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Abstract

As a defense strategy against adversarial attacks, adver-
sarial detection aims to identify and filter out adversar-
ial data from the data flow based on discrepancies in dis-
tribution and noise patterns between natural and adver-
sarial data. Although previous detection methods achieve
high performance in detecting gradient-based adversarial
attacks, new attacks based on generative models with im-
balanced and anisotropic noise patterns evade detection.
Even worse, the significant inference time overhead and
limited performance against unseen attacks make existing
techniques impractical for real-world use. In this paper,
we explore the proximity relationship among adversarial
noise distributions and demonstrate the existence of an open
covering for these distributions. By training on the open
covering of adversarial noise distributions, a detector with
strong generalization performance against various types of
unseen attacks can be developed. Based on this insight,
we heuristically propose Perturbation Forgery, which in-
cludes noise distribution perturbation, sparse mask gen-
eration, and pseudo-adversarial data production, to train
an adversarial detector capable of detecting any unseen
gradient-based, generative-based, and physical adversarial
attacks. Comprehensive experiments conducted on multiple
general and facial datasets, with a wide spectrum of attacks,
validate the strong generalization of our method.1

1. Introduction

Numerous studies have demonstrated the effectiveness of
deep neural networks (DNNs) in various tasks [36]. How-
ever, it is also well-known that DNNs are vulnerable to ad-
versarial attacks, which generate adversarial data by adding
imperceptible perturbations to natural images, potentially
causing the model to make abnormal predictions. This vul-
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nerability reduces the reliability of deep learning systems,
highlighting the urgent need for defense techniques. Some
approaches employ adversarial training techniques [48],
which incorporate adversarial data into the training process
to inherently bolster the model’s immunity against adver-
sarial noise (adv-noise). Other methods utilize adversar-
ial purification [47] to cleanse the input data of adv-noise
before model inference. Unfortunately, adversarial train-
ing often results in diminished classification accuracy on
adversarial data and may sacrifice performance on natural
data [1]. While purification techniques may seem more re-
liable, the denoising process can inadvertently smooth the
high-frequency texture of clean images, leading to subopti-
mal accuracy on both natural and adversarial images.

Another branch of adversarial defense is adversarial de-
tection [12, 28], which aims to filter out adversarial data be-
fore they are fed into target systems. These methods rely on
discerning the discrepancies between adversarial and nat-
ural distributions, thereby maintaining the integrity of tar-
get systems while achieving high performance in defending
against adversarial attacks. However, existing adversarial
detection approaches primarily train specialized detectors
tailored for specific attacks or classifiers [8], which may not
generalize well to unseen advanced attacks [2, 39].

Some recent approaches [40, 49] have attempted to en-
hance the generalization of adversarial detectors by leverag-
ing diffusion models and manually designed pseudo-noise.
Nevertheless, as shown in Table 1, this improvement of-
ten comes at the expense of increased inference overhead,
and even well-trained detectors still struggle with adver-
sarial data produced by generative models such as gener-
ative adversarial networks (GANs) and diffusion models.
Specifically, generative-based adversarial attacks, such as
M3D [51] and Diff-PGD [44], are recently developed tech-
niques designed to generate more natural adversarial data.
Unlike traditional gradient-based attacks like PGD [29],
generative-based attacks tend to create imbalanced and
anisotropic perturbations that are intense in high-frequency
and salient areas but mild in low-frequency and background
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Table 1. Properties of our method vs Other Adversarial Detection: We summarize four metrics for adversarial detection. “Detect
Attacks” specifies the types of attacks each method is designed to detect. “Model-Agnostic” indicates whether the detection method
operates independently of the protected model. “Unseen-Attack Detection” assesses the method’s generalization to detect previously
unseen attacks, with the reported value representing the AUROC score for detecting the MIFGSM attack on the ImageNet dataset. Lastly,
“Time Overhead” quantifies the time required for the detector to process 100 samples from the ImageNet dataset.

Methods Detect Attacks Model-Agnostic Unseen-Attack Detection Time Overhead

LID [28] Gradient × 0.9146 1.80s
LiBRe [8] Gradient × 0.8725 2.56s
SPAD [40] Gradient + GAN ✓ 0.9820 4.56s

EPSAD [49] Gradient ✓ 0.9918 396.81s

Ours Gradient + GAN + Diffusion ✓ 0.9931 4.85

areas. These perturbations make them harder to detect with
current methods, posing a new challenge to the field of ad-
versarial detection. Therefore, there is an urgent need for a
low-time-cost detection method with strong generalization
performance against both unseen gradient-based attacks and
unseen generative-based attacks.

