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Abstract

Composed Image Retrieval (CIR) is a vision-language task
utilizing queries comprising images and textual descrip-
tions to achieve precise image retrieval. This task seeks
to find images that are visually similar to a reference im-
age while incorporating specific changes or features de-
scribed textually (visual delta). CIR enables a more flexi-
ble and user-specific retrieval by bridging visual data with
verbal instructions. This paper introduces a novel gen-
erative method that augments Composed Image Retrieval
by Composed Image Generation (CIG) to provide pseudo-
target images. CIG utilizes a textual inversion network
to map reference images into semantic word space, which
generates pseudo-target images in combination with textual
descriptions. These images serve as additional visual in-
formation, significantly improving the accuracy and rele-
vance of retrieved images when integrated into existing re-
trieval frameworks. Experiments conducted across multi-
ple CIR datasets and several baseline methods demonstrate
improvements in retrieval performance, which shows the
potential of our approach as an effective add-on for exist-
ing composed image retrieval. Project Page: https://lan-
lw.github.io/CIG/

1. Introduction
Composed Image Retrieval (CIR) takes the composed
vision-language queries as input and searches for target
images [3, 8, 17, 24, 30, 49]. By combining visual data
and verbal instructions, CIR enables a more flexible, user-
specific, and precise image retrieval. The composed query
includes a reference image Ir and a delta caption Tr. The
target image It should visually be like the reference image
Ir but capture the content described by the caption Tr [4].
Compared to image-only or text-only retrieval, it is easier
for the user to find an image (Ir) that depicts the necessary
visual content and then describe the desired difference in
natural language [49].

CIR datasets, like CIRR [30] and CIRCO [4], are made
up of (Ir, Tr, It) triplets. Constructing CIR datasets, there-
fore, requires huge human labeling efforts, which hinders

the widespread adoption and development of CIR algo-
rithms. Existing methods can be categorized into two
groups, namely supervised CIR and zero-shot CIR. Super-
vised CIR methods [2, 7, 9, 11, 19, 21, 24, 31, 32, 41, 46,
49, 52], are trained on CIR datasets. However, due to the
lack of large-scale triplets datasets, supervised methods can
only be trained and evaluated on small datasets, which lim-
its their generalization capability. On the contrary, zero-
shot methods [1, 4, 15, 26, 29, 38, 43, 44, 51] do not require
triplets and train solely based on the reference image and
delta caption.

The mainstream solutions like SEARLE [1, 4],
Pic2Word [38], Context-I2W [45], LinCIR [15] encode the
reference image as a pseudo token and further train a fu-
sion encoder, Φ(Ir, Tr), that composes the reference image
and delta caption in the language embedding space. There
is a representation gap between the composed embeddings
(Φ(Ir, Tr)) and the target image embeddings (ψ(It)). The
former is in the language space, while the latter is in the
image space. Intuitively, if we train a fusion encoder
(Ψ(Ir, Tr)) in the image space, we would improve the im-
age retrieval performance because now both Ψ(Ir, Tr) and
ψ(It) are in the image space. However, TIRG [49] reports
inferior performance when integrating the text information
into image embedding space. Some LLM-based methods,
such as CIReVL [20], have significantly improved perfor-
mance. However, their inefficiency remains an issue for re-
trieval. In this paper, we therefore propose a different ap-
proach towards this by asking the question: Can a pseudo
target image help composed image retrieval?

To answer the above question, we propose a Composed
Image Generation (CIG) approach to assist the CIR task
from image space. Our method is straightforward, utilizing
the reference image and delta caption to generate pseudo-
target images, which are then used to aid image retrieval,
as shown in Figure 1. Our method does not require triplet
datasets for pre-training, and it can serve as an add-on to any
existing CIR method to enhance its performance. First, dur-
ing the training phase, we only need image-caption pairs.
Using pre-trained text inversion networks, we map the im-
age to the token embedding space. The caption is then en-
coded to produce a composed embedding, which we use as
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Figure 1. Zero-Shot Composed Image Retrieval vs. Pseudo Target-Aided Composed Image Retrieval. Conventional ZS-CIR methods
map the image latent embedding into the token embedding space by textual inversion. The proposed Pseudo Target-Aided method provide
additional information for composed embeddings from pseudo-target images.

a condition to train latent diffusion models [36] for recon-
structing the same image, removing any need for triplets
during training. Interestingly, we found that such a model,
trained under self-supervision without even seeing a single
ground truth target image, is capable of generating pseudo-
target image during inference that greatly resembles the
ground truth (see Figure 3 and 4 for example). During the
retrieval stage, we map both the reference and pseudo target
images to the token embedding space and encode them with
the delta caption to generate a more informative composed
textual embedding for target image retrieval. Our method
can improve the performance of various approaches with
only a minimal increase in time required.

