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Abstract

This work presents a progressive image vectorization
technique that reconstructs the raster image as layer-wise
vectors from semantic-aligned macro structures to finer de-
tails. Our approach introduces a new image simplification
method leveraging the feature-average effect in the Score
Distillation Sampling mechanism, achieving effective visual
abstraction from the detailed to coarse. Guided by the se-
quence of progressive simplified images, we propose a two-
stage vectorization process of structural buildup and vi-
sual refinement, constructing the vectors in an organized
and manageable manner. The resulting vectors are layered
and well-aligned with the target image’s explicit and im-
plicit semantic structures. Our method demonstrates high
performance across a wide range of images. Comparative
analysis with existing vectorization methods highlights our
technique’s superiority in creating vectors with high visual
fidelity, and more importantly, achieving higher semantic
alignment and more compact layered representation.

1. Introduction
Vector graphics represent images at the object level rather
than the pixel level, enabling them to be scaled without
quality loss[16]. This object-based structure allows vectors
to efficiently store and transmit complex visual content us-
ing minimal data, which is ideal for easy editing and inte-
gration across various visual design applications.

Creating effective vector representation, such as SVG,
however, often demands considerable artistic effort, as it in-
volves carefully designing shapes and contours to capture
an image’s essence. Recently, deep-learning-based meth-
ods have been introduced to generate vectors, such as from
text descriptions [26, 54, 61]. While promising, these meth-
ods are constrained by the limitation of pre-trained models,
which struggle to produce accurate representation of out-of-
domain examples.

An alternative approach is to generate vectors from raster
images, a process known as image vectorization. Cur-
rent state-of-the-art vectorization techniques mainly target
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Figure 1. Layered vectorization: by generating a sequence of pro-
gressive simplified images (top row), our technique reconstructs
vectors layer by layer, from macro to finer details (middle row).
Our approach maintains the vectors compactly aligned within the
boundaries of explicit and implicit semantic objects (bottom row).

at visual-faithful reconstruction[20, 35, 67], often produce
overly complex and intricate shapes, highlighting the ongo-
ing challenge in achieving a vectorization method that bal-
ances visual fidelity with manageability.

In this paper, we introduce a novel image vectorization
approach that progressively creates compact layered vector
representations, from macro to fine levels of detail. Un-
like existing work that takes the input image as the single
target [20, 35], our approach features the process of image
semantic simplification, i.e., to generate a sequence of pro-
gressively simplified versions for the input image (see the
top row in Figure 1). This sequence of simplified images
serves as stepping-stone targets, guiding the vector recon-
struction with incremental and manageable complexity (see
the middle row of Figure 1). Notably, our approach enables
the effective deduction of vectors that capture the underly-
ing implicit semantic objects from these simplified abstract
images, achieving a layered and semantically aligned vector
representation that is highly manageable (Figure 2).

The key of our approach is a new image simplification
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Figure 2. Vectors with levels of detail generated with our method:
from left to right, vector primitives from macro to finer details are
added layer by layer.

technique leveraging Score Distillation Sampling (SDS)
in image generation [38]. By muting the conditioned
estimated noise in Classifier-Free Guidance (CFG) [22],
our method succeeds in harnessing the feature-average ef-
fect [19] of SDS for image abstraction, which effectively
reduces diverse details while preserving the overall macro
structure. Guided by the sequence of progressively simpli-
fied images, semantic masks for explicit and implicit objects
are detected and layered, based on which vectors are opti-
mized in a two-stage framework. The first stage focuses on
building structure-wise vectors, optimized towards back-to-
front segmented masks by the proposed structure loss. The
second stage is to adjust additional vectors to enhance the
visual fidelity.

Our method has been tested on a range of vector-style
images (e.g., clipart, emojis), and realistic images. Com-
pared to state-of-the-art methods, our approach demon-
strates higher visual fidelity, more compact layer-wise rep-
resentation, and significant improvement in semantic align-
ment.

2. Related work

Image Vectorization Image vectorization, also known
as image tracing, has been a subject of research for
decades [12, 51]. Early work relied on segmentating im-
ages into non-overlapping 2D patches, such as triangu-
lar [3, 7, 49], or other irregular shapes [30]. Later research
focused on refining the boundaries of these decompositions,
introducing curved boundaries to better capture curvilinear
features [34, 55, 59] and gradients [48].