In this paper, we investigate the association between the
distributions of different adv-noises. As shown in Figure 1,
by modeling noise as multivariate Gaussian distributions,
we define the proximity relationship of the noise distribu-
tions in a metric space and establish a perturbation method
to construct the proximal distributions. Based on the as-
sumption and definition, we demonstrate that all adv-noise
distributions are proximal using the Wasserstein distance,
and we deduce a corollary that an open covering of the adv-
noise distributions exists. We then propose the core idea of
this paper: by training on the open covering, we obtain a
detector with strong generalization performance against
various types of unseen attacks.

Based on this idea, we propose Perturbation Forgery,
a pseudo-adversarial data (pseudo-adv-data) generation
method designed to train a detector with strong generaliza-
tion capabilities for detecting various types of adversarial
attacks. As shown in Figure 2, Perturbation Forgery com-
prises noise distribution perturbation, sparse mask gener-
ation, and pseudo-adversarial data (pseudo-adv-data) pro-
duction. By continuously perturbing the noise distribution
of a commonly used attack, such as FGSM [15], we obtain a
nearly complete family of distributions that form the afore-
mentioned open covering. Simultaneously, sparse masks
are generated using attention maps and saliency maps of the
natural data, converting the sampled global noises into local
forms to help the detector focus on local noise patterns so
as to detect generative-based adv-noise. By sampling noise
from the perturbed noise distributions, we sparsify it using
sparse masks and inject it into natural data. This process
converts half of the natural data into pseudo-adv-data, re-
placing actual adversarial data. The pseudo-adv-data is then
combined with the remaining uncontaminated data to train

the binary adversarial detector.
To the best of our knowledge, we are the first to empower

a detector with the robust ability to detect various types of
adversarial attacks, including gradient-based, GAN-based,
diffusion-based, and physical attacks, with minor inference
time overhead.

Our contributions are summarized in four thrusts:
• By modeling adversarial noise as Gaussian distribu-

tions, we investigate the association between different ad-
versarial noise distributions and demonstrate their proxim-
ity in a metric space.

• Based on our assumption and definition, we deduce the
existence of an open covering for adversarial noise distribu-
tions and propose training a detector to distinguish this open
covering from the natural data distribution, thereby achiev-
ing strong generalization in detection.

• Building on our deductions, we propose Perturba-
tion Forgery, which includes noise distribution perturbation,
sparse mask generation, and pseudo-adversarial data pro-
duction. This method is designed to train a binary detec-
tor with strong generalization performance against various
types of unseen attacks, including gradient-based, GAN-
based, diffusion-based, and physical adversarial data, with
minor inference time overhead.

• We conduct evaluations on multiple general and fa-
cial datasets across a wide spectrum of gradient-based,
generative-based, and physical attacks, demonstrating the
consistently strong performance of our method in adversar-
ial detection tasks.

2. Related Work
2.1. Adversarial Attack
Gradient-based adversarial attack Adversarial at-
tacks [15] attempt to fool a classifier into changing
prediction results by injecting subtle perturbations to the
input data while maintaining imperceptibility from human
eyes. By introducing iterative perturbation, PGD [29] and
BIM [24] generate adversarial data with significantly im-
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Perturbed noise distribution
Distribution of unseen adversarial noise

Noise distribution perturbation

Distribution of adversarial noise

Figure 1. Illustration of the proximity of adversarial noise distributions and perturbed noise distributions. Left: all the distributions of
adversarial noise and the perturbed distributions are in a ε-ball centered on a given adversarial noise distribution. Right: by continuously
perturbing the given adversarial noise distribution, we obtain an open covering of distributions of adversarial noise.

proved attack performance, while DIM [43], NIM [26], and
MIM [9] improve the transferability under the black-box
setting. Besides, adaptive attacks [6, 13, 18] are proposed
to exploit the weak points of each defense, achieving a high
attack rate against several defense techniques.

Generative-based Adversarial Attacks Recently, an-
other branch of attacks uses generative models to produce
adversarial data with a more natural style and imbalanced
noise compared to gradient-based attacks. Among them,
CDA [31], TTP [30], and M3D [51] utilize GAN to craft
adversarial data and achieve higher efficiency when attack-
ing large-scale datasets. Diff-Attack [4] and Diff-PGD [44]
employ the diffusion model as a strong prior to better en-
sure the realism of generated data. Designed for perturb-
ing facial recognition systems, AdvMakeup [46] and AMT-
GAN [19] are presented to generate imperceptible adversar-
ial images of the face.

In this paper, a wide spectrum of gradient-based,
generative-based, and physical adversarial attacks on Im-
ageNet and facial datasets is used to evaluate the detection
performance of our method.

2.2. Adversarial Detection
As one of the technical solutions to ensure the safety of
DNNs, there has been a significant amount of exploration
in the field of adversarial detection [28].

