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Decoupling

Figure 1. DecoupledGaussian decomposes static objects and contacted scenes from videos or multi-view images, enabling simulations

like scene collisions (Top) and object melting with material adjustments (Bottom). See the supplementary video for the full sequences.

Abstract
We present DecoupledGaussian, a novel system that de-

couples static objects from their contacted surfaces cap-

tured in-the-wild videos, a key prerequisite for realistic

Newtonian-based physical simulations. Unlike prior meth-

ods focused on synthetic data or elastic jittering along the

contact surface, which prevent objects from fully detach-

ing or moving independently, DecoupledGaussian allows

for significant positional changes without being constrained

by the initial contacted surface. Recognizing the limita-

tions of current 2D inpainting tools for restoring 3D lo-

cations, our approach proposes joint Poisson fields to re-

pair and expand the Gaussians of both objects and con-

tacted scenes after separation. This is complemented by

a multi-carve strategy to refine the object’s geometry. Our

system enables realistic simulations of decoupling motions,

collisions, and fractures driven by user-specified impulses,

supporting complex interactions within and across mul-

tiple scenes. We validate DecoupledGaussian through a

comprehensive user study and quantitative benchmarks.

This system enhances digital interaction with objects and

scenes in real-world environments, benefiting industries

such as VR, robotics, and autonomous driving. Our project

page is at: https://wangmiaowei.github.io/

DecoupledGaussian.github.io/.

✠: Partially conducted at Zhejiang Lab. �: Corresponding author.

1. Introduction

Interactive reconstruction and simulation of target objects

and their surrounding scenes have become increasingly so-

phisticated recently. These can provide 4D assets for au-

tonomous driving [74] and robotics [64], and also enable

immersive applications in Virtual Reality (VR) [66] and the

entertainment industry [95].

Advances in realism have been made by moving be-

yond traditional representations, such as point clouds [47],

meshes [69], grids [12], and signed distance fields [77].

Neural Radiance Fields (NeRF) [62] use neural render-

ing techniques for novel view synthesis from videos, en-

abling interactive games [60], animation [96], and simula-

tions [50], where what is simulated directly stems from what

is captured. And Gaussian Splatting (GS) [43], known for

its rapid rendering and reconstruction speeds, leverages dis-

crete Gaussian kernels, making it easier to directly manipu-

late and process [11, 21] objects reconstructed from videos.

However, current physics-based simulation methods that

use NeRF [17, 50] or Gaussian splatting [6, 38, 89] either

focus on synthetic objects, allowing for full-view obser-

vations during reconstruction, or simulate elastic deforma-

tions and jittering, in which objects remain constrained to

the contacted surface. This prevents objects from truly de-

taching under user-specified impulses.

To allow objects to move without being constrained by
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the initial contacted surface, we need to decouple objects

from the contacted surface before simulation. In real-life

settings, objects are influenced by gravity and typically rest

on other surfaces, such as the sculpture on the pedestal in

Fig. 1. During imaging, an object and its contacted sur-

faces will be joined, resulting in hidden parts and occlu-

sions and a fragmented representation of the object’s sur-

face. The primary challenge in decoupling, therefore, is ac-

curately restoring and completing the 3D structures of both

the object and its surrounding scene before simulation.

To tackle this challenge, we introduce DecoupledGaus-

sian, a system that restores 3D geometry and textures of

objects and contacted surfaces from in-the-wild videos us-

ing GS, laying the groundwork for realistic object-scene in-

teractive simulations (see Fig. 1). Notably, 2D inpainting

(Fig. 2) often struggles with 3D restoration, especially in ac-

curately capturing geometric positions. Our approach over-

comes this by leveraging geometric priors assuming closed

surfaces and multi-view observations from training view-

points to restore realistic object and scene geometry.

Our method employs joint Poisson fields to reconstruct

shape indicators for objects and scenes, resolving intersect-

ing regions. Using Gaussian centers directly can introduce

surface deviations due to blended rendering, causing arti-

facts in object reconstruction. To avoid this, we use un-

biased depth maps from planar-based GS to create proxy

points for realistic object reconstruction and reduce the

scene’s floaters through geometry regularization with flat-

tened 3D Gaussians. To alleviate geometry expansion in

Poisson reconstruction, we introduce a unilateral negative

cross-entropy (UNCE) method for multi-view carving, re-

fining the geometry to align with the observed views.

DecoupledGaussian is the first to restore both object and

contacted surface geometry independently of 2D inpainting,

which we use only for texture properties refinement. Exten-

sive experiments on real-world videos, a new decoupling

benchmark, user studies, quantitative comparisons, and ab-

lations demonstrate our approach’s effectiveness in restor-

ing accurate 3D properties and enabling precise interactive

simulations. In summary, our contributions include:

• Development of an object-scene interactive simulation

system that allows objects to detach from their contacted

surfaces when constructed from in-the-wild videos and

represented using GS.