Another approach to image vectorization tackles it as a
curve or polygon fitting problem. This includes methods
like diffusion curves, which represent images at the extrema
of the gradient1 and then render them through the Poisson
equation [37, 56, 66]. Other vectorization techniques are
particularly suited for non-photorealistic images, such as

clip art [8, 11, 15, 23], line drawings [14, 58], cartoons [64],
gray-scale manga [47], and pixel art [28].

The advent of deep learning has led researchers to ap-
proach vectorization through neural networks. A key en-
abler is the development of differentiable rasterizers [32],
which bridge the vector and raster domains. Im2Vec [41]
employs a variational auto-encoder (VAE) on Fonts and
Emoji datasets, to map the input image to a latent space
and generate a similar vector. ClipGen [43] trains an LSTM
on clipart vectors of ten categories to optimize vector prim-
itives. Other network-based vectorization methods focus on
line-drawing images [13]. Chen et al. [5] leverage a trans-
former model to assemble vectorizations from simple prim-
itives. Some approaches avoid model learning. LIVE [35]
progressively optimize closed cubic Bézier curves to the
large difference regions between the rendered SVG and tar-
get image. SAMVG [68] initializes primitives based on seg-
mented masks from the target raster image. SuperSVG [25]
trains a model to predict vectors from the superpixel-based
segmentation of images. SGLIVE [67] extends the capabil-
ity of LIVE to support radial gradients via a gradient-aware
segmentation. Chen et al. [6] encapsulate texture in the vec-
tor optimization. Hirschorn et al. [20] introduce an iterative
process that adds primitives based on pixel clustering, and
removes primitives with low-ranking scores after optimiza-
tion.

Our vectorization method is also model-free, leveraging
differential rendering. Unlike prior works [20, 35, 67, 68]
that optimize towards a single target image, our method
generates a sequence of progressively simplified interme-
diate images as optimization targets. This sequence ef-
fectively captures its underlying topology structure from
coarse to fine, guiding vectors toward a hierarchical rep-
resentation of objects and their topologies.

Layer Decomposition Layers are an efficient structure
for image manipulation and editing [4]. Other image tasks,
such as image matting [45] and image reflection separa-
tion [24, 31, 65], stroke decomposition [18, 57], video re-
coloring [10, 36] are also closely related to this topic.

A range of works decomposes images into layered
bitmaps, such as single-color layers with varying opaci-
ties [50], layers with soft colors modeled by a normal dis-
tribution [2], layers with user-specified colors [29], or color
palettes[53, 62, 63]. More recently, deep models have been
trained to decompose images into transparent layers [60].
However, those layers are RGBA semi-transparent layers in
raster image format.

Another bunch of works decomposes images into vec-
torized layers. Several work vectorize an image into shapes
with linear color gradient [11, 15, 42], based on the alpha
compositing [39]. Those methods mainly deal with clip art
images, which may become prone to errors when applied
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to natural images. Other work decomposes an image into
sequences of brushstrokes to recover the step-by-step paint-
ing process [46, 69]. However, these strokes usually lack
semantic object-level representation.

Figure 3. Layered vectorization pipeline: with the input of a target
image, its sequence of progressive simplified images is generated
using the SDS diffusion model. Vectors are then reconstructed in
two stages: structure construction via layer-wise shape optimiza-
tion to match segmented masks and visual refinement for high fi-
delity.

3. Overview
Figure 3 shows the pipeline of our method. Taking the target
image as input, our process begins with Progressive Image
Simplification that employs the generative diffusion model
based on score distillation sampling [38], to generate a se-
quence of simplified images, referred to as the simplified
image sequence. Taking this simplified image sequence as
guidance, our method goes through a two-stage vector re-
construction.

The first stage involves constructing structure-wise vec-
tors that capture both implicit and explicit semantic struc-
tures. To begin, semantic segmentation [27] is applied
to each image in the simplified sequence, to extract pix-
els of semantic areas, referred to as masks, at various
levels of detail. Those segmented masks are sorted and
organized into back-to-front layers based on their over-
lap relationships. Using the raw boundaries of segmented
masks as structure-wise vectors can be intricate; therefore,
optimizing structure-wise vectors is employed. Specifi-
cally, structure-wise vectors are initialized per mask and
optimized via differential rendering [32] with the layer-
wise structure loss, which measures the shape alignment
between structure-wise vectors and their corresponding
masks, to ensure the vector representation accurately main-
tains semantic structures.

