

entire image. Here, completion is performed at the image

level, leveraging the global context of the 3D scene captured

in the state.

3.3. Training Objective

During training, we provide the model with a sequence of

N images (either from a video sequence or an image collec-

tion). The raymap mode is enabled only for training data

with metric-scale 3D annotations. In these cases, we ran-

domly replace each image with its corresponding raymap

at a certain probability, excluding the first view. When the

scale of the 3D annotation is unknown, raymap querying

is disabled to avoid inconsistencies between the annotation

scale and the scene scale represented in the state. For clarity,

we do not differentiate between predictions generated from

a raymap or an image in this section to simplify the notation.

We denote the pointmap predictions of the current training se-

quence as X = {X̂ self, X̂world}, where X̂ self = {X̂self
t }Nt=1,

X̂world = {X̂world
t }Nt=1 and their corresponding confidence

scores as C.
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3D regression loss. Following MASt3R [40], we apply a

confidence-aware regression loss to the pointmaps:

Lconf =
∑

(x̂,c)∈(X̂ ,C)

(
c ·

∥∥∥∥ x̂ŝ − x

s

∥∥∥∥
2

− α log c

)
, (7)

where ŝ and s are scale normalization factors for X̂ and X ,

respectively. Similar to MASt3R [40], when the groundtruth

pointmaps are metric, we set ŝ := s to enable the model to

learn metric-scale pointmaps.

Pose loss. We parameterize the pose P̂t as quaternion q̂t
and translation τ̂t, and minimize the L2 norm between the

prediction and groundtruth:

Lpose =

N∑
t=1

(
‖q̂t − qt‖2 +

∥∥∥∥ τ̂tŝ − τt
s

∥∥∥∥
2

)
. (8)

RGB loss. When the input is raymap, besides the 3D regres-

sion loss, we also apply an MSE loss to enforce the predicted

pixel colors Îr to match the groundtruth: Lrgb = ||Îr−Ir||22.

3.4. Training Strategy
Training Datasets. We train our method on a diverse

set of 32 datasets, covering synthetic and real-world data,

static and dynamic scenes, scene-level and object-centric

configurations, as well as both indoor and outdoor scenes.

Examples of our datasets include CO3Dv2 [60], ARK-

itScenes [5], ScanNet++ [95], TartanAir [87], Waymo [75],

MegaDepth [41], MapFree [3], DL3DV [44], and Dynam-

icStereo [35]. Our flexible formulation allows training on

datasets with partial annotations (i.e. only camera param-

eters like RealEstate10K [103], or only single views, like

Synscapes [89]). See the supplement for the full list.

Curriculum Training. Our model is trained with a curricu-

lum. The first stage trains the model on 4-view sequences

from mainly static datasets. The second stage incorporates

dynamic scene datasets, improving the model’s ability to

handle moving objects such as humans, along with datasets

with partial annotations, further enhancing its generalization.

These two stages are trained on 224×224 images to reduce

computational costs, following DUSt3R [86]. In the third

stage, we train with higher resolution, using varied aspect

ratios and setting the maximum side to 512 pixels. Finally,

we freeze the encoder, training only the decoder and heads

on longer sequences spanning 4 to 64 views. This stage

focuses on enhancing inter-scene reasoning and effectively

handling long contexts.

Implementation Detail. We use a ViT-Large model [18] for

the image encoder Encoderi, initialized with DUSt3R en-

coder pretrained weights, and ViT-Base for the decoders.

Both the encoder and decoders operate on 16×16 pixel

patches. The state consists of 768 tokens, each with a di-

mensionality of 768. The raymap encoder Encoderr is a

lightweight encoder with 2 blocks. We use Adam-W opti-

mizer [46] with an initial learning rate of 1e−4, applying lin-

ear warmup followed by cosine decay. We train our model on

eight A100 NVIDIA GPUs each with 80G memory. Please

refer to the supplement for more details.

4. Experiments
We evaluate our method across a range of 3D tasks, including

single and video depth estimation (Sec. 4.1), camera pose

estimation (Sec. 4.2), and 3D reconstruction (Sec. 4.3).

Baselines. Our primary set of baselines are DUSt3R [86],

MASt3R [40], Spann3R [81], and MonST3R [98], where

the latter two are concurrent works. MonST3R finetunes

DUSt3R on dynamic datasets to handle dynamic scenes,

while Spann3R extends DUSt3R to support varying number

of images via additional spatial memory and operates online,

similar to our method. DUSt3R, MASt3R, and MonST3R

can only take a pair of views as input, and require an extra

global alignment (GA) stage to consolidate the pairwise

predictions. Both MASt3R and our method predict metric

pointmaps, whereas others predict relative pointmaps.