• Introduction of geometric priors via joint Poisson fields

and multi-view observations with UNCE for more realis-

tic restoration (see Fig. 6) of geometric properties in GS.

2. Related Work

GS Editing A variety of methods have been proposed to

modify or edit scenes built by Gaussian Splatting. Wu et al.

[88] enhance GS textures with learnable lighting adjust-

ments, while Fiebelman et al. [18] refine 4D video playback

using human language prompts. Texture-GS [91] supports

texture modifications via UV mapping decoupled from the

original GS, and Ma et al. [57] introduce deformations

by aligning Gaussians to a proxy mesh with as-rigid-as-

possible regularization. Additionally, GaussianEditor [11]

allows object addition and removal in GS scenes through 2D

segmentation [45] and inpainting techniques [79]. SC-GS

[34] enables object deformation using sparse control points

learned from dynamic video data, while Modi et al. [65]

learns skinning weights for elastic deformations. Huang

and Yu [29] apply a bounding cage as a control proxy to

deform GS representations.

GS Simulation Gaussian Splatting can be incorporated

into traditional simulation frameworks. For instance, Phys-

Gaussian [89] uses the Material Point Method (MPM)

[37, 46, 78] to simulate Gaussian kernels motion directly,

while VR-GS [38] applies eXtended Position-based Dy-

namics (XPBD) [59] to control GS via a bounding mesh.

Feng et al. [16] combine XPBD to model interactions be-

tween liquids and solids in GS, and Borycki et al. [5] utilize

MPM with triangle soups derived from GS. Additionally,

Abou-Chakra et al. [2] apply GS in robotic decision-making

through XPBD. For accurate physical property estimation

in these simulations, GIC [6] derives physical properties

from multiview video captures, building on techniques from

Guan et al. [20], Li et al. [50] for system identification. Be-

sides, Liu et al. [52] and Huang et al. [33] estimate mate-

rial properties from synthetic video generated from static

images using generative models. Whitney et al. [85] de-

veloped simulators trained on dynamic multi-view RGB-D

video, and Qiu et al. [72] use visual language models to

classify objects as elastic or rigid for text-driven physics

simulations. However, these methods do not address the

challenge of simulating an object detached from the contact

surface when a user-provided impulse is applied.

Masked Image LaMa Photoroom
Figure 2. Inpainting tools (LaMa [79]; PhotoRoom [1]) introduce

artifacts and inconsistent textures across frames.

GS Restoration Restoration techniques have addressed

occluded mesh completion [28], single-view depth point

cloud completion [31, 32, 39, 81, 87], and SDF-based re-

constructions [19, 30, 56, 68]. In the context of Gaussian

Splatting, recent work has focused on restoring scene sur-
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faces after object removal [54, 83] and reconstructing GS

objects from sparse views [92]. However, a key challenge

remains unaddressed: no GS or NeRF-based methods cur-

rently restore objects occluded by the scene or missed due

to limited training viewpoints—a challenge mesh restora-

tion techniques have begun to tackle [24]. Similarly, video

generation methods like PhysGen [53], which rely on static

cameras, also overlook this issue. Current GS scene restora-

tion techniques [54, 63, 83] depend heavily on 2D inpaint-

ing tools [1, 71, 79] to fill gaps in geometry and texture post-

object removal. However, these methods face two major is-

sues (Fig. 2): (1) inpainted regions often fail to blend seam-

lessly with surrounding geometry, creating artifacts, and (2)

texture inconsistencies across frames due to the lack of ro-

bust video inpainting tools. Our approach addresses these

limitations by prioritizing geometry restoration, leveraging

intrinsic GS geometry priors to ensure a coherent surface

even when texture inpainting is imperfect.

3. Preliminaries

3.1. 3D Gaussian Splatting

Gaussian Splatting [43] represents a 3D scene with

possible features by constructing 3D Gaussian kernels

{kg, Ãg,Σg, Cg}g∈G , where kg , Ãg , Σg , and Cg denote

Gaussian centers, opacities (encoding density), covariance

matrices, and spherical harmonic (SH) representing color

coefficients, respectively. The covariance matrix Σg at a

Gaussian g is factorized as Σg = RgSgS
T
g R

T
g , where

Rg is a rotation matrix, and corresponding scaling Sg =
diag(s1, s2, s3) is a diagonal matrix. Like NeRF [62], GS

is optimized for novel-view synthesis, where for a given 2D

image plane, an integrated quantity q at a pixel p is obtained

by the following front-to-back ³-blending:

q(p) =
∑

i∈G

qi³i





i−1
∏

j=1

(1− ³j)



 (1)

where qi is the quantity (for instance, SH-evaluated color

ci), and ³i is the termination probability derived from opac-

ity Ãi and affine-projected 2D Gaussian weights from Σi.

