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Figure 1. MetaShadow is a versatile three-in-one framework designed for shadow-related tasks, enabling shadow manipulation in various
object-centered image editing operations such as: [I] Object Relocation: Our model can detect and remove the shadow of an existing object,
then synthesize the shadow in the new location consistent with the original shadow. [II] Remove an object and its shadow: (1) Based
on the mask of the unwanted object, our model can directly remove its shadow (2). After removing the object (3), we can eliminate any
remaining shadows for a cleaner background (4) if we do not specify which shadow to remove. [III] Insert an object and synthesize its
shadow: When inserting the person in (b) to another image (a) with similar lighting, our model can generate a realistic shadow, enhancing
the final compositing quality.

Abstract

Shadows are often under-considered or even ignored in im-
age editing applications, limiting the realism of the edited
results. In this paper, we introduce MetaShadow, a three-
in-one versatile framework that enables detection, removal,
and controllable synthesis of shadows in natural images
in an object-centered fashion. MetaShadow combines the
strengths of two cooperative components: Shadow Ana-
lyzer, for object-centered shadow detection and removal,
and Shadow Synthesizer, for reference-based controllable
shadow synthesis. Notably, we optimize the learning of
the intermediate features from Shadow Analyzer to guide
Shadow Synthesizer to generate more realistic shadows that
blend seamlessly with the scene. Extensive evaluations on
multiple shadow benchmark datasets show significant im-
provements of MetaShadow over the existing state-of-the-art
methods on object-centered shadow detection, removal, and
synthesis. MetaShadow excels in image-editing tasks such
as object removal, relocation, and insertion, pushing the
boundaries of object-centered image editing.

* Work done during an internship at Adobe.
† Co-corresponding authors.

1. Introduction

Shadows play a vital role in revealing the realism of an image,
providing strong cues on the perception of the 3D space and
the spatial relations between objects in the environment.
However, when handling object-related image-editing tasks,
such as unwanted object removal, object relocation, and
object insertion, existing applications (e.g., Google Magic
Eraser [9]) in this field often simply neglect manipulating the
shadows, greatly diminishing the overall visual coherence
and realism of the edited images.

To effectively support image editing with shadows, as
shown in Fig. 1, we need to collectively deal with three
tasks: shadow detection, shadow removal, and shadow syn-
thesis in an object-centered fashion. Our object-centered
approach indicates that we primarily focus on instance-level
object manipulation with applications to image editing work-
flows. Thus, when we edit objects in an image, each object
should be associated with the shadow cast by itself onto the
environment such that its associated shadow can be naturally
manipulated together.

As shown in Tab. 1, most existing works, however, treat
the three tasks separately, with several methods overlook-
ing the need for object-centric formulations to assist image-
editing workflows. General shadow detection [56, 65, 66]
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predicts a single binary mask for all shadows, while Wang et
al. [48, 51] detects object-shadow pairs, akin to instance
segmentation. A line of shadow removal works [22, 46, 68]
require binary shadow masks as input, relying on off-the-
shelf shadow detectors or user-given masks, both of which
can be error-prone, to remove the shadows. Further, more ad-
vanced shadow removal methods [6, 28, 47] simultaneously
detect and remove all image shadows, but do not support
object-centered editing. In contrast, shadow synthesis aims
to generate shadows for objects inserted into a new scene.
One line of work [42, 43, 58] require additional estimated
lighting or geometric parameters to produce convincing re-
sults. Another line of research [13, 29] utilizes another
object or its shadow as a reference for synthesizing shadows.
However, the absence of an effective shadow knowledge
extractor prevents these methods from producing accurate
shadow shapes. Recently, ObjectDrop [52] introduced a
bootstrap supervision strategy to generate shadow synthesis
data by training an object/shadow removal model.

Intuitively, all shadow tasks are inherently related, and
should benefit from shared knowledge. For example, per-
fectly removing a shadow implies that one can derive an
accurate shadow mask (shadow detection) from the image.
Furthermore, it indicates that crucial properties like softness
and intensity of the shadow have been learned. Meanwhile,
knowing how to predict a binary shadow mask of an object
would indicate implicit knowledge of where to synthesize
the object shadow if it were not present. By design, handling
each task separately limits each specialized model from ben-
efitting from the shared knowledge in the shadow formation
cycle and hinders them from achieving higher-quality results.
Although we may apply multiple existing methods sequen-
tially in the image editing pipeline, e.g., object relocation,
this may lead to inconsistent outcomes. This is because exist-
ing methods for different shadow tasks do not share common
shadow knowledge, leading to suboptimal visual quality due
to discrepancies in shadow shape, color, and intensity.