Our contribution can be summarized as follows: 1) We
explore an effective generative method for zero-shot com-
positional image retrieval, CIG, which can be combined
with any CIR methods; 2) Our training process does not
require any triplets, utilizing only image-caption pairs in a
self-supervised training regime; 3) We conduct multiple ex-
periments on different baselines and obtain significant im-
provements over different benchmarks; 4) CIG provides a
new direction for the CIR task, directly generating a new
image by users’ instruction while staying faithful to the ref-
erence image.

2. Related Work
2.1. Composed Image Retrieval (CIR)
Composed image retrieval (CIR) enables users to input
multimodal queries to search for images. CIR can be
used for fashion [50] and e-commerce recommendation sys-
tems [2, 3, 27]. Compared to traditional image-only and
text-only retrieval, users do not need to describe visual con-
tent and only need to provide the necessary difference cap-
tion. Existing works focus on two important problems: (1)
how to fuse embeddings of a reference image and a delta
caption, and (2) how to train CIR models without (reference
image, delta caption, target image) triplet datasets. For (1),
naive fusion shows inferior performance due to the multi-
modal gap between image and text. Recently, SEARLE [4],
Pic2Word [38], LinCIR [15] treat the reference image as
a pseudo token and plug the pseudo token into the cap-
tion sentence (referred to as pseudo caption), leading to

SOTA performance. For (2), the motivation stems from the
fact that building CIR datasets requires huge human efforts.
Zero-shot approaches that do not use CIR datasets during
training arise in popularity as a result. Inspired by VLMs,
the supervision is the contrastive loss between embeddings
of the reference image and the pseudo caption. In this paper,
we explore a new direction by generating pseudo images.

2.2. Vision-Language Model (VLM)
Vision-language models (VLMs) align image and text fea-
tures in the same embedding space [35]. Transform-
ers [47] are usually employed as image and text encoders
in VLMs because they can effectively extract features from
images [12] and texts [10]. VLMs are pretrained on large-
scale datasets of (image, text) pairs and then finetuned for
downstream tasks like classification, recognition, and local-
ization. CLIP [35] (Contrastive Language-Image Pretrain-
ing) jointly trains image and text encoders to align cor-
responding pairs. VLMs show increasing representation
learning ability under the scaling law [5, 13], but incur high
computational costs for training. In addition to the above
contrastive learning, PaLI-3 [6] encodes images to visual
tokens that are concatenated with queries. PaLI-3 achieves
SOTA performance on vision-language benchmarks while
decreasing model size by 10×. To alleviate the training cost
of VLMs, BLIP-2 [25] bootstraps off-the-shelf pretrained
vision and language models and introduces a lightweight
network to bridge the modality gap.

2.3. Diffusion Models
Diffusion models [16, 42] are a class of generative neu-
ral networks motivated by non-equilibrium thermodynam-
ics. Diffusion models have been shown to generate high-
quality images [33]. The original diffusion models operated
in the pixel space, leading to prohibitively high computa-
tional costs. To address this problem, the latent diffusion
model [36] was introduced that operates in the latent space
by using variational autoencoder (VAE) [22]. Furthermore,
to guide the image generation by the textual prompt, sta-
ble diffusion uses the cross attention [47] mechanism to
integrate the text embedding of the prompt. Recent ad-
vancements in personalized text-to-image generation have
focused on adapting diffusion models to synthesize images
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Figure 2. Overview of the proposed Composed Image Generation (CIG). During training, CIG model uses composed prompt embed-
dings as textual conditions, and learn image information from them. In inference stage, the reference image and delta caption form the
composed prompt embedding, which CIG model utilizes to generate pseudo target images. These pseudo target images assist in improving
ZS-CIR. Top: the training process, including textual inversion network pretraining (left) and CIG model pertaining (right); bottom: infer-
ence process for CIR.

of specific subjects or concepts [14, 23, 37]. These ap-
proaches improve subject and concept fidelity in diffusion-
based generative models, inspiring subsequent work on con-
trollable and personalized image synthesis. In this paper,
we leverage a latent diffusion model to generate pseudo tar-
get images conditioned on composed textual embeddings.
This modification enables the model to effectively synthe-
size images that integrate information from both the original
reference image and the caption.

3. Methodology

In composed image retrieval, the user is querying an im-
age database with a reference image Ir and delta caption
Tr pair, as shown in Figure 1. The matched image in the
database is called the target image It. As an example, con-
sider that the user is querying a photo of “dog”. The refer-
ence image includes the necessary visual content of a dog,
while a delta caption would describe the difference between
the reference and target images, e.g., “The main color of the
face has changed from brown to white”.