3.2. Continuum Simulation

We use the MLS-MPM [27] framework to solve Gaussian

kernel governing equations (mass and momentum conser-

vation) [89]. The continuum is discretized into Lagrangian

particles p, with time steps of ∆t for deformation. At

each step, particle mass and momentum are transferred to

an Eulerian grid (P2G), where momentum is updated using

the first Piola-Kirchhoff stress (PK1), and velocities v are

advanced via forward Euler integration (Grid Operation).

These grid velocities are then interpolated back to particles

(G2P) for position updates during advection. MLS-MPM

employs affine Cp as a first-order approximation of ∇v, op-

timizing computation time. The elastic deformation gradi-

ent FE is updated as Fn+1
p = (I + ∆t Cn

p )F
n
p . Material

parameters such as Young’s modulus E and shear modulus

µ [37] influence PK1 in grid momentum updates.

4. DecoupledGaussian

The DecoupledGaussian system starts with a reconstructed

GS scene and allows an object resting on a planar surface

to be moved off its surface in a realistic manner as shown

in Fig. 3. First an object is segmented and a planar-based

GS aligns Gaussians G to the underlying surface geometry.

Joint Poisson fields, informed by geometric priors, then re-

pair fragmented surfaces of both the scene and object after

separation. For the object, proxy points serve as input to the

Poisson fields, and the output is carved using our UNCE

method to ensure geometry aligns with training observa-

tions. The Gaussians’ texture properties ({Ãg, Cg}) are re-

fined with 2D inpainting, and this is followed by a real-time

interactive simulation of the decoupled object and scene via

MLS-MPM. Each stage is detailed in this section.

4.1. 3D Gaussians Preparation

The scene is freely recorded with a consumer-level camera.

The frame sequence is then processed in COLMAP [75, 76]

to obtain intrinsic and extrinsic calibrations and to generate

initial Gaussian centers for the next section.

4.1.1 Planar-based Gaussian Splatting

Optimizing vanilla 3D Gaussian models [43] with only

image reconstruction loss often results in local optima,

complicating accurate geometry extraction, which is vi-

tal for the subsequent restoration stage. To avoid this,

we adopt PGSR [8] for unbiased depth D estimation.

Given the inherent disorder of vanilla Gaussian distribu-

tions, we initially compress the Gaussians into an ap-

proximate local plane that aligns with the scene surface.

This is achieved by penalizing the minimum scaling term

||min(s1, s2, s3)||1 during training, allowing for a tolera-

ble loss in rendering quality to enhance geometric accuracy.

Image
Plane Unbiased

After compression into

plane-like Gaussians (see

the right inset), we as-

sign normals ng along

the shortest axis, with

orientation disambiguated

by viewing directions [8].

The distance to the image

plane is calculated as dg = ||nT
g d

′
g|| where d′

g is the vector

from the camera center to the Gaussian center kg . The final

unbiased depth at pixel p after ³-blending (see Eq. (1)) is

then given by

D(p) =
d(p)

n(p)K−1p′
(2)
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Figure 3. System Overview. DecoupledGaussian is an interactive simulation system that enables objects to detach from their initial contact

surfaces after applying our proposed restoration pipeline, driven by user-specified impulses (red arrow on the right).

where K is the camera’s intrinsic matrix and p′ is the ho-

mogeneous coordinate of p. Flattened Gaussians provide

single- and multi-view geometry regularization for consis-

tent geometry, with exposure compensation applied to ad-

dress illumination variations (see Chen et al. [8] for details).

4.1.2 Gaussian Segmentation

To implement GS segmentation [7, 94], each kernel g is as-

signed semantic affinity features ξg ∈ R
32. A gating net-

work, a single-layer MLP ζ : R32 → R
C [94], maps ³-

blended features ξ(p) to C segmentation class probabilities

via softmax [36]. The network is trained with cross-entropy

loss using multi-view 2D segmentation labels from SAM2

[73]. To reduce artifacts among nearby Gaussians, we ap-

ply local feature smoothing [7] and initialize segmentation

by manually selecting classes in the first frame [38].

4.2. Object­Scene Restoration

To simulate an object O interacting with its surrounding

scene surface S , we first separate O from S by identify-

ing its Gaussians through comparing affinity features with

³-blended ξ(p) at a user-specified click position p. We then

apply KNN to remove nearby Gaussians representing resid-

ual artifacts [94]. For realistic simulation, we should repair

and complete both O and S , as detailed next.