The second stage involves visual refinement. Color fit-

ting is first performed on the structure-wise vectors, serving
as the visual basis and frozen. Then taking the rasterized
image of frozen structure-wise vectors, we compute its vi-
sual differences to the target image. Then visual-wise vector
primitives are initialized to regions with large visual differ-
ences and optimized toward the target image to minimize
the visual fidelity loss. During optimization, vector clean-
up operations—such as merging and removing redundant
vectors—are periodically performed to maintain a neat and
efficient vector representation.

4. Progressive Image Simplification
The premise of our vectorization method is to use a se-
quence of progressively simplified images to guide the op-
timization. Existing vectorization methods mainly rely on
pixel-level analysis of a single target image to decide where
to add and optimize vectors, such as large connected areas
identified in the target image in LIVE [35] or clusters via
DBSCAN in Optimize & Reduce (O&R) method [20]. In
contrast, our approach takes the series of simplified images
as intermediate targets to optimize.

Figure 4(a) shows an example of the image sequence
simplified using our SDS-based method. As shown, the im-
age sequence exhibits varying levels of simplicity, from the
original one with many intricate details and textures to a
simplified and overall outline on the right.

Figure 4. Example of SDS-based image simplification: (a) a se-
quence of progressively simplified images, with the original image
(level 0) on the left; (b) comparison of segmented masks between
levels 0 and 4, showing that more simplified image captures more
macro structures, such as the ’whole body of the robot’ detected
in level 4 but not in level 0.

The intuition behind using simplified images to guide
layered vectorization is to prioritize the capture of the over-
all structure before addressing subtle changes. This ap-
proach offers two notable benefits. Firstly, by decompos-
ing the vectorization process into manageable levels, it be-
comes more tangible and achievable compared to optimiz-
ing it as a whole. The incremental improvement from
one abstract level to the next is relatively small, allowing
for effective optimization at each step. Secondly, the pro-
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gressive abstraction establishes a macro-to-fine hierarchy,
enabling holistic optimization of delicate paths within the
image. This approach becomes particularly advantageous
when dealing with shapes that exhibit pixel variations due
to occlusion, shadows, or textures yet remain integral com-
ponents of a larger entity. For example, in Figure 4(b), the
‘robot’ is abstracted as a unit shape at the most simplified
level, while segmentation of the original target image fails
to capture the entire robot shape. Also, its ‘face’ can be rep-
resented as a unit shape without holes when the simplified
image is applied.

4.1. Feature-average Effect in SDS

Our image simplification method takes advantage of the
feature-averaged effect in SDS [19, 33]. The feature-
average effect of SDS can be explained with the gradient
of SDS loss, as follows:

∇θLSDS(θ) ≈ Et,ϵ,c

ω(t) (ϵϕ(xt, t, y)− ϵ)︸ ︷︷ ︸
SDS update direction

∂g(θ, c)

∂θ

 ,

(1)
where g is a differentiable generator that maps optimiza-

tion variables θ to an image x = g(θ). For instance, in the
original DreamFusion framework [38], g is a NeRF volume
renderer. In our case, g(θ) = θ, meaning the optimiza-
tion variables θ are the image pixels themselves. The term
ϵ ∼ N (0, I) is the random noise added at timestep t, while
ϵϕ(xt, t, y) is predicted noise with given condition y. Con-
sequently, (ϵϕ(xt, t, y) − ϵ) implies the update direction in
the Denoising Diffusion Probabilistic Model (DDPM) [22].

It has been observed that the pre-trained DDPM is sensi-
tive to the input, often predicting feature-inconsistent noise,
even when conditioning input y remains the same. This
causes image pixels θ to be updated in inconsistent direc-
tions, leading to a feature-averaged result. Figure 5 illus-
trates the effect using the prompt “a photo of a robot”. As
the number of optimization steps increases, the images pro-
gressively lose detailed features, resulting in a more feature-
averaged appearance.

Figure 5. Example of the feature-averaging effect in SDS: as opti-
mization progresses, the ‘robot’ loses fine details, such as ‘fingers’
and ‘helmet’, showing the smoothed and simplified appearance.