3.1. Preliminaries
Image and Text Encoders. Following recent approaches
like SEARLE [4], Pic2Word [38], LinCIR [15], we apply
a pretrained VLM, specifically CLIP [35], by taking ad-
vantage of the multimodal representation learning ability of
CLIP encoders. The CLIP model includes an image en-
coder ψ(I) and a text encoder ϕ(T ). The CLIP model was

pretrained on 400 million (image, text) pairs, so the image
and text embeddings yielded by its encoders are aligned in
a common image-language feature space. In our pipeline,
the visual feature of a reference image is extracted by the
image encoder, which is then integrated into a delta caption
text. Finally, the text encoder extracts the composed feature
from the caption (see the upper left panel of Figure 2). Both
image and text encoders are frozen during training due to
the large number of parameters (> 100 million). Instead,
composed image-language models learn a fusion encoder
Φ(Ir, Tr) that maps the reference image and delta caption,
(Ir, Tr), to a composed feature in an (image-)text embed-
ding space, i.e. Φ(Ir, Tr) 7→ x ∈ Rd where d is the pre-
defined dimension of the embedding space. The features
of the reference images are obtained by an image encoder,
ψ(It) 7→ y ∈ Rd.

During training, the cosine similarity between x and y,
xy

∥x∥∥y∥ , is maximized. During inference, the target image

is retrieved based on It = argmaxI∈D
Φ(Ir,Tr)ψ(I)

∥Φ(Ir,Tr)∥∥ψ(I)∥ .
There are two directions to learn the fusion encoder: (1)
Language 7→ Image, Ψ(Ir, Tr): inject language informa-
tion into image embeddings, and (2) Image 7→ Language,
Φ(Ir, Tr): inject image information into language embed-
dings. (1) TIRG [49] edits the image embeddings by in-
tegrating the language information using a gated residual
connection. (2) CBIR [2] directly fuses embeddings of the
reference image and the delta caption and fine-tunes the text
encoder. SEARLE [4] uses a CLIP image encoder to gener-
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ate a pseudo token given a reference image and then plugs
in the pseudo token into the delta caption. Then, a CLIP
text encoder is applied to map the edited delta caption to an
embedding. In addition to frozen image and text encoders,
Pic2Word [38] introduces a small trainable mapping net-
work to learn the pseudo token given the image embedding
yielded by the image encoder. LinCIR [15] shares similar
ideas as SEARLE and pic2Word but only trains the text en-
coder using self-supervised learning.
Diffusion Models. Latent Diffusion Models (LDM) [36]
works in the latent space of powerful pretrained autoen-
coders, which reduce the computational complexity of high-
dimensional data. The model includes three components:
the encoding to latent space, the diffusion process within
this space, and the final decoding to reconstruct the data.
Encoder E compresses images x to latent z = E(x), and
Decoder D reconstructs it back to image D(z) ≈ x. A time-
conditional UNet εθ(o, t) is trained to remove the noise us-
ing the objective:

LLDM := EE(x),εθ∼N (0,1),t[||ε− εθ(zt, t)||22]. (1)

Similar to other generative models, LDM can be imple-
mented with a conditional denoising autoencoder:

LLDM := EE(x),y,εθ∼N (0,1),t[||ε− εθ(zt, t, τθ(y))||22],
(2)

where y is the conditional input such as text, τθ is a domain
specific encoder that projects y to an intermediate represen-
tation.

3.2. Composed Image Retrieval through Composed
Image Generation

Figure 2 shows the framework of the proposed CIG. Given
an image-caption dataset with image-caption pairs S =
{(xi, ti)}Ni=1, where x ∈ X and t ∈ T are images and cap-
tions, we first map the images to text embedding space and
construct composed prompt embeddings. Then, we fine-
tune a latent diffusion model to reconstruct the image using
composed prompt as textual condition, after which the pre-
trained diffusion model is used to generate pseudo-target
images in the inference stage. It is noteworthy that the fine-
tuning is in fact self-supervised, seeking only to reconstruct
the original image and does not require any triplets, but in-
terestingly induced an ability to generate pseudo target dur-
ing inference. Finally, those generated images are utilized
to boost composed image retrieval.
Textual Inversion Network. The textual inversion net-
work fM learns a projection from the image latent em-
bedding space to the token embedding space. Instead of
learning from scratch, we employed a pre-trained textual
inversion network from mainstream zero-shot CIR methods
[4, 15, 38] since they are either pre-trained with a large
number of image-text pairs with contrastive loss or aug-
mented with carefully designed text context. Those pre-

trained textual inversion networks have a good ability to ex-
tract information for reference images, which is important
for composed image generation. Following methods [4, 15],
we use the text embedding space of the CLIP text encoder
as the target embedding space. The pretrained CLIP image
encoder ψ(·) is first adopted to extract the image feature,
then the pre-trained textual inversion networks project the
CLIP features to word embeddings: s = fM (ψ(x)).
Composed Image Generation. To integrate the pseudo to-
ken embedding with text, we construct the template T “a
photo of S∗ that {caption}” and extract its features using
the CLIP text encoder. Then, the composed prompt em-
bedding is obtained: p = ϕ(T ). To make the caption a
better contextual description, we apply a keyword masking
strategy to mask a keyword token from each caption. The
“keyword” is defined as consecutive adjectives and nouns,
which follows the settings of [15].