LiBRe [8] leverages Bayesian neural networks to endow
pre-trained DNNs with the ability to defend against unseen
adversarial attacks, SPAD [40] leverages a data augmenta-
tion method to detect adversarial face images from unseen
attack, while EPSAD [49] incorporates a diffusion model to
detect adversarial data with minimal attack intensity, albeit
at the cost of inference time.

While current methods have achieved remarkable im-
provements in adversarial detection, generative-based ad-

versarial attacks are harder to detect, posing a new chal-
lenge. To address the problems above, our method is pro-
posed to detect various types of unseen attacks, including
gradient-based, generative-based, and physical attacks.

3. Proximity of Adversarial Noise Distribution
In this section, we provide an overview of preliminary con-
cepts related to adversarial data generation and explore the
relationship between adversarial noise distributions. We
define the proximity of noise distributions and present the
core idea of this paper: by training on the open covering
of adversarial noise distributions, we obtain a detector with
strong generalization performance against various types of
unseen attacks.

3.1. Adversarial data generation
Given a DNN f that works on dataset D = {(xi, yi)}ni=1

with (xi ∈ X , yi ∈ C) being (sample, ground-truth) pair,
an adversarial example x̂ regarding sample x with attack
intensity ϵ is calculated as:

x̂ = argmax
x̂∈B(x,ϵ)

L(f(x̂), y), (1)

where L is some loss function and B(x, ϵ) =
{x′|ℓp(x,x′) < ϵ} restricts the perturbation under ℓp norm.
Following [15], we simply denote adversarial sample as
x̂ = x+ η.

3.2. Proximity of noise distribution
Due to the subtle and imperceptible nature of adv-noise, ad-
versarial data and natural data appear visually similar. Thus,
we assume that this similarity also exists between the noises
of different adversarial attacks. To investigate the similarity
of these noises, we provide the following definition, which
depicts a close relationship between two noise distributions.
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Figure 2. Illustration of Perturbation Forgery. Before training, we estimate the noise distribution from a commonly used attack, then
continuously perturb it in each batch to create an open covering of the adversarial noise distributions. Next, noises sampled from these
perturbed distributions are converted into localized noise by applying sparse masks. Finally, pseudo-adversarial data is generated by adding
these localized noises to natural samples.

Definition 1 (Proximal Noise Distribution). Let P and
Q be the distribution functions of two independent noise
samples x1 and x2. We call them proximal noise distri-
butions under ε if we have a metric d(·, ·) and ∃ ε > 0, s.t.
d(P,Q) < ε.

A common assumption for instance feature distribution
is to model it as a Gaussian distribution [10]. Obtained
by subtracting from natural data and adversarial data, adv-
noises naturally form a Gaussian distribution. Therefore,
we assume that noise r.v η ∈ Rd satisfied truncated Gaus-
sian distribution N (µ, σ2Id) with it’s truncated interval is
[−ϵ, ϵ]d. Built upon Definition 1, we derive the following
theorem about the association between the distributions of
different adv-noises:

Theorem 1. Let Pa be the distribution set composed of
all the adversarial noise distributions. Given independent
noise distributions Qi, i ∈ N+. For ∀ i ̸= j, Qi and Qj are
proximal noise distributions if the following conditions are
met.

1) Qi, Qj ∈ Pa.
2) ∃ ϵµ, ϵσ > 0 s.t. ∥µi − µj∥ < ϵµ and |σi − σj | < ϵσ

where the ∥ · ∥ is a Euclidean norm on Rn.

Theorem 1 tells us: 1) All the adversarial noise distri-
butions under the same ℓp norm are proximal noise distri-
butions. 2) If the parameters of two noise distributions are
sufficiently close to those of a given distribution, we can re-
gard these two distributions as proximal noise distributions.

We can further deduce several corollaries of the theorem.
1) All noise distributions proximal to the known adversarial
distribution p(η) form an open ε-ball centered on p(η), de-
noting as Pε = {p(ηi)|d(p(ηi), p(η)) < ε)}, and also form
a metric space (Pε, d). 2) The adv-noise distribution set is
also located in this ball: Pa ⊂ Pε. 3) Based on the prop-

erties of the metric space (Pε, d), for all subset Pi ⊂ Pε,
there exists an open covering of the subset: Pi ⊂ {Gc}c∈I.

Based on the corollaries, we deduce the core idea of
this paper: Let p(η̂i|η) = N (µ + ϵµi, (σ + ϵσi)

2Id), i =
1, 2, . . . , n denote generated proximal noise distributions of
the given adv-noise distribution p(η) = N (µ, σ2Id), where
ϵµi, ϵσi are randomly sampled from uniform distributions
and restricted by ϵµi, ϵσi < ε. As shown in Figure 1,
when n → ∞, we can always obtain a distribution set
Pc = {p(η̂i|η)}∞i=1 that forms an open covering of the
adversarial distribution set Pa. By training on the open
covering, the detector learns to distinguish between the
distributions of natural and adversarial data, enabling
it to effectively detect unseen adversarial attacks.