In this work, we propose a three-in-one framework named
MetaShadow, consisting of two synergistic components that
enable object-centered shadow detection, removal, and syn-
thesis simultaneously. Motivated by the limitation of spe-
cialized shadow-related models, we propose a novel training
mechanism that successfully shares the shadow information
across its task-specific components to achieve superior re-
sults. To the best of our knowledge, MetaShadow is the first
framework that can jointly handle all three shadow tasks
in an object-centered fashion, benefitting from the shared
knowledge to achieve SOTA results.

We evaluate MetaShadow on three real-world tasks and
four benchmarks. Our MetaShadow improves the mIoU
from 55.8 to 71.0 for shadow mask detection, improves the
bbox PSNR by 8.7dB for shadow removal, and reduces the
local RMSE from 51.73 to 36.54 for shadow synthesis.

Method Task Condition

Detection Removal Synthesis Object-Centered Reference-Based

SILT [56] ✓ ✗ ✗ ✗ ✗
SSISv2 [51] ✓ ✗ ✗ ✓ ✗
DHAN [6] ✓ ✓ ✗ ✗ ✗
BMNet [67] ✗ ✓ ✓ ✗ ✗
ShadowDiffusion [11] ✗ ✓ ✗ ✗ ✗
Zhanget al. [58] ✗ ✓ ✗ ✓ ✗
PixHt-Lab [43] ✗ ✗ ✓ ✓ ✗
SGRNet [13] ✗ ✗ ✓ ✓ ✓
SGDiffusion [29] ✗ ✗ ✓ ✓ ✓
ObjectDrop [52] ✗ ✓ ✓ ✓ ✓

MetaShadow (Ours) ✓ ✓ ✓ ✓ ✓

Table 1. SOTA shadow-related methods and their supported task(s).
Existing works handle up to two shadow-related tasks at once, with
select models supporting an object-centered approach. Only one
model uses other object-shadow pairs as a reference for shadow
synthesis, avoiding the need for additional parameters that other
models require. MetaShadow is a three-in-one framework that
handles object-centered shadow detection, removal, and synthesis.

To summarize, the main contributions of this work are:
• Three-in-one Framework: MetaShadow adopts a novel

object-centered GAN with reference-based diffusion to
address the challenges of shadow understanding and ma-
nipulation to achieve object-centered image editing.

• Shadow Knowledge Transfer: Our approach is the first
to utilize shadow-rich intermediate features from a GAN
to guide the diffusion, significantly enhancing the visual
quality and controllability of shadow synthesis.

• Task-Specific Datasets for Shadow Editing: We build a
synthetic training set (MOS dataset) for shadow detection,
removal, and synthesis, along with two real-world test
sets, Moving DESOBA and Video DESOBA, for thorough
qualitative and quantitative evaluation in target scenarios.

• SOTA Performance on Three Tasks: Extensive exper-
iments on the benchmarks show that our method outper-
forms the baselines for object-centered shadow detection,
removal, and synthesis.

2. Related works

2.1. Shadow Detection
General Shadow Detection. Existing works in this category
aim to simultaneously detect all shadow pixels in an image,
producing a single general shadow mask. The advent of deep
learning revolutionized the task with CNNs [4, 8, 14, 17, 18,
21, 23, 33, 40, 45, 47, 53, 62–66], enabling automatic feature
extraction that largely enhanced classification performance.
This area remains active, as recent work [56] increased the
detection performance in shadow datasets like SBU [45] by
refining noisy labels through iterative label tuning.

Instance Shadow Detection. Wang et al. [48, 50, 51]
introduced a new task to detect shadows at an instance level.
These models aim to detect object-shadow pairs in a scene,
leveraging complex modules to form precise associations
between objects and their corresponding shadows. This line
of work can support object-centered image editing but need
some additional post-processing.
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2.2. Shadow Removal
Explicit Shadow Removal. A large portion of shadow re-
moval methods [10, 22, 30, 39, 46, 67, 68] require a shadow
mask as input to explicitly guide the model to remove the
shadow pixels indicated by the mask. The performance of
these models highly depends on the input, as an imperfect
shadow mask may negatively affect the removal quality. Re-
cently, Guo et al. [11] proposed a diffusion-based method
with an embedded shadow mask refinement branch that re-
fines the input to improve the shadow removal quality.