We finetune Latent Diffusion Models to adopt the com-
posed prompt embedding as a textual condition for recon-
struction. Unlike pure text prompts, our composed prompt
embedding contains image information, which in effect in-
duces the model to generate target images under the instruc-
tion of the delta caption and maintain the information con-
tained in the reference images. A time-conditional UNet is
finetuned for CIG objective:

LCIG = EE(x),εθ∼N (0,1),t[||ε− εθ(zt, t,p)||22], (3)

where z = E(x) is images latent compressed by encoder E
from LDMs and t is the timestep.

In inference stage, we construct a new template Tδ “a
photo of S∗ that {delta caption}” for CIG task. The LDMs
take the composed embedding pδ = ϕ(Tδ) of delta caption
Tr and reference image Ir as input, generating pseudo target
image x̃.
Composed Image Retrieval. To benefit CIR task, we com-
bine pseudo target x̃ with the reference image Ir and delta
caption Tr in text embedding space. We conduct a similar
way as generating the composed prompt embedding pδ . We
construct a new template Tδ̃ for pseudo target images as “a
photo of S∗ that {delta caption}” using word embeddings
s̃ = fM (ψ(x̃)), generating the composed text embedding
of the pseudo image and delta caption, p̃δ . Finally, the
retrieved target is defined as:

It = argmax
I

(pδ + λ · p̃δ)ψ(I)

∥(pδ + λ · p̃δ)∥∥ψ(I)∥
, (4)

where λ is a trade-off hyperparameter to control the weight
of the composed text embedding of the pseudo image and
delta caption.

4. Experiments
4.1. Experimental Settings
Implementation Details. We employ the Stable Diffusion
[36] V1-5 and SDXL [34] as our text-to-image models. We
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Table 1. Quantitative results on CIRR test set. Results of Pic2Word[38], SEARLE[4], LinCIR [15] and those baselines + CIG (highlight
in gray), using different CLIP backbones and diffusion models as shown. CIG significantly improves the performance of different baselines.

Method Backbone Recall@K RecallSubset@K
K = 1 K = 5 K = 10 K = 50 K = 1 K = 2 K = 3

Image-only

ViT-B/32

6.89 22.99 33.68 59.23 21.04 41.04 60.31
Text-only 21.81 45.22 57.42 81.01 62.24 81.13 90.70
Image + Text 11.71 35.06 48.94 77.49 32.77 56.89 74.96
SEARLE 24.00 53.42 66.82 89.78 54.89 76.60 88.19
SEARLE + CIG 25.33 54.82 68.05 90.43 57.86 78.22 89.25
SEARLE + CIG-XL 24.75 54.36 67.81 90.58 56.24 77.18 89.01
SEARLE + CIG-XL turbo 25.54 55.01 68.24 90.72 57.52 78.36 89.35

Pic2Word 23.90 51.70 65.30 87.80 53.76 74.46 87.07
SEARLE 24.24 52.48 66.29 88.84 53.76 75.01 88.19
LinCIR 25.04 53.25 66.68 - 57.11 77.37 88.89
Pic2Word + CIG 24.63 52.75 65.28 86.51 56.96 77.01 88.82
SEARLE + CIG ViT-L/14 25.71 54.51 67.23 88.94 56.60 76.77 88.99
SEARLE + CIG-XL 25.08 54.41 67.66 89.57 56.07 77.08 88.63
SEARLE + CIG-XL turbo 26.72 55.52 68.10 89.59 57.95 77.81 89.45
LinCIR + CIG 25.64 54.77 67.59 89.04 58.12 78.34 89.37
LinCIR + CIG-XL 25.06 53.69 66.99 89.01 55.78 76.63 88.41
LinCIR + CIG-XL turbo 26.17 54.94 67.64 89.23 58.0 77.86 89.34