4.2. SDS-based Simplification

It is crucial to manage the feature-average effect to ensure
progressive simplification without significant shape distor-
tion. For instance, as shown in Figure 5, while simplifica-
tion is achieved, it leads to noticeable shape alterations.

In text conditional diffusion models, Classifier-Free
Guidance (CFG) [21] is introduced to combine two pre-
dicted noises into one:

ϵωϕ(zt, y, t) = (1 + ω)ϵϕ(zt, y, t)− ωϵϕ(zt, t), (2)

where ϵϕ(zt, y, t) is the noise predicted with the condi-
tioned text input and ϵϕ(zt, t) is that with unconditioned
input. The CFG scale controls how closely the conditional
prompt should be followed during sampling in DDPM.

Inspired by CFG, we found that simplification without
importing significant shape distortion can be achieved by
increasing the portion of unconditional noise. Two pos-
sible approaches can be used to achieve this. As shown
in Figure 6, one approach is to set the CFG scale to zero.
The other approach is to set the conditioned text prompt to
empty (i.e., “ ”). Both alternatives are effective; we use the
latter one in this work.

Figure 6. Two approaches for progressive image simplification
with macro structure preserved: (top) CFG scale set to zero, (bot-
tom) conditional text prompt set to empty.

With the target image as input, a sequence of progres-
sively simplified images is obtained every N optimization
steps (N = 20 in our work). Figure 7 gives an example.
Compared to other image simplification methods, e.g., Su-
perpixel [1], Bilateral filter [52], and Gaussian filter, our
SDS-based method effectively abstracts the image while
maintaining the macro shapes. Also, the boundaries of de-
tected object masks (the rightmost column of Figure 7) are
smoothed and compatible with vector-based graphics.

5. Vector Reconstruction
Guided by the sequence of simplified images, vectors are
initialized and optimized via differential rendering [32] in
two stages: structural construction and visual refinement.
Below, we introduce the key components and loss functions.
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Figure 7. Example of SDS-based image simplification compared
to other methods: using the SDS-based method, the macro seman-
tic structures (e.g., ‘flower’) are obtained with smooth boundaries.
The rightmost column shows the semantic segmentation of the
simplified level 4.

5.1. Stage I: Structural Construction

Layering of Segmented Masks The sequence of sim-
plified images is semantically segmented to detect object
masks. Subsequently, the masks are organized into layers,
with large masks on the back layer and small masks over-
laid on the front. Masks within a layer are not intersected
with each other. As illustrated in Figure 8, masks are added
progressively from the most simplified image to the least
simplified (i.e., the input target), with each mask placed in
the furthest back layer where it does not overlap with other
masks already positioned on the same layer.

Figure 8. Mask layering: iterating from the most simplified to the
least, a mask is only added into the layer from back to front, pro-
vided it does not intersect with other masks already in that layer.

Once the masks are layered, each mask’s boundary
is traced and simplified using the Douglas–Peucker algo-
rithm [9]) to reduce the number of points in the boundary.
For each mask, a structure-wise vector is initialized as a
closed shape of cubic Bézier curves, with control points
set to points in the simplified boundary of the mask. Then
structure-wise vectors are rendered by layers and optimized
together to minimize the structure loss.

Layer-wise Structure Loss The structure loss is comput-
ing with two components. One component is the layer-wise
MSE loss Lmse, which measures the image differences be-
tween each pair of the mask layer Imaskj and vector layer
Ivectorj , defined as follows:

Lmse =

n∑
j=1

∥Imaskj − Ivectorj∥22, (3)

where n is the number of layers. In the structural con-
struction phase, the focus is on optimizing shape rather than
other visual properties such as color. Therefore each pair of
mask and corresponding vector are rendered with the same
randomly assigned color.