Blind Shadow Removal. More complex shadow removal
works attempt to simultaneously detect and remove the shad-
ows in the scene. This formulation allows for the blind
removal of shadows and avoids the dependency on a shadow
mask input. Early works by Qu et al. [35] and Wang et
al. [47] introduced end-to-end network architectures combin-
ing the two tasks. Successive works [5–7, 15, 19, 28, 57] pro-
pose new architectures to boost the removal quality. While
extensive works [5–7, 10, 11, 15, 19, 22, 27, 28, 30, 35, 39,
46, 47, 54, 57, 67, 68] focus on removing general shadows
in a scene, Zhang et al. [58] proposed a method to remove an
object and its associated shadow, requiring lighting, geome-
try, and rendering parameters as additional input to achieve
realistic results.

2.3. Shadow Synthesis
Evidently, shadow detection and removal are extensively
represented in literature, however, shadow synthesis is a
relatively underexplored task in the natural image domain.
Some methods [26, 60] have been proposed to synthesize
shadows for objects in virtual environments for AR applica-
tions. Recently, Sheng et al. [41–43] focuses on user-driven
soft shadow and reflection synthesis, considering environ-
mental variables like light and camera position. Further, [13]
introduced SGRNet and its associated DESOBA dataset, the
first work to demonstrate object-centered shadow generation
using object-shadow pair references without requiring ex-
plicit light parameters. SGDiffusion [29], expands on the
earlier DESOBA dataset to encompass 21.5K images and
adopts ControlNet [59] with a shadow intensity module to
improve object-centered shadow synthesis quality. How-
ever, its shadow generation quality largely depends on other
objects in the scene, which requires off-the-shelf shadow
detection models to retrieve the additional input data.

2.4. Joint Frameworks
Some works [5–7, 15, 19, 28, 35, 47] combine shadow de-
tection and removal, while others [6, 7, 16, 30, 67] employ
shadow generation for data augmentation to improve the
shadow removal quality. Furthermore, recent works leverag-
ing diffusion models [44, 52] for holistic approaches such
as object removal or insertion handle shadows in an implicit

Camera View 1 Camera View 2 Composition 1 Composition 2

(a) Moving With Shadow (MOS) Dataset
Composition 1 Composition 1Composition 2 Composition 2

(b) Moving DESOBA Dataset
Frame 1 Frame 1 GTFrame 2 Frame 2 GT

(c) Video DESOBA Dataset

Figure 2. We construct one training set, i.e., MOS Dataset, and two
real-world evaluation sets, i.e., Moving DESOBA Dataset (without
ground truths) and Video DESOBA Dataset (with ground truths),
to train and evaluate the effectiveness of MetaShadow.

manner, forfeiting any controllability on the objects’ effects
on the scene, which is crucial in image-editing applications.

Yet, none of the existing works handle three object-
centered shadow tasks jointly in a knowledge-sharing and
mutually beneficial manner, resulting in a limited perfor-
mance. In contrast, by jointly performing object-centered
shadow detection, removal, and synthesis, MetaShadow can
greatly boost performance on shadow detection and removal,
while our shadow knowledge transfer mechanism leads to
more realistic and consistent shadow synthesis.

3. Datasets

Contemporary shadow-related datasets [13, 17, 22, 26, 35,
45, 49] were built for specific shadow tasks. Paired data
preparation for shadow removal and shadow synthesis are
notably challenging and expensive to collect, leading to
the scarcity of real-world datasets. Additionally, only the
DESOBA [13] and Shadow AR [26] datasets support object-
centered shadow detection, removal, and synthesis. Yet,
DESOBA provides only 840 images for training and Shadow-
AR provides only 13 3D models for rendering. Their limited
scale can severely limit a model’s generalizability. Moreover,
neither dataset provides samples for object relocation, which
is a highly demanded image editing.