LinCIR 35.25 64.72 76.05 - 63.35 82.22 91.98
LinCIR + CIG ViT-G/14 36.05 66.31 76.96 93.81 64.94 83.18 91.93
LinCIR + CIG-XL 34.43 64.51 76.12 93.54 62.24 81.35 91.28
LinCIR + CIG-XL turbo 35.47 66.0 76.89 93.57 65.13 83.25 92.24

adopt the textual inversion networks from [4] for Stable Dif-
fusion V1-5 and [15] for SDXL. In evaluation, we also use
SDXL turbo [39], a real-time diffusion model. For fair com-
parison, in inference stage, we use the baselines’ text inver-
sion network and only provide the generated pseudo target
images as additional information. To finetune the text-to-
image model, we use 595K filtered image-text pairs from
CC3M [40] provided by [28] as our training dataset. It con-
tains 595K images-caption pairs that were selected to obtain
a more balanced concept coverage distribution. We use their
synthetic BLIP captions and re-download the original-sized
images, resulting in 490K images-caption pairs. We take
the first consecutive adjectives and noun as keywords and
remove them from the caption. During training, we only
update the key and value projection layers in the cross at-
tention layer. Our model is trained with a learning rate of
1e-6 using a batch size of 16 on 4 × A6000 GPUs.
Datasets and Baselines. We use the CIRR [30], CIRCO
[4], Fashion-IQ [50] and GeneCIS [48] datasets for CIR
task. Following the original benchmarks, we use Re-
call@k as the metric on the CIRR, GeneCIS, and Fashion-
IQ and the mean average precision (mAP@k) for the
CIRCO dataset. We compare with recent ZS-CIR methods:
Pic2Word [38], SEARLE [4] and LinCIR [15], with differ-
ent backbones including ViT-B, ViT-L and ViT-G CLIP. In
addition, we also compared with LLM based CIR method
CIReVL [20]. The variants “image-only”, “text-only” and

“image+text” denote performing retrieval with CLIP using
only the reference image, delta caption, as well as averaging
their embeddings respectively.

4.2. ZS-CIR Benchmark Comparisons
We evaluate three different versions of CIG models: CIG,
CIG-XL, CIG-XL turbo, which uses Stable Diffusion V1-5,
SDXL, SDXL turbo as base models separately.
CIRR. Table 1 reports the result for CIRR test set. As pre-
viously observed, in CIRR, the reference images are almost
not related to the target images [4, 20, 38]. Therefore, our
method has a significant advantage on this dataset, as gen-
erating pseudo target images helps bridge the gap with the
actual target images. Experimental results also confirm this.
There is an improvement inRecall andRecallSubset across
different baselines. The proposed CIG got the most signif-
icant improvement for SEARLE, especially with ViT/L14
backbones, CIG-XL turbo increases the top 1 recall from
24.24 to 26.72. Overall, on the CIRR dataset, our method
shows a stronger improvement over SEARLE compared to
other baselines in terms of recall.
Fashion-IQ. Table 2 provides the result for Fashion-IQ val-
idation set. Compared to other benchmarks, the improve-
ment on the Fashion IQ dataset is slightly less significant.
This may be due to the more challenging nature of cloth-
ing related generation, making the benefits from generated
images limited. Previous work has shown that enhancing

29694



Table 2. Quantitative results on Fashion-IQ validation set. Results of Pic2Word[38], SEARLE[4], LinCIR [15] and those baselines +
CIG, using different CLIP backbones and diffusion models as shown. CIG improves the performance over different dress types.

Method Backbone Shirt Dress Toptee Average
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

Image-only 6.92 14.23 4.46 12.19 6.32 13.77 5.90 13.37
Text-only 19.87 34.99 15.42 35.05 20.81 40.49 18.70 36.84
Image + Text ViT-B/32 13.44 26.25 13.83 30.88 17.08 31.67 14.78 29.60
SEARLE 24.44 41.61 18.54 39.51 25.70 46.46 22.89 42.53
SEARLE + CIG-XL 24.58 41.41 17.74 39.86 25.65 46.35 22.99 42.54
SEARLE + CIG-XL turbo 24.73 41.46 18.94 39.66 25.50 46.66 23.06 42.59

Pic2Word 26.20 43.60 20.00 40.20 27.90 47.40 24.70 43.70
SEARLE 26.89 45.58 20.48 43.13 29.32 49.97 25.56 46.23
LinCIR 29.10 46.81 20.92 42.44 28.81 50.18 26.28 46.49
Pic2Word + CIG 25.71 43.62 20.67 42.64 27.44 48.19 24.60 44.82
Pic2Word + CIG-XL ViT-L/14 25.86 43.38 20.38 42.19 28.45 48.29 24.90 44.62
Pic2Word + CIG-XL turbo 26.06 42.79 20.87 42.44 28.56 49.31 25.16 44.85
SEARLE + CIG-XL 26.99 45.44 21.12 43.38 29.27 50.38 25.79 46.40
SEARLE + CIG-XL turbo 26.99 45.44 20.62 43.58 29.37 50.48 25.66 46.50
LinCIR + CIG 28.70 47.06 21.12 43.88 29.73 50.23 26.52 47.05
LinCIR + CIG-XL 28.66 47.20 21.27 43.98 29.83 50.28 26.59 47.15
LinCIR + CIG-XL turbo 28.90 47.25 21.12 43.88 29.78 50.54 26.60 47.22