4.2.1 Joint Poisson Fields

The main contribution is the novel restoration of the geo-

metric properties {kg,Σg} of GS, assuming that both the

object O and scene S are smooth, closed shapes. Inspired

by the equivalence between Poisson surface reconstruction

and winding number field construction [15, 90], we intro-

duce joint Poisson fields W , which incorporate heteroge-

neous constraints to enable the simultaneous restoration of

both O and S (see Fig. 4). The process is as follows:

(1) Solve the indicator functions XS and XO for the

scene and object surfaces, respectively, via screened Pois-

son reconstruction [41] implicitly enforcing a minimum

Solving Conflicts

Figure 4. Joint Poisson Fields W first reconstruct O and S inde-

pendently, then resolve conflicts (red area) by defining a boundary

that separates them into distinct, non-intersecting entities.

curvature surface. We implement this with Adaptive Multi-

grid Solvers [40] in corresponding canonical grid spaces,

WS and WO, where X > 0.5 indicates interiors while

X < 0.5 for exteriors. Each Poisson field with 1283 grid

size is processed in under 20 seconds in experiments.

(2) Transform XO to XS
O by mapping it from WO to

WS
O via world-coordinate transformation to the canonical

coordinates of S . To resolve conflicts {x | XS(x) >

0.5 ∩ XS
O(x) > 0.5} (intersection regions), we prioritize

S (details in Suppl.) due to its simpler, more reliable geom-

etry. Conflicting regions in WS
O are then discarded.

(3) Dense interior points PO (for continuum simulation)

are extracted from WS
O. We apply marching cubes [55] to

WS and then re-meshing [70] and further cropped by PO-

scaled bounding box to get a mesh patch MS . Both MS

and PO are subsequently converted to world coordinates.

To solve XS , we use Gaussian centers {kg}g∈S as input

(see suppl. for normals). For XO, due to the geometric

complexity of O, we introduce proxy points PO as input.

4.2.2 Proxy Points

Due to ³-blending, Gaussian centers {kg}g∈O fail to accu-

rately represent the complex surface of O. Our proposed

proxy points PO can enhance geometry estimations of XO

ablated as shown in Fig. 5.

We first render RGB images and unbiased depth maps

D in Eq. (2) for the entire layout under all training views.

Next, we obtain the projected mask M
proj
O

by setting zero-

opacity for all other Gaussians (G \O), where zero in M
proj
O

indicates no accumulated opacity, while one signifies exist-

ing opacity at a pixel location. Using the masked projected
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Image Mesh from Mesh from w/o Colors

Figure 5. Ablation for PO . Independent Poisson reconstruction

of object O using Gaussian centers {kg}g∈O yields poor mesh

quality compared to using proxy points PO . Our joint Poisson

field W , which integrates the scene surface S, effectively removes

the overextended regions (highlighted in red). The final dense

points PO are then combined with proxy points PO for Gaussian

restoration and continuum simulation.

depth map D ◦M proj
O

, the TSDF fusion algorithm [67] con-

centrates on the object area, rapidly integrating information

from training views within 100 seconds, followed by stan-

dard post-processing [8]. However, the integrated result still

includes points from (G \ O) due to boundaries smearing

[82] from M
proj
O

. To address this, we segment the final proxy

points PO by inheriting features ξg from raw Gaussian ker-

nels of O with nearest neighbor search.

4.2.3 Unilateral Negative Cross Entropy

Despite closing broken surfaces and filling internal dense

points PO, the over-smoothness of Poisson fields leads to

geometry expansion, introducing particles beyond observ-

able viewpoints. To address this, we apply multi-view carv-

ing. Specifically, we propose a Unilateral Negative Cross

Entropy (UNCE) loss at each rendered pixel p for the iso-

metric dense object Gaussians GO. This loss measures the

discrepancy between the ³-blended opacity 1O (see Eq. (1))

during fine-tuning and the 2D ground truth object mask

MGT
O from SAM2, defined as:

UNCE(p) = −(1−MGT
O (p)) log(1− 1O(p)). (3)

Every 100 iterations, we clean Gaussians {Ãg f 0.05}.

These isometric Gaussians GO are defined by centers {kg ∈
PO ∪ PO}, each associated with an opacity of Ãg = 0.1
and an isometric covariance matrix Σg = diag(s2g, s

2
g, s

2
g)

[6]. Here, sg = c
(

3
4π

)
1

3 [89], where c is the Poisson

grid cell length in world coordinates. For centers {kg ∈
PO}, view-independent SHs are derived from the colors of

points already integrated by the TSDF. In contrast, view-

independent SHs for {kg ∈ PO} are Gaussian-weighted

interpolations based on the 15 nearest neighbors in PO. We

zero all other coefficients in each Cg .

4.2.4 Gaussian Restoration

During multi-view carving, we also fine-tune {Ãg, Cg}g∈GO

as described by Li et al. [51], but using MGT
O -masked train-

ing images to mitigate influence from other areas in the

scene. In each iteration, a random background is applied

for image rendering and is consistently used for the other

regions of the masked ground truth.

To restore the Gaussians (i.e., the holes) in the scene sur-

face S , we first bind new 3D flattened Gaussians GS [5, 21]

to the patch mesh MS (see our Mesh to Gaussian algo-

rithm in Supplementary) with minimal scaling ϵ along the

mesh face normals. At this stage, we finalize and fix the ge-

ometric properties {kg,Σg}g∈GS
. During fine-tuning, we

adjust only the texture properties {Ãg, Cg}g∈GS
, initialized

from the nearest neighbors of the raw broken S , guided by

2D inpainted images in the masked areas MGT
O using LaMa

[79]. Finally, we fill holes in S by adding the patch GS .