To address the limitations of existing datasets for model
training, we introduce the Moving Object with Shadow
(MOS) Dataset, synthesized using the Blender Cycles ren-
dering engine [2], shown in Fig. 2 (a). The dataset consists
of 200 scenes, each with eight camera views. In addition,
there are five object relocation cases for each scene, resulting
in a total of 8,000 image/ground truth pairs. Furthermore,
to evaluate the applicability of MetaShadow for real-world
scenes, we also introduce two evaluation sets: (i) Moving
DESOBA and (ii) Video DESOBA. (i) For each image in
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Figure 3. The schematic illustration of our MetaShadow framework. In Stage I, the Shadow Analyzer takes the input image with object mask
(left player) to perform object-centered shadow detection and removal. After that, the selected player, together with the detected shadow
region, will be moved to a new location. Our Stage II then takes these as input and synthesizes a shadow for this object. To achieve realistic
shadow synthesis, we transfer the shadow knowledge extracted from the Shadow Analyzer to Shadow Synthesizer as reference. Note that
s represents the global style code, w denotes the intermediate latent space, and ”K Q V” stand for key, query, and value in UNet’s cross
attention layer.

the DESOBA test set [13], we randomly choose an object
and reposition it to a different location; see Fig. 2 (b) for
examples. (ii) This test set consists of twelve tripod-captured
videos with static backgrounds, featuring moving objects
casting shadows. Examples are shown in Fig. 2 (c). We will
release Moving DESOBA and Video DESOBA for future
evaluation; see Supplementary Materials for details.

4. Methodology

As shown in Fig. 3, we design two cooperative components
in MetaShadow: (i) Shadow Analyzer, an object-centered
GAN model that jointly detects and removes an object’s
shadow by taking an object mask and an RGB image as input,
and (ii) Shadow Synthesizer, a reference-based diffusion
model that synthesizes shadows using an object mask from
the Shadow Analyzer.

A reference object casting a shadow is often available in
image editing scenarios involving natural images. For object
insertion, some shadows may already exist in the scene. For
object relocation, if the original object shadow is available,
such shadow can be used as a reference to improve the
consistency in the edited result. Furthermore, the reference
shadow can be a way to manipulate the generated shadow as
desired, which can be useful for creative editing.

4.1. Shadow Analyzer
Unlike existing shadow removal models that remove shad-
ows within regions in the shadow mask, our Shadow Ana-

lyzer needs a higher level understanding of the image, es-
pecially on the lighting and geometry of the scene, so as to
enable it to identify the object shadow and remove it. To this
end, we base our model architecture on CM-GAN [61], a
state-of-the-art image inpainting model, and finetune it from
the pretrained CM-GAN weights.

Specifically, as shown in Fig. 3 (top), our Shadow An-
alyzer has four parts: an Encoder, two parallel cascaded
decoders, and a shadow detector. The Encoder extracts
multi-scale features F i

e (i ∈ [1, L]) and global style code s
from FL

e . In the parallel decoders, the cascade of global and
spatial modulations utilizes the global code s with style code
w, mapping from noise z, to ensure structural coherence
and a spatial code for fine-grained detail, producing output
features F i

g and F i
s . For details, including the discriminator

architecture, please refer to the Supplementary Materials.
More importantly, we integrate a shadow detector along-

side the Spatial Decoder, which processes multi-scale fea-
tures F i

s . This integration, under the shadow detection su-
pervision, encourages the encoder and parallel decoders to
accurately identify the shadow regions. The detector up-
samples high-level features (size from 8 to 64) to a uniform
size (64× 64), concatenating them into a single feature map.
It comprises a sequence of convolution layers, batch nor-
malization, and GELU layers, interspersed with transpose
convolution layers. The final output is a 256× 256 shadow
mask, obtained via a sigmoid layer, and subsequently inter-
polated to match the size of the input image.

The Shadow Analyzer is trained with the original combi-
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Figure 4. Respective limitations of GAN-based and diffusion-based
methods on shadow synthesis. For more discussion, please see
Sec. 5.2.

nation of adversarial loss, perceptual loss, masked-R1 reg-
ularization, and the L1 loss from [61]. Also, we adopt the
dice loss [32] to compute the losses between the predicted
shadow mask and the ground truth.