Analysis of distribution assumption, proofs of theorem,
and corollaries are provided in the supplementary materials.

4. Perturbation Forgery

Based on the theory in the last section, we heuristically pro-
pose Perturbation Forgery to train a detector with strong
generalization against various types of unseen attacks.

As illustrated in Figure 2, Perturbation Forgery en-
compasses three elements: noise distribution perturbation,
sparse mask generation, and pseudo-adversarial data pro-
duction. At first, the noise distribution of a commonly used
attack is continuously perturbed using noise distribution
perturbation into numerous noise distributions that remain
proximal to the original, thereby forming the open cover-
ing. After that, we sample noises from the perturbed distri-
bution and convert them into sparse local noise using sparse
mask generation. Subsequently, we convert half of the natu-
ral data into pseudo-adv-data using pseudo-adversarial data
production. This pseudo-adv data replaces actual adversar-
ial data and is combined with the remaining natural data to
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train a binary detector.

4.1. Noise Distribution Perturbation
Given the training dataset {(xk, yk)}nk=1 composed by nat-
ural data, we add adv-noise on it using a commonly used
attack (such as FGSM) and generate adversarial noise fea-
tures Dnoise := {zk = h(ηk)}nk=1 by

ηk = Attack(x)− x, k ∈ [1, n], (2)

where h : X → Rd is the flattening operation that converts
multidimensional data into vectors.

Assuming the noise features form a multivariate Gaus-
sian distribution p(z) = N (µ,Σ) [10], we estimate the pa-
rameters mean µ and covariance Σ of Dnoise by

µ̂ =
1

N

∑
k

zk, Σ̂ =
1

N

∑
k

(zk − µ̂) (zk − µ̂)
⊤
. (3)

For the ith batch of training, we perturb the estimated
distribution to a proximal noise distribution by

µ̂i = µ̂+ αi ·mi, Σ̂i = Σ̂+ βi · V i, (4)

where mi ∼ N (0, Id) and V i ∼ N (0, Id×d) are vector
and matrix of perturbation. αi ∼ U(−ϵµ, ϵµ) and βi ∼
U(0, ϵσ) are scale parameters.After n batches of training,
we have a perturbed distribution set {N (µ̂i, Σ̂i)}, thereby
forming the approximate open covering Pc. Trained with
Pc, the detector can distinguish the distributions of natural
and adversarial data.

4.2. Sparse Mask Generation
Unlike gradient-based adversarial attacks, generative-based
attacks tend to generate imbalanced and anisotropic per-
turbations, showing much intensity in high-frequency and
salient areas and mild in low-frequency and background ar-
eas. Besides, in physical scenarios, adversarial attacks also
tend to add patches to local areas. Noticing this, we pro-
pose sparse masks to perturbation forgery to assist the de-
tector in detecting local adv-noises. Previous research has
demonstrated that the spectra of real and fake images dif-
fer significantly in high-frequency regions [27]. Addition-
ally, generative-based adversarial data manipulate charac-
teristics, such as abnormal color aberrations, in these high-
frequency regions [40]. To augment the detection perfor-
mance on generative-based adversarial data, we need to
sparse the pseudo-noise sampled from perturbed noise dis-
tribution and highlight the noise in high-frequency regions
to mimic the style of generative-based attacks.

Given this, for a natural sample xi,k in the ith batch,
we first mask the high-frequency area using saliency detec-
tion [33] and GradCAM [34]:

Mask1(xi,k) = Map(fs(xi,k); γs) ∪Map(fc(xi,k); γc),
(5)

Algorithm 1 Training Procedure with Perturbation Forgery
Input: Training dataset, a commonly used attack, saliency
detection model fs, and GradCAM model fc.
Output: A detector with strong generalization capabilities
against various types of unseen attacks.

1: Generate adversarial noise using the commonly used at-
tack in Eq. 2.