4.3. Interactive Simulation

We simulate and render all restored Gaussians GO to enable

a range of interactive simulations, including user-specified

impulses as external forces for elastic deformation, scene

collisions with S , and effects like shape fracturing and

material changes, all based on MLS-MPM. To enforce a

Dirichlet boundary condition [4], we set the velocities of

grid nodes containing Gaussians from the restored scene S
to zero during Grid Operation stage in MLS-MPM, creat-

ing a sticky boundary effect. To simulate gravity, we au-

tomatically align the z-axis by segmenting Gaussians for

planar objects (e.g., ground or desk surfaces) and estimat-

ing the plane normals with RANSAC [49]. We then ap-

ply the rotation matrix derived from plane normals to all

{kg,Σg}g∈G directly, while view-dependent SHs are ro-

tated through Wigner D-matrices [86] (see details in Suppl.)

5. Experiments

5.1. Implementation Details

Input resolutions range from 720p to 1K. Gaussian restora-

tion of S and O uses L1 and LSSIM losses with UNCE reg-

ularization at 10−4, fine-tuned for 1000 iterations for S and

3000 for O, skipping iterations without valid masks, total-

ing under 4 minutes. For LaMa inpainting, masked areas are

dilated with a 21 × 21 kernel to reduce boundary artifacts

in MGT
O [54]. The simulation area and physical parameters

(e.g., E, µ) are manually set following [38, 89] (see Sup-

plementary). Based on Warp [58], the simulation runs on

an 18-core Intel Xeon Gold 5220 CPU and NVIDIA A40

GPU, achieving ∼10 FPS for 50-frame videos.

5.2. Evaluating Object­Scene Interaction

Dataset We evaluate our system for generating diverse

object-scene interactive simulations using several real-

world scenario sources. Our evaluation includes the follow-

ing datasets: BICYCLE, GARDEN, BONSAI, ROOM, and

KITCHEN from the Mip-NeRF360 [3] dataset; TRUCK

from the Tanks&Temples dataset [48]; PLAYROOM from
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Sampled View & Mask GScream VR-GS Ours Sampled View & Mask GScream VR-GS Ours

Segmented Gaussians PhysGaussian GIC Ours Segmented Gaussians PhysGaussian GIC Ours
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Figure 6. Qualitative Comparisons. We demonstrate Scene Restoration (Top), Object Restoration (Middle), and Object-Scene In-

teractive Simulation (Bottom) on real-world scenes, including GARDEN, BEAR, BONSAI, and FIGURINES. For each comparison, a

single test viewpoint is selected, with the object initially suspended before being impacted by an external force during simulation.

the Deep Blending dataset [23]; FIGURINES from Lerf

[44]; and BEAR from Instruct-NeRF2NeRF [22].

Baselines We compare our method with SOTA simulation

frameworks based on Gaussian splatting, incorporating nec-

essary adaptations: 1) PhysGaussian [89] uses anisotropy

regularization to prevent narrow kernels and applies a user-

defined opacity field (based on O’s bounding box) for in-

terior filling. 2) GIC [6] employs isotropic Gaussians with

a coarse-to-fine density field to fill interior points, assign-

ing scales and opacities with zero color. 3) VR-GS [38]

is closely aligned with our approach; however, due to un-

available simulation code, we adapt their methods to restore

scene Gaussians, S , with geometry and texture properties

guided by LaMa. 4) GScream [83], a SOTA technique for

S restoration, integrates monocular depth estimation [42]

from the inpainted reference view for training guidance.

User Study We conducted a human evaluation to assess

both visual realism and simulation fidelity, following meth-

ods from prior work [9, 53, 84]. Ten participants with vary-

ing experience in simulation and 3D vision rated three as-

pects: 1) Scene Restoration Quality (SRQ), which eval-

uates the accuracy of scene restoration, S , after object re-

moval; 2) Object Restoration Quality (ORQ), assessing

the realism of restored objects, O; and 3) Interactive Simu-

lation Fidelity (ISF), checking if the object scenes response

to a user-specified impulse is both realistic and as expected.

Rendered videos of S , O, and interactive simulations were

presented in random order, with participants rating each on

a five-point scale (1 = poor, 5 = excellent). Mean scores

are reported, with supplementary material containing addi-

tional statistics and video examples.

Table 1. User Study. Participants rated the fidelity of restoration

and interactive simulation in a moving-camera video.