4.2. Shadow Synthesizer
We illustrate our Shadow Synthesizer in the bottom part of
Fig. 3. It is adapted from an inpainting diffusion model
based on the DDPM architecture [12] trained similarly to the
StableDiffusion inpainting model [38]. To support shadow
synthesis, it is modified in the following key ways: (i) We
feed an object mask Mõ along with the image Io that con-
tains the moved objects as input. This combination enables
the model to identify the specific object for which a shadow
needs to be synthesized and understand the desired shape
of the shadow. (ii) We incorporate multi-task training into
the diffusion model, so that it predicts an additional shadow
mask Ms at each diffusion step. (iii) To transfer the shadow
knowledge from Shadow Analyzer and align the dimen-
sions from Fms, the multi-scale features with dimensions of
[N, 1348, 32, 32], to the original text embeddings, we insert
an adaptor T (·) with a 2D convolution layer followed by a
1D convolution layer. Additionally, we employ a Multilayer
Perceptron (MLP) layer to increase the embedding dimen-
sion from 1344 to 2048, so that the final shadow embedding
Es has dimensions of [N, 1024, 2048], where N denotes the
batch size. We then inject it into the diffusion model through
a cross-attention mechanism.

The loss function for training our Shadow Synthesizer is

Lsyn = ET,ϵ∼N (0,1)

[∥∥ϵ− ϵθ
(
Ito,Mõ,Ms̃, t, T (Fms)

)∥∥2
2

]
,

(1)
where ϵ ∼ N (0, 1) is an initial noise, ϵθ denotes the de-
noising U-Net, and Ito is a noisy version of Io at timestep t.
Note that Ms̃ is an optional shadow mask, which is further
explained in the supplemental materials.

Discussion. In this work, we unveil a unique insight:
the integration of GANs and diffusion models overcomes
their respective limitations, enabling a more controlled and
realistic object-related image editing. As shown in Fig. 4,
we find the GAN excels in effectively and efficiently de-
tecting and removing specific shadows but struggles with
synthesizing reasonable shadow shapes [13, 61], as shown
in the left part of Fig. 4, whereas diffusion models excel in
generating realistic contents but lack precise control for the
light direction, color, and intensity of the shadow as shown

in the right part of Fig. 4. By conditioning diffusion models
with GAN features, we can enable controllable and realistic
object-centered shadow editing.

4.3. Training Strategies

Multi-source Dataset Training. As mentioned in Sec. 3,
existing shadow-related datasets are limited at scale. As we
aim for more general and realistic image editing, we employ
multiple datasets to train the MetaShadow framework.

For Shadow Analyzer, we adopt two types of datasets.
(i) Datasets with full annotations: DESOBA [13] and our
MOS dataset contain shadow images, object masks, shadow
masks, and shadow-free images. (ii) Datasets with partial
annotations: ISTD+ [22] and SRD [35] contain shadow
images, shadow masks, and shadow-free images. When
training on this dataset type, we simply feed an empty ob-
ject mask and make the model predict general shadows and
shadow masks. Also, we randomly make the object mask
empty for datasets with full annotations in training. With
this data combination strategy, Shadow Analyzer is able to
detect an object’s shadow with a non-empty object mask,
and detect general cast shadows with an empty object mask.

For training the Shadow Synthesizer, we combine MOS,
DESOBA [13], and Shadow-AR [26]. During the training,
we randomly choose another object as the reference when
there are multiple objects in the image. For the MOS dataset,
we also use the moved object as the reference.

Shadow-Specific Data Augmentations. We perform
three shadow-specific data augmentations to improve the
model’s generalizability and controllability: (i) Random
shadow intensity augmentation, (ii) Curve-based shadow
color grading, and (iii) Random shadow dropping. For more
details, please refer to the Supplementary Materials.