LinCIR 46.76 65.11 38.08 60.88 50.48 71.09 45.11 65.69
LinCIR + CIG ViT-G/14 47.15 66.63 39.61 61.28 50.69 71.65 45.82 66.52
LinCIR + CIG-XL 47.35 66.68 39.71 60.93 50.69 71.39 45.92 66.34
LinCIR + CIG-XL turbo 47.30 66.44 39.56 61.08 50.54 71.55 45.80 66.35

Table 3. Quantitative results on CIRCO test set. Results of
SEARLE[4] and LinCIR [15] and those baselines + CIG (high-
light rows in gray), using different CLIP backbones and diffusion
models as shown. CIG improves the performance .

Method Backbone mAP@k
k=5 k=10 k=25 k=50

Image-only 1.34 1.60 2.12 2.41
Text-only 2.56 2.67 2.98 3.18
Image + Text 2.65 3.25 4.14 4.54
SEARLE ViT-B/32 9.35 9.94 11.13 11.84
SEARLE + CIG 10.19 10.6 11.83 12.47
SEARLE +CIG-XL 10.3 10.79 12.12 12.76
SEARLE +CIG-XL turbo 10.45 11.02 12.34 13.0

Pic2Word 8.72 9.51 10.64 11.29
SEARLE 11.68 12.73 14.33 15.12
LinCIR 12.59 13.58 15.00 15.86
SEARLE + CIG 12.13 13.02 14.63 15.41
SEARLE + CIG-XL ViT-L/14 12.95 13.62 15.28 16.05
SEARLE + CIG-XL turbo 12.84 13.64 15.32 16.17
LinCIR + CIG -XL 12.97 13.64 15.14 16.01
LinCIR + CIG -XL turbo 12.84 13.77 15.25 16.12

LinCIR 19.71 21.01 23.13 24.18
LinCIR + CIG -XL ViT-G/14 20.64 21.90 24.04 25.20
LinCIR + CIG -XL turbo 20.62 21.82 24.0 25.12

text context information significantly improves results on
this dataset [4, 15]. Nonetheless, we still achieved further
improvements across all baselines. Therefore, our method
can be effectively combined with strong baselines.
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“Show the back of the 
deer, and he is looking 
to the camera.”

“Bird facing the other 
direction and clearer 
water.”

“Shows two other 
desserts that are 
fruity pies.”

“Only one dog sitting 
on carpeted floor.”

“Make with one pizza with egg 
omlette on toppings rather 
showing dough on bowl.”

“It is a closer shot and 
only the front part of the 
dog's body is focused.”

Figure 3. Qualitative Evaluation on CIRR validation datasets.
CIG effectively make changes according to the caption while pre-
serving the reference image features.

“Is solid black and one 
shouldered and is solid 
dark with one shoulder.”

“Has longer sleeves and has 
stripes and has a higher 
neckline with sleeves.”

“Is lighter and is whiter.”
“Is darker and the sleeves 
are longer and A brown 
patterned jacket.”

“Has longer lace sleeves in 
white and Is longer sleeved.”

“Is pink striped color and 
has longer sleeves and is 
pink and longer sleeve.”
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Figure 4. Qualitative Evaluation on Fashion-IQ validation
datasets. CIG effectively modifies clothing while retaining origi-
nal clothing features.

29695



Table 4. Quantitative results on GeneCIS test set. * denotes our reproduced LinCIR model using their official repo. Our results are
based on reproduced LinCIR model.

Method Backbone Focus Attribute Change Attribute Focus Object Change Object Avg
R@1 R@2 R@3 R@1 R@2 R@3 R@1 R@2 R@3 R@1 R@2 R@3 R@1

Pic2Word 15.65 28.16 38.65 13.87 24.67 33.05 8.42 18.01 25.77 6.68 15.05 24.03 11.16
SEARLE 17.00 29.65 40.70 16.38 25.28 34.14 7.76 16.68 25.31 7.91 16.84 25.05 12.26
LinCIR 16.90 29.95 41.45 16.19 27.98 36.84 8.27 17.40 26.22 7.40 15.71 25.00 12.19
LinCIR* ViT-L/14 16.60 29.65 40.35 16.19 27.98 36.84 8.21 17.91 25.56 7.96 15.61 25.05 12.24
LinCIR + CIG 16.95 29.40 40.43 16.05 28.55 37.17 8.42 17.45 26.73 8.57 15.36 24.85 12.50
LinCIR + CIG-XL 16.70 29.65 40.85 15.81 28.88 37.41 8.32 17.35 25.46 8.01 15.46 24.23 12.21
LinCIR + CIG-XL turbo 16.80 29.70 40.90 15.91 28.88 37.45 8.37 17.35 25.10 7.86 15.46 24.29 12.24