Scene Restoration Object Restoration

Methods SRQ ↑ Time ³ Methods ORQ ↑

GScream [83] 1.94 ∼70m PhysGaussian [89] 1.40

VR-GS [38] 2.12 ∼7m GIC [6] 1.60

Ours 3.48 ∼1m Ours 4.03

Object-Scene Interactive Simulation

Methods ISF ↑

VR-GS(S) + PhysGaussian(O) 1.50

Ours(S) + PhysGaussian(O) 2.60

Ours(S) + GIC(O) 2.73

Ours(S) + Ours(O) 4.35

Results Our method (Tab. 1) achieves the highest ratings

and shortest training time (1 minute) for scene restora-

tion. VR-GS and GScream rely on 2D inpainting for S
restoration, leading to geometry inaccuracies (e.g., BEAR,

BONSAI in Fig. 6 Top) when inpainting quality is poor.

GScream’s use of a single reference image limits view con-
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Figure 7. Interactive Versatility. Our object-scene decoupling method enables a variety of user-specified interactions both within a single

scene (e.g., ROOM Top) and across different scenes (e.g., TRUCK in BICYCLE, Bottom).

sistency, causing issues in non-forward-facing views. In

contrast, our approach uses planar-based GS geometry pri-

ors, ensuring precise structural restoration while limiting

2D inpainting to texture properties. For O restoration, we

are the first to restore O in both single and complex multi-

object scenes (e.g., FIGURINES in Fig. 6 Middle), main-

taining input quality. Unlike PhysGaussian, which suffers

from artifacts due to incomplete opacity assumptions, and

GIC, which shows artifacts from non-zero internal opaci-

ties (white dots in Fig. 6 Middle), our method produces sta-

ble, high-quality results. For interactive simulations, GIC

(BONSAI in Fig. 6 Bottom) exhibits unintended motion due

to particle imbalance. VR-GS, relying on 2D inpainting,

shows flawed geometry of S , limiting object-scene inter-

actions and causing artifacts or pass-through issues (e.g.,

BEAR, BONSAI in Fig. 6 Bottom). Our video demon-

strates dynamic effects, and Fig. 7 showcases simulations

with user-specified impulses, including cross-scene interac-

tions (e.g., TRUCK in BICYCLE scene), highlighting our

method’s high controllability and motion realism.

5.3. Decoupling Benchmark Evaluation

Dataset To address the lack of ground truth for object-

scene decoupling interactions, we utilize real reconstructed

scenes and objects from the PEGASET dataset [61] and

the PLAYROOM and SOFA SUITE environments from

BlenderNeRF [10]. Test cases with realistic elements are

created by placing objects within scenes using PyBullet

[13] and rendering object-scene setups as input from the

raw scene’s training viewpoints. Ground truth for object

restoration is provided by well-reconstructed objects, inter-

nally filled [89], and without internal textures, while ground

truth for scene restoration is based on the raw scenes with no

objects. For object-scene interaction, we render multi-view

MLS-MPM simulations by dropping these ground truth ob-

jects from a height to the ground, following [6].

Sampled View & Mask Ground Truth PhysGaussian GIC Ours

Figure 8. Benchmark Comparisons. A test viewpoint visualizes

comparisons using the restored scene from our method, with in-

painting regions marked by a red rectangle in the Ground Truth.

Metrics We use PSNR [26], LPIPS [99], and FID [25]

as primary metrics to evaluate reconstruction quality. For

restoring scene S and object O, we additionally apply

Chamfer Distance (CD) [14] to measure the geometric ac-

curacy of Gaussian centers within inpainted regions, critical

for accurate physics-based simulation. Viewpoints outside

training views are used for O captures while training view-

points are retained for S . To evaluate motion accuracy in

interactive simulations, we compute Motion-FID [53] by

extracting and colorizing optical flow using RAFT [80] and

calculating FID on the resulting flow images.

Results For object-scene interaction, we use our restored

S across all methods to ensure fair comparison. Quantita-

tive results are shown in Tab. 2 and qualitative examples in

Fig. 8, with sample views of objects attached to scene sur-

faces from the input. Our restoration of S closely matches

ground truth, and O significantly outperforms other meth-

ods in GS simulation. Competing methods often produce

artifacts due to inadequate handling of broken surfaces and
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Table 2. Quantitative Comparisons & Ablations. We create

a decoupling benchmark with comprehensive metrics comparing

baselines and ablations to validate design choices.

Scene Restoration

Methods PSNR ↑ LPIPS ³ FID ³ CD (×10
−3) ³

GScream [83] 17.82 0.56 42.28 44.00

VR-GS [38] 25.13 0.32 58.50 6.41

Ours 27.32 0.30 32.07 4.40

Object Restoration

Methods PSNR ↑ LPIPS ³ FID ³ CD (×10
−3) ³

PhysGaussian [89] 24.46 0.07 227.60 0.53

GIC [6] 26.62 0.06 201.91 0.73

Ours 30.32 0.04 138.75 0.17

Object-Scene Interaction Simulation

Methods PSNR ↑ LPIPS ³ FID ³ Motion-FID ³

PhysGaussian [89] 19.48 0.37 112.55 54.79

GIC [6] 20.90 0.31 134.56 47.47

w/o dense PO 21.19 0.29 98.19 48.39

w/o Proxy PO 21.08 0.30 90.26 36.01

w/o W 20.97 0.30 96.16 42.27

Ours 21.33 0.29 86.98 31.69

hidden areas, which degrades interactive simulation quality.