5. Experiments and Results

Implementation details. We train MetaShadow in two
stages. In Stage I, we train Shadow Analyzer for 100 epochs
with a learning rate of 0.001 and batch size of 16. We iterate
on the DESOBA dataset [13] ten times to balance the number
of samples in the multi-dataset training. The training and in-
ference resolution are both 512× 512. In Stage II, we freeze
the Shadow Analyzer and fine-tune the diffusion U-Net. We
also train the Adaptor in Shadow Synthesizer from scratch.
The inputs and outputs of Shadow Synthesizer are all at
128 × 128 resolution with a batch size of 64. In addition,
we employ different learning rate strategies for the U-Net
and the Adaptor. The learning rate for the U-Net begins at
1e− 4 and is multiplied by 0.01 after 200 epochs (totaling
400 epochs), while the learning rate for the Adaptor remains
constant at 1e − 4 to strengthen its ability to gain shadow
knowledge. All training stages are conducted on an eight
A100-GPU server with the Adam optimizer.
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5.1. Comparison with Existing Methods
Though no existing methods aim for the same goal as ours,
we evaluate our MetaShadow on four benchmark datasets,
including SOBA [48], the DESOBA [13] test set, Moving
DESOBA, and Video DESOBA with different methods for
different sub-tasks: object-centered shadow detection, re-
moval, and synthesis.

Evaluation on object-centered shadow detection. To
evaluate this task, we utilize the common mIoU metric at
different sizes, following the COCO [25] definitions with an
additional extra small category. Tab. 2 reports the compar-
ison results on the SOBA test set on shadow segmentation
quality. As SSIS [50, 51] simultaneously detect all object
masks, shadow masks, and their associations, we extract the
shadow instance predictions corresponding to each ground-
truth object mask for evaluation. Our Shadow Analyzer (with
or without using MOS Dataset) significantly outperforms
both methods across various shadow scales.

Evaluation on object-centered shadow removal. We
employ Masked MAE, Masked RMSE in LAB color space,
Bbox PSNR, Bbox SSIM, and PSNR to evaluate the per-
formance on this task. For clarity, masked denotes only
computing the error inside the ground-truth shadow mask
region, and Bbox means we compute the error inside the
bounding box retrieved from the shadow mask. We join two
recent SOTA methods [11, 51] in cascade and also finetune
the method [11] on our dataset setting for fair comparisons.
The results are reported in Tab. 3. It is evident that training
on the original SRD dataset [35] does not result in good gen-
eralization on more complex datasets, such as DESOBA [13].
Furthermore, our method outperforms [11] even when using
ground-truth masks. We provide comparisons on general
shadow removal on the ISTD+ [22] test set with [11, 27, 54]
in Tab. 4, which shows that our MetaShadow outperforms
most SOTA methods on ISTD+: even without shadow masks,
which most SOTA methods still require.

Fig. 5 reveals that before fine-tuning, ShadowDiffu-
sion [11] inadequately recovers shadow regions, leaving
residual shadows (1st and 3rd row), or alters other shadows
not corresponding to the given object mask (2nd row). Af-
ter finetuning, it removes shadows but loses detail, causing
over-smoothing. Additionally, SSISv2’s [51] erroneous de-
tections can lead to incorrect shadow region removal (see
3rd row). In contrast, our Shadow Analyzer preserves details
under shadows, ensuring high-quality visuals.

Evaluation on object-centered shadow synthesis. We
follow [13] and utilize Global RMSE, Local RMSE, and our
Bbox PSNR and Bbox SSIM as the metrics to evaluate the
methods on this task with three baselines [13, 29, 34]. In
order to compare on the same image size, we upsample our
results to 256x256. Please refer to Supplementary Materials
for the upsample process. As shown in Tab. 5, our method
demonstrates superior shadow-synthesis quality on the DES-

Methods mIoU mIoUxs mIoUs mIoUm mIoUl

SSIS [50] 51.6 37.2 46.0 66.7 81.4
SSISv2 [51] 55.8 42.4 49.5 70.4 82.5
Ours wo MOS 67.2 54.5 70.3 79.1 86.5
Ours 71.0 60.4 72.6 81.1 87.8

Table 2. Comparison with the SOTA shadow-detection methods on
the SOBA test set. Note that SSISv2 automatically detects shadow-
object instance pairs in the image, whereas our method uses object
masks to detect shadows of objects.
Method

Masked
MAE ↓

Masked
RMSE ↓

Bbox
PSNR ↑

Bbox
SSIM ↑ PSNR ↑

ShadowDiffusion [11]
with GT shadow mask 60.71 17.50 19.42 54.70 25.04

ShadowDiffusion† [11]
with SSISv2 [51]
detected shadow mask

39.53 12.49 23.41 68.04 39.13

ShadowDiffusion† [11]
with GT shadow mask 35.45 11.44 24.28 70.17 40.04

Ours 21.32 6.62 32.97 96.49 42.20

Table 3. Comparison with SOTA shadow-removal methods on the
DESOBA test set. Note that ShadowDiffusion [11] needs a shadow
mask as input, so we use the instance shadow mask detected by
SSISv2 and the ground-truth shadow mask together to evaluate this
method. Note that our MetaShadow, takes an object mask as input.
† denotes fine-tuning on our joint datasets.
Method PSNR / LPIPS / RMSE Shadow PSNR / RMSE Non-Shadow PSNR / RMSE