The second component is the overlap loss Loverlap, which
penalizes the overlap among structure-wise vectors within a
layer, defined as follows:

Loverlap =

n∑
j=1

∑
p∈Ilayerj

ReLU(θ − α(p)), (4)

where vectors are rendered with the same semi-
transparent gray in Ilayerj , the α(p) is the transparency
value of pixel p, and θ is the transparency threshold. Us-
ing these components, the structure loss function is a joint
loss with weights w1 = 1 and w2 = 1e−8:

Lstructure = w1Lmse + w2Loverlap. (5)

5.2. Stage II: Visual Refinement

Color Fitting After optimizing the structure-wise vectors
to desirable mask shapes, a color fitting is applied to as-
sign a color to each vector. There can be different coloring
strategies. In this work, we introduce two. One is to assign
the most dominant color from the visible pixels the vec-
tor covers in the target image. Another is to fit colors by
minimizing the MSE loss between rasterized vectors and
the target image. Once the color fitting is accomplished,
structure-wise vectors are frozen during subsequent visual
refinement.

To achieve high visual fidelity with the target image,
visual-wise vectors are initialized following a strategy simi-
lar to LIVE [35]. Vectors are initialized to the top-K largest
connected areas with pixel-level differences between the
rasterized vectors and the target image, and optimized to
minimize visual fidelity loss.

Visual Fidelity Loss The visual fidelity loss Lfidelity mea-
sures the faithfulness of all vectors to the input image, i.e.,
how visually similar the rasterized vectors Ivector is to the in-
put target Itarget. Therefore We define Lfidelity as their RBG
error under L2 norm:

Lfidelity = ∥Itarget − Ivector∥22. (6)
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6. Implementation

We implemented this method using PyTorch with the Adam
optimizer. By default, a sequence of five simplified images
(including the original input image) is generated at inter-
vals of 20 SDS iterations. The learning rates for optimiz-
ing primitive points and their colors are set to 1.0 and 0.01
respectively. All examples and experiments in this paper
were conducted on a system running Ubuntu 20.04.6 LTS,
equipped with an Intel Xeon Gold 5320 CPU operating at
2.20 GHz and four NVIDIA A40 GPUs. Each GPU features
48 GB of GDDR6 memory with ECC.

7. Evaluation

In this section, we first report the results of the ablation
study, and then elaborate on the comparison between our
method and four state-of-the-art methods.

7.1. Ablation Study

Ablation on the Guide of Simplified Image Sequence
We investigated the impact of incorporating a sequence of
simplified images in the vectorization process, compared to
an ablated version that relies solely on a single input im-
age, i.e., without the sequence. As shown in Figure 9, using
the sequence of simplified images as the intermediate tar-
gets enables our approach to create more implicit semantic
vectors, such as the ‘entire body of Captain America’, and
the ‘grassland’, which are missed when the sequence is not
used. These richer layers allow for fine-grained manage-
ment of vector elements.

Figure 9. Comparison of structure-wise vectors with and with-
out the simplification sequence: incorporating the simplification
sequence creates more implicit semantic vectors, e.g., the ‘entire
body of Captain America’, and ‘grassland’.

Ablation on SDS-based Image Simplification We eval-
uated the effectiveness of SDS-based simplification against
three conventional image simplification methods: Bilateral
filtering, Gaussian filtering, and Superpixel-based Simplifi-
cation. As shown in Figure 10(a), the SDS-based method
preserves clear boundaries, such as the round shape of ‘the
ladybird’, more effectively than the other three methods.
Also, the SDS-based method smartly removes less featured
elements, such as the ‘trees in front of the house’, and re-
covers the occluded parts of the house in Figure 10(b). The
complete constructed vector sequences are provided in the
supplementary materials.

Figure 10. Comparison of structure-wise vectors between SDS-
based method and three conventional image simplification meth-
ods: (a) SDS-based method retains the round boundary of the ‘la-
dybird’, (b) and semantically recovers the ‘front wall of the house’.

7.2. Comparison Experiment

We compared our method to existing methods, including
DiffVG [32], LIVE [35], O&R [20], and SGLIVE [67]. To
make the comparison fair, we use the same visual primitives
for all five methods. More details on the experiment set-up
and results are provided in the supplementary materials.
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Visual Quality We examined the visual rendering fidelity
of the generated vectors, specifically how closely they re-
semble the original input image. Figure 11 shows the visual
comparison with the four state-of-the-art methods. Clearly,
our method demonstrates a more faithful reconstruction
with clean, compact, and semantically aligned boundaries,
while the other four methods exhibit artifacts in colors and
shapes.

Figure 11. Qualitative reconstruction comparison: both examples
are vectorized with 128 vector primitives. Our method recon-
structs more faithful, clean, and semantic-aligned vectors.