2: Estimate a multivariate Gaussian distribution p(z) =

N (µ̂, Σ̂) of adv-noise using Eq. 3.
3: for batch i in 1, · · · , n do
4: Generate a perturbed noise distribution p(zi) =

N (µ̂i, Σ̂i) using Eq. 4.
5: for sample xi,k in half of batch i do
6: Generate sparse masks Mask(xi,k) using Eq. 8.
7: Sample pseudo-adv noise η̂i,k using Eq. 9.
8: Generate pseudo-adv data x̂i,k using Eq. 11 and

replace xi,k.
9: end for

10: Train the detector on batch i.
11: end for

where fs and fc are the saliency detection model and Grad-
CAM model respectively. Map(x; γ) is a binary indicator
function parameterized by γ:

Map(xi,k; γ) = Clip[0,1](xi,k − γIX ). (6)

The adv-noise that occurs in the high-frequency region
tends to occupy only a small part of the region. Therefore,
we select the high-frequency point from the gradient map
obtained by Sobel operator [11] to sparsify the mask of sam-
ple xi,k:

Mask2(xi,k) = Map(Sobel(xi,k); γl), (7)
Mask(xi,k) = Mask1(xi,k) ∩Mask2(xi,k). (8)

4.3. Pseudo-Adversarial Data Production
For the ith batch of training, we sample pseudo-adv noise
from the perturbed distribution by:

η̂i,k = h−1(zi,k), (9)

zi,k ∈ {zk|zk ∼ N (µ̂i, Σ̂i) and p(zk) < γp} (10)

where h−1 : Rd → X is an inverse function of h to unflatten
noise features, and γp is a threshold that excludes data with
a low likelihood. Note that ηi is a global noise and needs to
be localized by a sparse mask. The pseudo-adv data x̂i,k is
produced by adding the masked local noise to xi,k:

x̂i,k = xi,k + η̂i,k ⊗Mask(xi,k). (11)

where ⊗ is Hadamard product.
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Table 2. Comparison of AUROC scores of detecting gradient-based and adaptive attacks on ImageNet100 under ϵ = 4/255.

Detector BIM PGD DIM MIM NIM AA BPDA+EOT MM
LID [28] 0.9782 0.9750 0.8942 0.9146 0.8977 0.9124 0.9202 0.9227
LiBRe [8] 0.9259 0.9548 0.9243 0.8725 0.9013 0.8653 0.8714 0.8573
SPAD [40] 0.9846 0.9851 0.9815 0.9820 0.9823 0.9890 0.9885 0.9811
EPSAD [49] 0.9998 0.9989 0.9923 0.9918 0.9972 0.9998 0.9985 0.9923
ours 0.9911 0.9912 0.9863 0.9931 0.9934 0.9941 0.9927 0.9944

For each batch, we convert half of the natural data to
pseudo-adv data by Perturbation Forgery and train a binary
detector using the Cross-Entropy classification loss [50].
The overall training procedure with Perturbation Forgery is
presented in Algorithm 1.

5. Experiments
To validate the detection performance of our approach
against various adversarial attack methods, we conduct ex-
tensive experiments on multiple general and facial datasets.
For additional experiments, analyses, and a discussion of
limitations, please refer to the supplementary material.

5.1. Experiment Settings
Datasets The datasets used for evaluation include: 1) gen-
eral datasets: ImageNet100 [7] and CIFAR-10 [23] for eval-
uate gradient-based and generative-based attacks, and 2)
face datasets: Makeup [16] for Adv-Makeup [46], CelebA-
HQ [21] for AMT-GAN [19], and LFW [14] for TIPIM [45]
and physical attacks.

Adversarial Attacks We adopt 5 gradient-based attacks,
3 adaptive attacks, 5 generative-based attacks, and 6 face
attacks to evaluate our method. For gradient-based attacks,
BIM [24], PGD [29], MIM [9], DIM [43], and NIM [26] are
used as the unseen attacks. For adaptive attacks, we adopt
AutoAttack (AA) [6], BPDA+EOT [18], and Minimum-
Margin Attack (MM) [13]. For generative-based attacks, we
adopt 3 GAN-based attacks including CDA [31], TTP [30],
and M3D [51], and 2 Diffusion-based attacks including
Diff-Attack [4] and Diff-PGD [44]. For face attacks, we
adopt 1 gradient-based attack TIPIM [45], 2 GAN-based
attacks including AdvMakeup [46] and AMT-GAN [19],
and 3 physical attacks including Adv-Sticker [38], Adv-
Glasses [35], and Adv-Mask [38]. For each of the above
attack methods, adversarial data is generated with the attack
intensity of ϵ = 4/255 (except for the unrestricted attacks),
and iterative attacks run for 10 steps using step size 2.

Baselines To evaluate our method across various types
of adversarial attacks, we compare it with state-of-the-art
detection methods from three related research domains:

adversarial detection, synthetic image detection, and face
forgery detection. For gradient-based attacks, we bench-
mark against four adversarial detection methods: LID [28],
LiBRe [8], SPAD [40], and EPSAD [49]. Since most ad-
versarial detection methods are not designed to address
generative-based adversarial attacks, we include a compar-
ison with four synthetic image detection techniques: CNN-
Detection [41], LGrad [37], Universal-Detector [32], and
DIRE [42]. For detecting GAN-based face attacks, we also
compare against two face forgery detection methods, Luo et
al.[27] and He et al.[17], as well as ODIN [25].