4.1. Monocular and Video Depth Estimation
Mono-Depth Estimation. Following MonST3R [98], we

evaluate monocular depth estimation on KITTI [26], Sin-

tel [10], Bonn [54] and NYU-v2 [52] datasets covering dy-

namic and static, indoor and outdoor scenes. These datasets

are excluded from training, enabling zero-shot performance

evaluation across domains. We use absolute relative error

(Abs Rel) and δ < 1.25 (percentage of predicted depths

within a 1.25-factor of true depth) as metrics, with per-frame

median scaling per DUSt3R [86]. Results in Tab. 1 show our

method achieves state-of-the-art or competitive performance,

leading on Bonn and and NYU-v2 and ranking second on

KITTI.

Sintel Bonn KITTI NYU-v2
Method Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑
DUSt3R 0.424 58.7 0.141 82.5 0.112 86.3 0.080 90.7
MASt3R 0.340 60.4 0.142 82.0 0.079 94.7 0.129 84.9
MonST3R 0.358 54.8 0.076 93.9 0.100 89.3 0.102 88.0
Spann3R 0.470 53.9 0.118 85.9 0.128 84.6 0.122 84.9
Ours 0.428 55.4 0.063 96.2 0.092 91.3 0.086 90.9

Table 1. Single-frame Depth Evaluation. We report the perfor-

mance on Sintel, Bonn, KITTI, and NYU-v2 (static) datasets.

Video Depth Estimation. Video depth estimation evaluates

per-frame depth quality and inter-frame depth consistency

by aligning predicted depth maps to ground truth using a per-

sequence scale. For metric pointmap methods like ours and

MASt3R, we also report results without alignment. Compar-

isons for both methods are presented in Tab. 2.

Under per-sequence scale alignment, our method consis-

tently outperforms DUSt3R [86] and MASt3R [40]. The
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Sintel BONN KITTI

Alignment Method Optim. Onl. Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ <1.25 ↑ FPS

Per-sequence scale

DUSt3R-GA [86] � 0.656 45.2 0.155 83.3 0.144 81.3 0.76

MASt3R-GA [40] � 0.641 43.9 0.252 70.1 0.183 74.5 0.31

MonST3R-GA [98] � 0.378 55.8 0.067 96.3 0.168 74.4 0.35

Spann3R [81] � 0.622 42.6 0.144 81.3 0.198 73.7 13.55

Ours � 0.421 47.9 0.078 93.7 0.118 88.1 16.58

Metric scale
MASt3R-GA [40] � 1.022 14.3 0.272 70.6 0.467 15.2 0.31

Ours � 1.029 23.8 0.103 88.5 0.122 85.5 16.58

Table 2. Video Depth Evaluation. We report scale-invariant depth and metric depth accuracy on Sintel, Bonn, and KITTI datasets. Methods

requiring global alignment are marked “GA”, while “Optim.” and “Onl.” indicate optimization-based and online methods, respectively.

We also report the FPS on KITTI dataset using 512× 144 image resolution for all methods on an A100 GPU, except Spann3R which only

supports 224×224 inputs. We present a subset of baselines here; please refer to the supplementary material for full comparisons.

Sintel TUM-dynamics ScanNet

Method Optim. Onl. ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓
Particle-SfM [102] � 0.129 0.031 0.535 - - - 0.136 0.023 0.836

Robust-CVD [38] � 0.360 0.154 3.443 0.153 0.026 3.528 0.227 0.064 7.374

CasualSAM [101] � 0.141 0.035 0.615 0.071 0.010 1.712 0.158 0.034 1.618

DUSt3R-GA [86] � 0.417 0.250 5.796 0.083 0.017 3.567 0.081 0.028 0.784

MASt3R-GA [40] � 0.185 0.060 1.496 0.038 0.012 0.448 0.078 0.020 0.475
MonST3R-GA [98] � 0.111 0.044 0.869 0.098 0.019 0.935 0.077 0.018 0.529

DUSt3R [86] � 0.290 0.132 7.869 0.140 0.106 3.286 0.246 0.108 8.210

Spann3R [81] � 0.329 0.110 4.471 0.056 0.021 0.591 0.096 0.023 0.661

Ours � 0.213 0.066 0.621 0.046 0.015 0.473 0.099 0.022 0.600

Table 3. Evaluation on Camera Pose Estimation on Sintel [10], TUM-dynamic [72], and ScanNet [15] datasets. Our method achieves the

best overall performance among all online methods.

global alignment they use assumes that the scene is static,

and enforcing multi-view consistency can only improve the

reconstruction of static regions but may impair the recon-

struction of moving objects. In contrast, our method lever-

ages implicit alignment through the state, making it adapt-

able to both static and dynamic scenes while remaining fully

online. Our method also significantly outperforms the other

online method, Spann3R [81], which is based on spatial

memory designed with a static scene assumption and trained

only on static 3D scenes. MonST3R [98] achieves state-

of-the-art performance, but it relies on an additional global

alignment stage that incorporates extra input like optical flow

in its optimization. In comparison, our method performs

comparably, or even better on the KITTI dataset, while re-

maining online and achieving nearly 50× speedup. In the

metric-scale setting, our method also significantly outper-

forms MASt3R for most metrics.