ShadowDiffusion [11] 29.86 / 0.110 / 2.75 26.45 / 3.82 31.46 / 2.46

HomoFormer [54] 30.63 / 0.079 / 2.53 27.25 / 3.42 32.07 / 2.30

RASM [27] 34.66 / 0.061 / 1.64 31.00 / 2.46 36.33 / 1.41

Ours wo shadow mask 31.38 / 0.097 / 2.14 28.22 / 3.12 32.63 / 1.89

Table 4. Comparison with SOTA shadow-removal methods on
ISTD+ with image size 512× 512.

Method
Global
RMSE ↓

Local
RMSE ↓

Bbox
PSNR↑

Bbox
SSIM↑

DESOBA

SGRNet [13] 4.91 56.44 27.29 91.08
SGDiffusion [29] 15.03 64.90 21.53 73.57
Libcom [34] 7.88 67.21 23.90 87.48
Ours (256 × 256) 3.12 36.84 29.16 93.56
Ours (128 × 128) 2.93 30.92 30.73 93.49

Video
DESOBA

SGRNet [13] 9.89 51.73 20.77 79.14
SGDiffusion [29] 12.40 54.15 36.54 76.12
Libcom [34] 12.52 58.29 19.73 75.60
Ours (256 × 256) 8.07 36.54 23.14 82.41

Table 5. Comparison with the SOTA shadow-synthesis method
on the DESOBA subset of the test set with multiple objects in an
image and Video DESOBA.

OBA and Video DESOBA test sets, significantly reducing
the Local RMSE to 36.84. Our Shadow Synthesizer also
exhibits enhanced performance for real moving object scenar-
ios in Video DESOBA, reducing the Local RMSE to 36.54.
Note that since SGRNet [13] utilizes ground-truth shadow
parameters for additional supervision. As our datasets lack
these shadow parameters, we cannot fine-tune SGRNet us-
ing them. We use the official release of SGDiffusion [29]
and Libcom [34], trained on the 22K DESOBAv2 dataset.
However, we found that SGDiffusion tends to darken images
and changes the details, leading to lower performance.

To further show the advantage of our method, we provide
various visual comparisons in Fig. 6, presenting results on
DESOBA test set [13], our Moving DESOBA, and Video
DESOBA. As the reference image: another object in the
image is used for DESOBA; the original object before relo-
cation is used for Moving DESOBA; the first frame in the
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Figure 5. Visual comparison for object-centered shadow detection and removal tasks on the DESOBA test set. † means fine-tuned on our
multi-source dataset strategy. Zoom in to see the details. For more results, please refer to the supplementary materials.
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Figure 6. Visual comparison for object-centered shadow synthesis on the DESOBA test set [13], our Moving DESOBA test set, and Video
DESOBA. Zoom in to see the details. For more results, please refer to the supplementary materials.

video clip is used for Video DESOBA, showing the versatil-
ity of our framework. We compare with SGRNet [13] using
identical reference objects, and SGDiffusion [29] using the
reference shadow masks. Even so, our MetaShadow excels
in creating realistic shadows for complex shapes, such as
airplanes, with precise color (like the first case in Moving
DESOBA), intensity, and direction matching, highlighting

its effectiveness. Also, as shown in Fig. 7, SGDiffusion [29]
generates inconsistent shadows depending on the random
seed. On the contrary, our MetaShadow framework achieves
consistent shadow synthesis owing to our shadow knowledge
transfer mechanism. See more results, including GIFs of
Video DESOBA, in the Supplementary Materials.
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Random seed 1 Random seed 2 Random seed 1 Random seed 2

SGDiffusion [ ]28 Ours
Figure 7. Visual comparison on different random seeds reveals a
critical issue with the previous diffusion-based method [29]: incon-
sistent shadow generation across various sampled noises. Empiri-
cally, our model does not exhibit this weakness.