To quantify this, we calculated the pixel MSE and LPIPS
computed based on VGG [44] between the rasterized im-
age of vectors and the original image. We collected a test-
ing dataset of 100 images, including realistic photos, cli-
part images, emojis. Figure 12 shows the result on this test-
ing dataset. Our method reconstructs with lower MSE and
LPIPS than the other four methods.

Figure 12. MSE and LPIPS comparison: our method reconstructs
more faithful vectors across different numbers of vector primitives.

Layer-wise Representation To quantify this, we intro-
duce the metric Vector Compactness (VeC) to assess how
well the primitives are contained within the semantic object
boundaries. Given a semantic mask (e.g., the area of pixels
segmented as ‘butterfly’), VeC is defined as the ratio of vec-
tors highly contained within the mask (i.e., exceeding 85%
area overlap) to the total number of vectors interacting with
the mask.

Table 1 reports the average VeC of all images in our test-
ing dataset. For each image, we sampled four masks ran-
domly from its semantic segmentation. As can be seen, our
method maintains significantly higher compactness of prim-
itives compared to the other four methods, with approxi-
mately 73.8%.

Table 1. Comparison of the average VeC and standard deviation of
the 100 testing images.

VeC (%) DiffVG LIVE O&R SGLIVE Ours
Avg. 41.9 43.4 39.9 65.9 73.8↑
Std. 15.1 17.4 20.4 18.5 11.9

As visually evident in Figure 13(a), vector primitives in
methods like LIVE and O&R tend to exhibit scattering and
inter-region intersections (highlighted in red). Our method
demonstrates superior performance by retaining a large por-
tion of the vector primitives within coherent semantic struc-
tures (green). This compact layered construction facilitates
vector editing tasks, such as image recoloring. For exam-
ple, in Figure 13(b), upper-layer primitives can be easily
selected using the underlying layer structures and recolored
by applying a specified hue shift. Our method effectively
preserves the details of texture and lighting, even after re-
coloring.

Figure 13. Layered representation and editing: (a) looking at the
mask of ‘ice cream ball’ (highlighted in blue), vectors highly con-
tained in the ice cream are colored in green, those intersected but
not contained are in red. (b) our compact layer-wise vector repre-
sentation facilitates recoloring.
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Figure 14. Vector layers generated by LIVE [35], DiffVG [32],
O&R [20], SGLIVE [68], and our method.

Semantic Alignment We examined how well the under-
lying vector primitives align with meaningful structures in
the image. Figure 14 shows the two examples (128 paths in
‘horse’ and 256 in ‘boat’), comparing the sequence of inter-
mediate accumulated vectors from back to front layers. As
shown, our method outperforms others, generating primi-
tives that progress from macro to fine detail and align more
accurately with the underlying semantic structures.

Figure 15 shows some captions generated for coarse vec-
tor layers of our vectorization method. Florence-2 model is
applied to infer captions from images. It can be seen the de-
scriptive text generated from coarse layers aligns well with
the contents in the original target image.

To quantify this, we used the CLIP score [40] to mea-

Figure 15. Captioning of macro structural vectors generated by our
vectorization method: for each example, the caption of the coarse
image is generated by Florence-2 model [17].

sure the semantic similarity between the generated caption
of the input target image and the rasterized SVG images.
As shown in Figure 16, at every sampled path number,
our method produces vectorized images that retain a closer
match to the original image’s content, particularly at the be-
ginning stages where there are only a few vector paths.

Figure 16. Comparison of CLIP similarity score: our method man-
ages to preserve key semantic features of the original image better
than other methods, especially with a few vectors.

8. Conclusion

In this work, we present a novel image vectorization tech-
nique that utilizes a sequence of progressively simplified
images to guide vector reconstruction. Our approach in-
troduces an SDS-based image simplification method that
achieves effective visual abstraction. Through a two-stage
vector reconstruction process, our approach emphasizes
both visual fidelity and structural manageability, produc-
ing a layered vector representation that captures the target
image’s structure from macro to fine details. Our method
demonstrates superior performance in multiple areas, in-
cluding visual fidelity, layered representation, and seman-
tic alignment of vectors with underlying structures, greatly
enhancing usability for further editing and modification.
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