Evaluation Metrics Following previous adversarial de-
tection works [49], we employ the Area Under the Receiver
Operating Characteristic Curve (AUROC) [20] as the pri-
mary evaluation metric to assess the performance of our
classification models. The AUROC is a widely recognized
metric in the field of machine learning and is particularly
useful for evaluating binary classification problems. For
fair comparisons, the number of natural data and adversarial
data in the experiments remained consistent.

Implementation details XceptionNet [5] is selected as
our backbone model and is trained on all the above datasets.
For adversarial noise distribution estimation, we utilize
Torchattacks [22] to generate 1000 noise images for each
dataset. The uniform distribution parameters are set as
ϵµ = 3 and ϵσ = 0.005. The threshold of the sample con-
trol is set as γs = 0.05. The thresholds of the binary indi-
cator function are set as γs = 0, γc = 125 and γl = 100.
FGSM [15] is used as the initial attack, i.e. the commonly
used attack, for Perturbation Forgery. Training epochs are
set to 10 and convergence is witnessed.

5.2. Detecting Gradient-based Attacks
We begin by comparing our method with state-of-the-
art techniques in detecting gradient-based attacks on Ima-
geNet100. All the attacks are unseen by both the baseline
methods and our method. For each attack, 1,000 adversar-
ial images are generated in the gray-box setting, where the
attacker has access to the victim model but is blind to the
detection model. All baseline methods are sourced from
existing adversarial detection research.
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Table 3. Comparison of AUROC scores of detecting generative-based attacks on ImageNet100.

Detector CDA TTP M3D Diff-Attack Diff-PGD
CNN-Detection [41] 0.7051 0.6743 0.6917 0.3963 0.5260
LGrad [37] 0.6144 0.6077 0.6068 0.5586 0.5835
Universal-Detector [32] 0.7945 0.8170 0.8312 0.9202 0.5531
DIRE [42] 0.8976 0.9097 0.9129 0.9097 0.9143
SPAD 0.9385 0.9064 0.8984 0.8862 0.8879
EPSAD 0.9674 0.6997 0.7265 0.4700 0.1507
ours 0.9878 0.9678 0.9364 0.9223 0.9223

Table 4. Comparison of AUROC scores for detecting various adversarial attacks on the face dataset.

Detector TIPIM Adv-Sticker Adv-Glasses Adv-Mask Detector Adv-Makeup AMT-GAN
LID 0.6974 0.5103 0.6472 0.5319 He et al. [17] 0.5252 0.8823
LiBRe 0.5345 0.9739 0.8140 0.9993 Luo et al. [27] 0.6178 0.6511
EPSAD 0.9647 0.9462 0.9260 0.9578 ODIN[25] 0.6325 0.6970
SPAD 0.9256 0.9975 0.9244 0.9863 SPAD 0.9657 0.8969
ours 0.9885 0.9999 0.9999 0.9999 ours 0.9762 0.9216

As reported in Table 2, although EPSAD performs well,
our method demonstrates effective detection (achieving an
AUROC score of 0.9931 against MIM and 0.9944 against
MM) across a variety of attack methods. These results val-
idate our assumptions about the proximity of the noise dis-
tribution. By continuously perturbing the estimated noise
distribution of a given attack (FGSM), we obtain an open
covering noise of distributions from all the attacks. Given
one seen attack, we are able to detect all the unseen attacks.
The consistent detection performance verifies the effective-
ness of our core idea of training a detector to distinguish the
open covering of adv-noise distributions from natural ones
and demonstrates the strong generalization capability of our
method against gradient-based attacks.

5.3. Detecting Generative-based Attacks
To investigate our method’s advantage in detecting
generative-based attacks, we compared it with state-of-
the-art synthetic image detection and adversarial detection
methods on ImageNet100. As shown in Table 3, our method
significantly outperforms the baseline methods, demonstrat-
ing highly effective detection capabilities.

For adversarial detection baselines, the imbalanced noise
generated by GAN and diffusion models makes it diffi-
cult for these methods, which are typically designed for
gradient-based attacks, to detect effectively. In contrast, our
sparse mask approach enables effective detection of such
localized noise.

Most synthetic image detection methods are less effec-
tive in detecting adversarial data crafted from natural sam-
ples, with the exception of DIRE[42]. This effectiveness
may stem from DIRE’s use of reconstruction error from im-

ages generated by diffusion models, which maintains its ro-
bustness in this setting.