LinCIR 19.05 33.00 42.30 17.57 30.16 38.07 10.10 19.08 28.06 7.91 16.33 25.71 13.66
LinCIR* ViT-G/14 18.95 32.95 42.70 17.90 30.11 38.97 9.80 18.88 27.76 7.70 16.33 25.97 13.59
LinCIR + CIG 19.05 32.85 42.40 17.8 30.26 39.16 10.61 19.23 27.40 7.91 16.94 25.36 13.84
LinCIR + CIG-XL 19.10 32.55 42.50 17.42 30.35 39.02 9.95 18.42 27.60 7.91 16.28 25.41 13.60
LinCIR + CIG-XL turbo 19.15 32.90 42.50 17.57 30.45 38.87 9.95 18.42 27.45 7.24 16.33 25.06 13.48

Table 5. Quantitative comparison with LLM-based methods on CIRR and CIRCO test sets. The backboone is ViT-L/14 using
OpenCLIP weights [18]. The reported CIReVL results are reproduced from their official implementation.

CIRR CIRCO

Method Recall@K RecallSubset@K mAP@k
@1 @5 @10 @50 @1 @5 @10 k=5 k=10 k=25 k=50

CIReVL 27.18 56.94 69.74 89.54 60.75 81.08 91.11 22.40 23.05 25.14 26.23
CIReVL + CIG 27.35 57.13 69.57 89.69 60.89 80.92 91.13 22.46 23.10 25.18 26.26

CIRCO. Table 3 provides the results for the CIRCO test
dataset. This dataset addresses the presence of false nega-
tives in previous datasets. It is built based on real-world im-
ages and includes multiple ground truth for each reference
image. Our method again shows improvements across dif-
ferent baselines on CIRCO. Notably, for SEARLE, our XL
and XL Turbo models exhibit significant enhancements.
GeneCIS. The tasks in GeneCIS are different from previous
datasets. It’s a benchmark for conditional image similarity,
applicable to four different retrieval tasks: focusing on an
attribute or object, which involves finding images with a
similar attribute or object, and changing an attribute or ob-
ject, which involves altering a specific attribute or object
while preserving other characteristics. This dataset is more
challenging because the captions include just 1 - 2 words,
which is not sufficient for generation. Table 4 shows the re-
sults on GeneCIS dataset. Our method produced improve-
ments across all four different tasks. In object related task,
our method provides more improvements. This is may be
because object changes are easier for diffusion model un-
derstand than attributes.

4.3. Ablation Study and Performance Analysis

In this section, several experiments are conducted to provide
a comprehensive understanding of CIG, including ablation
studies, qualitative and quantitative evaluation on generated
examples, and efficiency evaluations. More discussion can
be found in Appendix.
Qualitative Evaluation on Composed Image Generation.

We visualize the generated images across different bench-
marks, using the Stable Diffusion V1-5 model. Figure 3
shows the results on the CIRR dataset, which mainly in-
cludes natural and daily scenes. From the results in the first
three columns, our method effectively changes animals ac-
cording to the caption while preserving the original image
features. The example in the fourth column demonstrates a
scenario where the reference image and target image have
less in common in this dataset. Despite this, we success-
fully generated the target image, which features two fruity
pies. In the generated images, we even retained the refer-
ence image’s characteristic of having thick cream.

Figure 4 showcases the generated images on the Fashion-
IQ dataset. On a clothing dataset that includes dresses, tops,
and shirts, our method produces excellent results. It effec-
tively modifies the images according to the captions, includ-
ing changing patterns, sleeves, colors, and styles while re-
taining the original clothing features. The generated images
closely resemble the target images. Additionally, in the last
example, our generated image surpasses the target image
by preserving the collar of the reference image, whereas the
target image does not even retain the original clothing style.
The visualization of CIRCO and GeneCIS can be found in
Appendix.

Quantitative Evaluation Composed Image Generation.
We further evaluated the quantitative performance of the
generated images. Specifically, we calculated the cosine
similarity between the generated images and the composed
text embeddings, denoted as CLIP scores. We used text em-
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Table 6. Discussion on Generation Quantitative Evaluation and Efficiency Evaluation.

(a) Composed Image Generation Quantitative Evalua-
tion on CIRR validation set.