4.2. Camera Pose Estimation
Following MonST3R [98], we evaluate camera pose estima-

tion accuracy on Sintel [10], TUM dynamics [72], and Scan-

Net [15] datasets. Note that both Sintel and TUM-dynamics

contain major dynamic objects, making it challenging for

traditional SfM and SLAM systems. We report Absolute

Translation Error (ATE), Relative Translation Error (RPE

trans), and Relative Rotation Error (RPE rot) after Sim(3)

alignment with the ground truth, as in [13, 98, 102]. Unlike

most visual odometry methods [13, 29, 78], our method does

not require any camera calibration. We compare to baselines

that share this feature. Most prior approaches do so through

test-time optimization, as seen in Robust-CVD [38] and Ca-

sualSAM [101], which jointly estimate camera parameters

and dense depth maps per sequence.

The results are presented in Tab. 3. We separately high-

light the leading approaches for methods that require addi-

tional optimization and those that do not (i.e., online). For

the online category, we additionally include DUSt3R [86]

where we align all video frames with first frame, without

using GA. Although a gap persists between optimization-

based and online methods, our approach achieves the best

overall performance among online methods, particularly in

dynamic scenes.

4.3. 3D Reconstruction
We evaluate scene-level reconstruction on the 7-scenes [67]

and NRGBD [4] datasets using accuracy (Acc), completion

(Comp), and normal consistency (NC) metrics, as in prior

works [4, 81, 82, 86, 104]. To assess performance on im-

age collections with minimal or no overlap, we evaluate

using sparsely sampled images: 3 to 5 frames per scene for

the 7-Scenes dataset and 2 to 4 frames per scene for the

NRGBD dataset. The results are presented in Tab. 4. Our
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Input Video Spann3R MonST3R Ours

Figure 4. Qualitative Results on In-the-wild Internet Videos. We compare our method with concurrent works Spann3R [81] and

MonST3R [98]. Our method achieves the best qualitative results.

7 scenes [67] NRGBD [4]

Acc↓ Comp↓ NC↑ Acc↓ Comp↓ NC↑
Method Optim. Onl. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. FPS

DUSt3R-GA [86] � 0.146 0.077 0.181 0.067 0.736 0.839 0.144 0.019 0.154 0.018 0.870 0.982 0.68

MASt3R-GA [40] � 0.185 0.081 0.180 0.069 0.701 0.792 0.085 0.033 0.063 0.028 0.794 0.928 0.34

MonST3R-GA [40] � 0.248 0.185 0.266 0.167 0.672 0.759 0.272 0.114 0.287 0.110 0.758 0.843 0.39

Spann3R [81] � 0.298 0.226 0.205 0.112 0.650 0.730 0.416 0.323 0.417 0.285 0.684 0.789 12.97

Ours � 0.126 0.047 0.154 0.031 0.727 0.834 0.099 0.031 0.076 0.026 0.837 0.971 17.00

Table 4. 3D reconstruction comparison on 7-Scenes [67] and NRGBD [4] datasets. While operating online, our method achieves

competitive performance, on par with and even surpassing offline methods that employ global alignment.

method significantly outperforms the other online approach

Spann3R [81], and achieves comparable or sometimes better

results than the top optimization-based method, DUSt3R-

GA, while operating online at 25× the speed. This highlights

our method’s effectiveness with sparse image collections.

Qualitative Results. We compare the reconstruction qual-

ity of our method with Spann3R [81] and MonST3R [98]

on in the wild Internet videos in Fig. 4. Spann3R [81] is

neither designed nor trained on dynamic scenes, making it

less effective at handling moving objects, such as humans.

MonST3R [98] is finetuned on dynamic scenes, potentially

overfitting and degrading performance on static 3D scenes.

In contrast, our method operates online and achieves state-of-

the-art performance across both static and dynamic scenes.