5.4. Detecting Face Adversarial Examples
Adversarial attacks targeting face recognition models rep-
resent an important branch of adversarial example research.
Therefore, the detection ability of adversarial face examples
is an important indicator of the performance of the detector.
We perform various adversarial face attacks and compare
our approach with state-of-the-art methods from adversar-
ial face detection and face forgery detection.

As shown in Table 4, our method shows excellent per-
formance against a variety of adversarial attacks targeting
faces and surpasses many existing adversarial face detec-
tion techniques. It further indicates the ability of the sparse
mask to capture the essential characteristics of face adver-
sarial examples and the strong generalization capability of
our method.

5.5. Ablation Study and Analysis
To further evaluate our method, we report an ablation study
on the sparse mask, white-box attack detection results, the
impact of the initial attack and the data size for distribution
estimation, and the functionality of Perturbation Forgery
through visualizations. The impact of hyper-parameters and
other analyses are reported in the supplementary materials.

5.5.1. Impact of each mask
As argued, the sparse mask is proposed to assist the detector
in identifying local adversarial noises in generative-based
adversarial data. As shown in Table 5, the absence of the
saliency detection model fs or the GradCAM model fc has
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Table 5. Ablation study on masks (AUROC score), where fs de-
notes saliency detection model and fc represents the CAM model.

Ablation CDA TTP M3D Diff-Attack Diff-PGD
w/o fs 0.9755 0.9585 0.9320 0.9197 0.9135
w/o fc 0.9864 0.9510 0.9262 0.9031 0.9062
w/o Sobel 0.9868 0.7235 0.6984 0.5231 0.5547

(a) (b)

Figure 3. 2D T-SNE visualizations. (a) ImageNet100 flattened
noises of adversarial data and Perturbation Forgery-generated
data. (b) ImageNet100 features extracted by the backbone model
trained with Perturbation Forgery.

Table 6. AUROC scores against white-box attacks under ϵ =
4/255 on CIFAR-10.

Attack BIM PGD DIM MIM AA
AUROC 0.9180 0.9168 0.9062 0.9031 0.9019

little effect on the overall system. This is because the re-
gions masked by fs and fc are somewhat complementary.
However, without the Sobel operation to sparsify the mask,
the detector fails to detect most attacks, except for CDA.
This is because generative-based adversarial noise tends to
be imbalanced and localized, while CDA’s noise is more
global. The generated pseudo-adversarial noise without So-
bel becomes too dense, preventing the detector from effec-
tively focusing on localized noise.

5.5.2. Functionality Visualization
To validate the functionality of our method, we extract fea-
tures and flattened noise from adversarial data and Perturba-
tion Forgery-generated data, then visualize them using 2D t-
SNE projections. All adversarial data originate from unseen
attacks. As shown in Figure 3(a), Perturbation Forgery con-
tinuously perturbs the adv-noise distribution of the initial
attack, thereby forming an open covering for noises from
unseen attacks. Individual samples appear as outliers, float-
ing outside the collective noise distribution. As shown in
Figure 3(b), by learning to separate natural data from those
generated by Perturbation Forgery, the trained detector can
effectively distinguish between natural and adversarial data.

Table 7. Impact of data size on distribution estimation: AUROC
score against PGD under ϵ = 4/255 on CIFAR-10.

Data size 100 250 500 750 1000 2000
AUROC 0.8278 0.9368 0.9866 0.9921 0.9965 0.9948

5.5.3. Detecting White-box Attack

To verify the robustness of our approach to white-box at-
tacks, i.e., both the victim model and the detector are avail-
able to the attacker, we conduct the experiment on CIFAR-
10. Following [3], a modified objective of attacks is:

max
η

L(f(x̂), y) + α · L(fd(x̂), yd), s.t.||η|| ≤ ϵ (12)

where y is the ground-truth label, yd = 0 indicates that x̂ is
an adversarial example, and α = 1 is a constant balancing
between the attack of the classifier f and detector fd. As
shown in Table 6, our method achieves a high average AU-
ROC of 0.9092, demonstrating its robustness against white-
box attacks. This may be attributed to the comprehensive
open covering formed by perturbation forgery, which effec-
tively encompasses adversarial data from white-box attacks,
making it harder to mislead the trained detector.

5.5.4. Data size for Distribution Estmation

To assess the influence of data size for distribution estima-
tion, we train detectors using distributions estimated from
various data sizes and test them against PGD on CIFAR-
10. As shown in Table 7, our method only requires a small
amount of data (≥ 500 samples) to estimate the adversarial
noise distribution so as to train an effective detector. No-
tably, using fewer than 500 samples leads to a significant
decrease in detection performance.