Method target images SEARLE + SD SEARLE+ CIG

Clip Score 0.2555 0.2762 0.2810

(b) Additional inference time comparison.

Backbone ViT-L/14

Method SD V1-5 SDXL SDXL-turbo

Time(s) 2.45 2.56 0.14

(c) Inference time comparison on CIRR.

Backbone ViT-L/14

Method SEARLE CIReVL CIG

Time(s) 0.026 1.87 0.17

Table 7. Ablation Study on different fusion strategies. Evaluations on CIRR and CIRCO datasets show that fusing on composed textual
embedding is more beneficial.

(a) CIRR validation set (Recall@K and RecallSubset@K).

Method Recall@K RecallSubset@K
K=1 K=5 K=10 K=1 K=2 K=3

Text embedding 26.17 54.75 68.14 58.77 78.52 89.45
Pseudo token 25.64 54.63 67.57 58.79 79.17 89.33
Image level 24.32 54.48 67.09 53.70 75.17 86.61

(b) CIRCO validation set (mAP@K).

Method mAP@k
K=5 K=10 K=25 K=50

Text embedding 10.98 12.12 13.65 14.41
Pseudo token 10.57 11.68 13.12 13.79
Image level 10.43 11.55 13.14 13.83

beddings from SEARLE [4] and ViT-L/14 as backbones.
We compare the CLIP score with both target images and
the images generated by original Stable Diffusion V1-5. Ta-
ble 6a presents the results on the CIRR validation dataset,
showing that our generated images are closer to the com-
posed text embeddings than the target images and image
generated by original Stable Diffusion model.
Efficiency Evaluation. Time efficiency is a crucial factor
in retrieval tasks. With the use of diffusion models, there are
natural concerns about the efficiency of our method. There-
fore, we conducted an efficiency evaluation to show the ad-
ditional inference time required by our method, as shown
in the Table 6b. To evaluate the additional inference time,
we use a single A6000 GPU with a batchsize of 16 and use
SEARLE as the baseline. In the most demanding cases,
such as with Stable Diffusion v1-5 and SDXL, the extra
time per image is around 2 seconds, which is acceptable
for current composed image retrieval tasks. Additionally,
we propose an alternative solution using SDXL Turbo as
our model. In this scenario, the additional inference time is
only around 100 ms and does not impact the retrieval per-
formance. We believe that once the training code for SDXL
Turbo is released, both the generation quality and retrieval
performance will further improve.

We additionally compared the average runtime per image
across different methods. As shown in Table 6 (c), although
CIG is slower than traditional methods, it is significantly
faster than CIReVL, a popular LLM based method, balanc-
ing speed and performance. Table 5 shows that combining
our method with CIReVL methods can further enhance per-
formance, demonstrating that our approach is also effective
when applied to LLM-based methods.
Ablation Study on different fusion strategies. We demon-
strated the performance of integrating generated images in
different settings, as shown in Table 7. We used SEARLE
as the baseline and Stable Diffusion v1-5 as our base model.
“Text embedding” represents our default setting, where the
composed text embedding of caption and reference image

is combined with the composed text embedding of caption
and generated images. “Pseudo token” indicates that the
generated image is first mapped to a pseudo token, which is
then fused with the reference image’s pseudo token. “Im-
age level” means that the CLIP features are extracted from
the generated image and directly fused with the composed
text embedding, it primarily integrates image features, em-
phasizing spatial information. However, the CIR task relies
more on global semantics. Therefore, fusion at the textual
embedding level is more reasonable, as it better enhances
semantic information. The results show that the first two
fusion methods yield better performance on both CIR and
CIRCO datasets.

5. Conclusion

In this paper, we explore a new direction to integrate image
features and text features in composed image retrieval. Ex-
isting zero-shot CIR algorithms treat the reference image as
a single pseudo token which is then plugged into the cap-
tion, yielding a pseudo caption. It is effective to describe
the reference image as a single token in some cases, e.g.
a single objective. However, it cannot maintain most vi-
sual content in the reference image, leading to a multimodal
gap. To bridge the multimodal gap, we propose to gener-
ate a pseudo target image to preserve the visual content by
integrating the reference image and the delta caption. To
our knowledge, this paper is the first to answer the ques-
tion both visually and experimentally: Can the pseudo tar-
get image help composed image retrieval? Our algorithm is
simple and complementary to existing methods. We apply
the latent diffusion model to generate pseudo target images
by integrating the reference image and the delta caption.
The training process does not require CIR datasets. Ade-
quate visualization examples over different datasets show
that the pseudo images are visually similar to the target im-
ages, which increases the cosine similarity in the embed-
ding space, leading to better retrieval performance.
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