Although our approach excels in interactive simulation, the

object’s FID is high due to reliance on training view inter-

polation for texture restoration. Future work will explore

3D AI-based texture generative inpainting to improve this.

w/o Proxy

Ours w/o Dense w/o 

Ground Truth Ours

Figure 9. Dense PO prevents collapse under gravity, Joint Point

Fields W remove red-highlighted intersection regions, and Proxy

Points PO enhance texture details (see zoom-ins).

Ablations We quantitatively evaluate several design

choices (see Tab. 2): 1) Dense Interior Points (PO), our in-

ternal filling strategy, prevent collapse under gravity or ex-

ternal forces, unlike objects without internal particles (see

Fig. 9, Top-Middle). 2) Proxy Points (PO) enhance ge-

ometry recovery in Poisson reconstruction (see Fig. 5), and

their combination with PO improves texture details over PO

alone (see Fig. 9, Bottom). 3) Joint Poisson Fields (W) re-

duce artifacts and resolve intersection regions better than in-

dependent Poisson reconstructions (see Fig. 9, Top-Right).

5.4. Additional Qualitative Ablations

UNCE Poisson reconstruction prioritizing smoothness in

W can introduce artifacts, even with opacity filtering. Our

Unilateral Negative Cross Entropy (UNCE) method (shown

in Fig. 10, Top) leverages negative labels from SAM2 to

carve and remove these artifacts, aligning GO with the un-

derlying geometry for accurate simulation.

Planar-based GS Unlike standard Gaussian splatting [43]

with low-opacity filtering (σg f 0.02) [89], planar-based

GS with compressed kernels enhances geometry regulariza-

tion, reducing floaters (Fig. 10, Bottom) without the need

for opacity filtering. This method enables unrestricted ob-

ject motion in the simulation area, free from scene artifacts.

w/o UNCE Ours

w/o Planar-based GS Ours

Figure 10. UNCE (Top) removes artifacts from Poisson expan-

sion via multi-view carving. Opacity is set to one for TRUCK to

highlight artifacts. Planar-based GS (Bottom) avoids floaters and

artifacts compared to Vanilla GS [43], which limits motion (e.g.,

red-circled figurine). Opacity is set to 1, with ×0.4 scaling for

better Gaussian kernel visualization.

6. Discussion

Conclusion This paper presents DecoupledGaussian, a

fast and robust approach for decoupling static objects from

contact surfaces and restoring geometry and texture for

object-scene interaction using the MLS-MPM simulator.

Limitations Our evaluation does not address complex

scenes with multiple objects in varying contact configura-

tions. High-frequency texture completion for object restora-

tion is challenging, and GS-based texture generative ap-

proaches [35, 97, 98] may offer potential solutions. Ad-

ditionally, decoupling the fine-grained components [93] of

individual objects presents further difficulties.
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Lu, Steve Lemke, Mārtiņš Možeiko, Eric Boise, Geehoon

Uhm, Mark Gerow, Shalin Mehta, et al. Lgsvl simulator: A

high fidelity simulator for autonomous driving. In 2020 IEEE

23rd International conference on intelligent transportation

systems (ITSC), pages 1–6. IEEE, 2020. 1

[75] Johannes Lutz Schönberger and Jan-Michael Frahm.

Structure-from-motion revisited. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016. 3

[76] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,

and Jan-Michael Frahm. Pixelwise view selection for un-

structured multi-view stereo. In European Conference on

Computer Vision (ECCV), 2016. 3

[77] Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wo-

jciech Jarosz. Non-linear sphere tracing for rendering de-

formed signed distance fields. ACM Transactions on Graph-

ics, 38(6), 2019. 1

[78] Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph

Teran, and Andrew Selle. A material point method for snow

simulation. ACM Transactions on Graphics (TOG), 32(4):

1–10, 2013. 2

[79] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,

Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,

Naejin Kong, Harshith Goka, Kiwoong Park, and Victor

Lempitsky. Resolution-robust large mask inpainting with

fourier convolutions. In Proceedings of the IEEE/CVF winter

conference on applications of computer vision, pages 2149–

2159, 2022. 2, 3, 5

[80] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field

transforms for optical flow. In Computer Vision–ECCV

11371



2020: 16th European Conference, Glasgow, UK, August 23–

28, 2020, Proceedings, Part II 16, pages 402–419. Springer,

2020. 7

[81] Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, and

Matt J Kusner. Unsupervised point cloud pre-training via oc-

clusion completion. In Proceedings of the IEEE/CVF inter-

national conference on computer vision, pages 9782–9792,

2021. 2

[82] Miaowei Wang and Daniel Morris. Self-annotated 3d ge-

ometric learning for smeared points removal. In Proceed-

ings of the IEEE/CVF Winter Conference on Applications of

Computer Vision, pages 3494–3503, 2024. 5

[83] Yuxin Wang, Qianyi Wu, Guofeng Zhang, and Dan Xu.