6. Conclusion

In this paper, we explore and define the proximity rela-
tionship between adversarial noise distributions. Based
on our assumption and definition, we develop a perturba-
tion method to craft proximal distributions and demonstrate
an open covering of adversarial noise spaces. Building
on this, we propose training detectors on the open cover-
ings to achieve strong generalization against diverse adver-
sarial attacks. We introduce Perturbation Forgery, which
combines noise perturbation, sparse mask generation, and
pseudo-adversarial data synthesis, enabling detection of un-
seen gradient-based, generative, and physical attacks, inde-
pendent of specific models. Extensive experiments validate
our approach’s effectiveness and generalization with mini-
mal inference overhead.

13924



7. Acknowledgments
This work was supported in part by the Natural Science
Foundation of China under Grant 62372203 and 62302186,
in part by the Major Scientific and Technological Project of
Shenzhen (202316021), in part by the National key research
and development program of China(2022YFB2601802), in
part by the Major Scientific and Technological Project of
Hubei Province (2022BAA046, 2022BAA042).

References
[1] Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-

cated gradients give a false sense of security: Circumventing
defenses to adversarial examples. In ICML, pages 274–283.
PMLR, 2018. 1

[2] Oliver Bryniarski, Nabeel Hingun, Pedro Pachuca, Vincent
Wang, and Nicholas Carlini. Evading adversarial example
detection defenses with orthogonal projected gradient de-
scent. arXiv preprint arXiv:2106.15023, 2021. 1

[3] Nicholas Carlini and David Wagner. Adversarial examples
are not easily detected: Bypassing ten detection methods. In
Proceedings of the 10th ACM workshop on artificial intelli-
gence and security, pages 3–14, 2017. 8

[4] Jianqi Chen, Hao Chen, Keyan Chen, Yilan Zhang, Zhengxia
Zou, and Zhenwei Shi. Diffusion models for impercep-
tible and transferable adversarial attack. arXiv preprint
arXiv:2305.08192, 2023. 3, 6

[5] François Chollet. Xception: Deep learning with depthwise
separable convolutions. In CVPR, pages 1800–1807, 2017.
6

[6] Francesco Croce and Matthias Hein. Reliable evalua-
tion of adversarial robustness with an ensemble of diverse
parameter-free attacks. In ICML, pages 2206–2216. PMLR,
2020. 3, 6

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 6

[8] Zhijie Deng, Xiao Yang, Shizhen Xu, Hang Su, and Jun Zhu.
Libre: A practical bayesian approach to adversarial detec-
tion. In CVPR, pages 972–982, 2021. 1, 2, 3, 6

[9] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun
Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial at-
tacks with momentum. In CVPR, pages 9185–9193, 2018.
3, 6

[10] Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos:
Learning what you don’t know by virtual outlier synthesis.
arXiv preprint arXiv:2202.01197, 2022. 4, 5

[11] R. O. Duda and P. E. Hart. Pattern Classification and Scene
Analysis. John Willey & Sons, New Yotk, 1973. 5

[12] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and An-
drew B Gardner. Detecting adversarial samples from arti-
facts. arXiv preprint arXiv:1703.00410, 2017. 1

[13] Ruize Gao, Jiongxiao Wang, Kaiwen Zhou, Feng Liu,
Binghui Xie, Gang Niu, Bo Han, and James Cheng. Fast and
reliable evaluation of adversarial robustness with minimum-
margin attack. In ICML, pages 7144–7163. PMLR, 2022. 3,
6

[14] B. Huang Gary, Ramesh Manu, Berg Tamara, and Learned-
Miller Erik. Labeled faces in the wild: A database for study-
ing face recognition in unconstrained environments. Techni-
cal Report 07-49, University of Massachusetts, 2007. 6

[15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples, 2014. 2, 3,
6

[16] Qiao Gu, Guanzhi Wang, Mang Tik Chiu, Yu-Wing Tai, and
Chi-Keung Tang. Ladn: Local adversarial disentangling net-
work for facial makeup and de-makeup. In ICCV, pages
10480–10489, 2019. 6

[17] Yang He, Ning Yu, Margret Keuper, and Mario Fritz. Be-
yond the spectrum: Detecting deepfakes via re-synthesis. In
IJCAI, pages 2534–2541. IJCAI, 2021. Main Track. 6, 7

[18] Mitch Hill, Jonathan Mitchell, and Song-Chun Zhu. Stochas-
tic security: Adversarial defense using long-run dynamics
of energy-based models. arXiv preprint arXiv:2005.13525,
2020. 3, 6

[19] Shengshan Hu, Xiaogeng Liu, Yechao Zhang, Minghui Li,
Leo Yu Zhang, Hai Jin, and Libing Wu. Protecting facial pri-
vacy: Generating adversarial identity masks via style-robust
makeup transfer. In CVPR, pages 15014–15023, 2022. 3, 6
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