4.4. Analysis
State Update Analysis. Our model continuously updates

its state representation as new data arrives, relying solely on

past and current observations without knowledge of future

inputs. As more observations accumulate, the state should be

able to refine its understanding of the 3D world, leading to

improved predictions. We demonstrate this capability of our

method in Tab. 5. Using the same experimental setup as in

Sec. 4.3, we introduce an additional version of our approach

called “revisiting”: we first run our method online to obtain

the final state that has seen all images, then we freeze this

state and use it to process the same set of images again to

generate predictions.

This setup differs from the online setup by allowing the

state to see the full context of the scene during the first

run. As shown in Tab. 5, revisiting improves performance

compared to the online version, especially for accuracy. This

verifies that the state representation effectively updates with

additional observations. See Fig. 5 for a qualitative example.
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7-Scenes NRGBD

Method Acc↓ Comp↓ NC↑ Acc↓ Comp↓ NC↑
DUSt3R-GA [86] 0.146 0.181 0.736 0.144 0.154 0.870
Ours 0.126 0.154 0.727 0.099 0.076 0.837

Ours Revisit 0.113 0.107 0.732 0.094 0.076 0.844

Table 5. State Update Analysis on 7-Scenes [67] and NRGBD [4]

datasets.

Figure 5. State Update Analysis. Compared to online, revisiting

incorporates global context which improves overall reconstruction

results, especially in the highlighted regions.

Inferring Unseen Regions via State Readout. To the best

of our knowledge, our method is the first to enable the infer-

ence of unseen structures in metric scale for general scenes,

supporting both single and multiple views, without requiring

camera intrinsics or poses for the input images. We show

qualitative results of the generated structures in Fig. 6. For

this experiment, we use the validation set of the MapFree [3]

and ARKitScenes datasets, both with metric camera pose

annotations. Importantly, these scenes are not seen by our

model during training. In each example, we input a single

image to our model and then query the state using a raymap

of the ground truth image (unseen by the state). The model

is expected to generate pointmaps that align with the ground

truth. While the predictions may lack some high-frequency

details – owing to the deterministic nature of our approach –

they accurately follows the viewpoint transformation, even

with significant viewpoint changes between the input and

ground truth. In addition, our method generates new struc-

tures beyond what what is observed in the input, such as the

bushes in the first example, the ground in the second, the

oven in the third, and the stool in the last. This demonstrates

that our method captures generalized 3D scene priors.

5. Conclusion

In this paper, we propose an online 3D perception model

with a continuously updating, persistent state. Given an im-
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Figure 6. Inferring New Structure via. State Readout. From top

to bottom: the input image; the ground truth (GT) image, used to

query the state via its camera parameters (note: GT image is not

given to the model); the depth map from the predicted pointmap;

the pointmap prediction of the input image alone; and the pointmap

combined with the predicted pointmap in a shared coordinate frame.

age stream, our model simultaneously performs state-update

(which updates the state) and state-readout (which retrieves

information from the state) for each observation. The out-

put at each step includes camera parameters and pointmaps

in the world frame, which accumulate into a dense recon-

struction of the scene over time. This simple formulation is

general yet powerful enough to solve a number of 3D/4D

tasks, handling both videos and photo collections, and pro-

cessing both static and dynamic scenes. The generalized 3D

scene priors captured by our method enable the inference

of new structures unobserved in the input views by probing

the state with a raymap. Experimental results on extensive

3D/4D tasks verify the effectiveness of our method.

Limitations. As with many online methods, our approach

may eventually drift over very long sequences due to the ab-

sence of global alignment. Extending our work with explicit

or implicit global alignment is an interesting future direction.

Additionally, since our structure generation is performed

via a deterministic rather than a generative approach, it can

produce blurry results – especially when extrapolating view-

points too far from the provided views – a common issue

with regression-based methods. Incorporating a generative

formulation could address this limitation. Finally, training

recurrent networks can be time-consuming. We leave these

fundamental directions for future work.
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[4] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman,

Matthias Nießner, and Justus Thies. Neural rgb-d surface

reconstruction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6290–

6301, 2022. 6, 7, 8

[5] Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Tal Dimry,

Yuri Feigin, Peter Fu, Thomas Gebauer, Brandon Joffe,

Daniel Kurz, Arik Schwartz, and Elad Shulman. ARK-

itscenes - a diverse real-world dataset for 3d indoor scene

understanding using mobile RGB-d data. In Thirty-fifth Con-
ference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 1), 2021. 5

[6] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc

Van Gool. Speeded-up robust features (surf). Computer
vision and image understanding, 110(3):346–359, 2008. 2

[7] Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter

Wonka, and Matthias Müller. Zoedepth: Zero-shot trans-

fer by combining relative and metric depth. arXiv preprint
arXiv:2302.12288, 2023. 2
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