Gscream: Learning 3d geometry and feature consistent gaus-

sian splatting for object removal. In ECCV, 2024. 3, 6, 8

[84] Yujie Wei, Shiwei Zhang, Zhiwu Qing, Hangjie Yuan, Zhi-

heng Liu, Yu Liu, Yingya Zhang, Jingren Zhou, and Hong-

ming Shan. Dreamvideo: Composing your dream videos

with customized subject and motion. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 6537–6549, 2024. 6

[85] William F. Whitney, Tatiana Lopez-Guevara, Tobias Pfaff,

Yulia Rubanova, Thomas Kipf, Kim Stachenfeld, and

Kelsey R. Allen. Learning 3d particle-based simulators

from rgb-d videos. In International Conference on Learn-

ing Representations (ICLR), 2024. Available at: https:

//openreview.net/forum?id=4rBEgZCubP. 2

[86] Eugene Wigner. Group theory: and its application to the

quantum mechanics of atomic spectra. Elsevier, 2012. 5

[87] Lintai Wu, Xianjing Cheng, Junhui Hou, Yong Xu, and

Huanqiang Zeng. Self-supervised 3d point cloud comple-

tion via multi-view adversarial learning. arXiv preprint

arXiv:2407.09786, 2024. 2

[88] Tong Wu, Jia-Mu Sun, Yu-Kun Lai, Yuewen Ma, Leif

Kobbelt, and Lin Gao. Deferredgs: Decoupled and editable

gaussian splatting with deferred shading. arXiv preprint

arXiv:2404.09412, 2024. 2

[89] Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng,

Yin Yang, and Chenfanfu Jiang. Physgaussian: Physics-

integrated 3d gaussians for generative dynamics. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 4389–4398, 2024. 1, 2, 3, 5, 6,

7, 8

[90] Rui Xu, Zhiyang Dou, Ningna Wang, Shiqing Xin, Shuang-

min Chen, Mingyan Jiang, Xiaohu Guo, Wenping Wang,

and Changhe Tu. Globally consistent normal orientation for

point clouds by regularizing the winding-number field. ACM

Trans. Graph., 42(4), 2023. 4

[91] Tian-Xing Xu, Wenbo Hu, Yu-Kun Lai, Ying Shan, and

Song-Hai Zhang. Texture-gs: Disentangling the geometry

and texture for 3d gaussian splatting editing. In European

Conference on Computer Vision, pages 37–53. Springer,

2025. 2

[92] Chen Yang, Sikuang Li, Jiemin Fang, Ruofan Liang, Lingxi

Xie, Xiaopeng Zhang, Wei Shen, and Qi Tian. Gaussianob-

ject: High-quality 3d object reconstruction from four views

with gaussian splatting. ACM Transactions on Graphics, 43

(6), 2024. 3

[93] Yunhan Yang, Yukun Huang, Yuan-Chen Guo, Liangjun Lu,

Xiaoyang Wu, Lam Edmund Y., Yan-Pei Cao, and Xihui Liu.

Sampart3d: Segment any part in 3d objects. arXiv preprint

arXiv:2411.07184, 2024. 8

[94] Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke.

Gaussian grouping: Segment and edit anything in 3d scenes.

In ECCV, 2024. 4

[95] Thomas Y Yeh, Petros Faloutsos, and Glenn Reinman. En-

abling real-time physics simulation in future interactive en-

tertainment. In Proceedings of the 2006 ACM SIGGRAPH

Symposium on Videogames, pages 71–81, 2006. 1

[96] Yu Yin, Kamran Ghasedi, HsiangTao Wu, Jiaolong Yang,

Xin Tong, and Yun Fu. Nerfinvertor: High fidelity nerf-gan

inversion for single-shot real image animation. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 8539–8548, 2023. 1

[97] Xin-Yi Yu, Jun-Xin Yu, Li-Bo Zhou, Yan Wei, and Lin-Lin

Ou. Instantstylegaussian: Efficient art style transfer with 3d

gaussian splatting. arXiv preprint arXiv:2408.04249, 2024.

8

[98] Dingxi Zhang, Yu-Jie Yuan, Zhuoxun Chen, Fang-Lue

Zhang, Zhenliang He, Shiguang Shan, and Lin Gao. Styl-

izedgs: Controllable stylization for 3d gaussian splatting.

arXiv preprint arXiv:2404.05220, 2024. 8

[99] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness of

deep features as a perceptual metric. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 586–595, 2018. 7

11372