Method
Global
RMSE ↓

Bbox
PSNR↑

Bbox
SSIM↑

Baseline 1: SSDM-Text [12, 37] 3.36 29.80 92.21
Baseline 2: SSDM-CLIP [12, 36] 4.51 29.72 93.17
Ours 2.93 30.73 93.49

Table 6. Ablation study on the DESOBA test set.

Input image 

w. object mask
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at size 16
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at size 32

Feature map

at size 64

Feature map

at size 128

Shadow removal

results

Figure 8. Visualization of the intermediate multi-scale feature maps
of our Shadow Analyzer. Given an object mask, Shadow Analyzer
detects and removes the shadow for specific objects. Thus, the
feature maps effectively capture the shadow knowledge, especially
in the target shadow regions.

5.2. Analysis on Shadow Knowledge Transfer

Recently, text-to-image generation models [20, 24, 38]
have achieved great success in synthesizing realistic images
by injecting the text embedding from the text encoder of
a large language model (LLM) (like T5 [37]) or a vision-
language model (VLM) (like CLIP [36]) into the diffusion
model. Some recent methods [3, 44, 55] replace the text
embedding with an image embedding or even combine text
and image embeddings [1]. Yet, it is hard for LLMs and
VLMs to represent/extract fine-grained features for degra-
dation tasks, e.g., shadowed image, as they are typically
trained on diverse web-scale data without specific captions
for degradation scenarios [31].

Especially for our Shadow Synthesizer, the condition em-
beddings should ideally include shadow characteristics such
as intensity, softness, color, and direction of the original
shadow. Thus, a task-specific encoder for shadow feature ex-
traction would better serve the purpose than a general image
encoder. We empirically verify this by comparing the follow-
ing: (i) “SSDM-Text” representing the Shadow Synthesis
Diffusion Model, which has the base architecture [12] of
our Shadow Synthesizer but takes the text embedding from

T5 [37] as the condition with the word “shadow” as the text
prompt, and (ii) “SSDM-CLIP” representing SSDM with
CLIP [36] image embeddings as condition, replacing Fms.
Note that as the original CLIP [36] image encoder faces
the challenge of extracting sufficient shadow knowledge
directly from the image, we finetune it with the diffusion
model to strengthen its ability. Note that both baselines are
trained with the same dataset as Ours until convergence. Ta-
ble 6 reports the comparison results, showing that image
embeddings are more effective than text embeddings. Even
though CLIP [36] is widely used to encode image informa-
tion [44, 55], it performs sub-optimally compared to our
task-specific shadow knowledge transfer.

We further visualize feature maps from Shadow Analyzer,
which distinctly highlight the response of the shadow regions
(Fig. 8), demonstrating the Analyzer’s effectiveness in cap-
turing shadow characteristics. However, we further observed
that larger resolution features gradually include texture in-
formation within the shadow region, which is not desired,
as we solely want to transfer the shadow properties, not the
texture from previous locations. Based on this observation,
we use features of varying sizes (16 to 128) and resize to a
uniform 32× 32 size as mentioned in Sec. 4.2.

Our design additionally offers a significant advantage by
requiring only four steps to generate the final result, in con-
trast to SSDM’s 30 steps or SGDiffusion’s [29] 50 steps. All
results presented in this paper and Supplemental Materials
are based on this four-step setting.

In the Supplemental Material, we delve deeper into de-
tailed analyses of the dataset and data augmentation tech-
niques through ablation studies, along with more compar-
isons and visualizations on different sub-tasks as well as the
limitation and potential solution.

6. Conclusion

In this work, we introduced MetaShadow, a novel frame-
work for enhancing realism in image editing through ad-
vanced shadow manipulation. By integrating Shadow An-
alyzer for precise shadow detection and removal, and
Shadow Synthesizer for controllable shadow generation,
MetaShadow achieves a significant leap in object-centered
image processing. This synergy ensures that shadows are
not only realistic but also contextually harmonized with
the scene, eliminating the need for complex systems re-
quiring lighting and geometry parameters. Our evaluations
demonstrate MetaShadow’s superior performance over exist-
ing methods, with notable improvements in object-centered
shadow detection, removal, and synthesis. This framework
enables various image-editing tasks, such as object removal,
relocation, and insertion, showcasing its potential to advance
object-centered image editing techniques.
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