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Abstract

Batch normalization (BN) is widely recognized as an es-
sential method in training deep neural networks, facilitat-
ing convergence and enhancing model stability. However,
in Federated Learning (FL) contexts, where training data
are typically heterogeneous and clients often face resource
constraints, the effectiveness of BN is considerably lim-
ited for two primary reasons. First, the population statis-
tics, specifically the mean and variance of these hetero-
geneous datasets, vary substantially, resulting in inconsis-
tent BN layers across client models, which ultimately drives
these models to diverge further. Second, estimating statis-
tics from a mini-batch is often imprecise since the batch size
has to be small in resource-limited clients. This paper in-
troduces Population Normalization, a novel technique for
FL, in which the statistics are learned as trainable param-
eters rather than calculated from mini-batches as in BN.
Thus, our normalization layers are homogeneous among the
clients and the adverse impact of small batch size is elimi-
nated as the model can be well-trained even when the batch
size equals to one. To enhance the flexibility of our method
in practical applications, we investigate the role of stochas-
tic uncertainty in BN’s statistical estimation. When larger
batch sizes are available, we demonstrate that injecting sim-
ple artificial noise can effectively mimic this stochastic un-
certainty and improve the model’s generalization capability.
Experimental results validate the efficacy of our approach
across various FL tasks.

1. Introduction
Batch Normalization (BN) [17] has become a standard com-
ponent in deep neural networks (DNNs). It is proposed to
stabilize and accelerate the training of DNNs, and the orig-
inal motivation was to reduce the so-called internal covari-
ate shift. In each training step, it normalizes the layer in-
put of a neural network using the mean and variance com-
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puted within a randomly sampled mini-batch. Specifically,
consider a particular neuron in a network, and we denote
{x1, . . . , xm} to be its pre-activations on a mini-batch B of
size m, BN first normalizes each xi as

x̂i =
xi − µB

σB
, (1)

where µB and σ2
B are the sample mean and variance of the

pre-activation on B. It then scales and shifts each x̂i as yi =
αx̂i+β to compensate the effect of normalization, where γ
and β are two parameters to be learned during the training
process. BN finally takes yi as the new pre-activation of
this neuron. It has been reported in literature [12, 16, 17,
37, 40] that BN can significantly improve the convergence
of training and the generalization performance of the final
learned models.

However, we notice that the effectiveness of BN is com-
promised in Federated Learning [14, 19, 42], which typ-
ically aims at collaboratively training models on resource
limited clients (e.g., mobiles) with locally private and het-
erogeneous training data. The main reasons can be sum-
marized as follows. One is that the statistics, i.e., the mean
and variance, of heterogeneous datasets in the clients differ
greatly. Eqn. (1) implies that this can lead to inconsistent
BN layers among the client models and finally causes these
models to drift further away from each other. The other is
that in resource limited clients, the mini-batch size has to
be small, which makes µB and σ2

B inaccurate estimations
of the population mean and variance for normalization and
the obtained BN would cause instability during training that
slows down convergence.

Some other normalization techniques, such as batch
renormalization [16], group normalization [40], and layer
normalization [2], are proposed to address this heavy re-
liance on batch size. The key ideas are to estimate the
population mean and variance as accurately as possible by
using techniques such as moving average [16] or to nor-
malize the activation along other dimensions such as the
channel dimension [2]. Nevertheless, these approaches fo-
cus on training acceleration, which typically under-perform
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BN in terms of the trained model’s accuracy [40]. Re-
cently, FedBN [25] is proposed to extend BN to FL. It keeps
the client BN layers updated locally, without communicat-
ing and aggregating them during training. This enables the
clients to achieve better performances in their own respec-
tive environments. However, since the BN layers among the
clients can be heterogeneous due to the non-IID datasets,
FedBN cannot produce an off-the-shelf global model after
training, which is often required in reality. Consequently,
FedBN suffers from the cold start issue, i.e., the learned
model cannot be directly deployed in the new clients due to
the lack of trained local BN layers. What’s more, FedBN
still relies on estimation within mini-batches, which cannot
address the issue of inaccurate estimation caused by small
batch size in cross-device FL.

In this paper, we propose Population Normalization
(PN), a simple yet effective normalization method for FL
to eliminate the negative impacts of statistical heterogeneity
and estimation inaccuracies on BN. The key idea is to learn
population statistics as trainable parameters in the training
process by introducing two constraints derived from the def-
initions of mean and variance (see Section 3), instead of es-
timating them from the mini-batches as most existing meth-
ods have done. As the population statistics take place of
the sample mean and variance of the local datasets in BN,
and are treated as normal trainable parameters in local train-
ing and aggregation, our normalization layers among the
clients would be consistent although the datasets are het-
erogeneous. This enables our method to eventually pro-
duce a global model with the normalization layer among
the clients. In addition, since we no longer need to calcu-
late the sample mean and variance, the resulting training
problem can be solved by stochastic algorithms of FL with
arbitrary batch sizes (even equals to one) and thus the issue
of inaccurate statistic estimation because of small batch size
is eliminated.

In practice, we observe that PN tends to under-perform
BN given very large batch sizes. We then further explore
this issue and find its cause to be that PN lacks the stochastic
uncertainty in the estimation of mean and variance. Specif-
ically, we show that the noise introduced by the mini-batch
based mean and variance estimations in the BN is essential
for its good generalization behavior. Our empirical results
demonstrate that injecting a reasonable amount of data inde-
pendent noise into BN with extremely large batch sizes can
significantly improve the generalization performance to be
comparable to that of BN with proper batch sizes. Inspired
by this finding, we propose Noisy Population Normaliza-
tion (NPN) by injecting simple data independent artificial
noises into the learned population mean and variance in PN
during training. The injected noise can serve the same pur-
pose as the uncertainty in estimating population statistics
in BN with small batch sizes. This makes the proposed

method more flexible in the applications of FL where large
batch size is available, e.g., collaboration among companies
in cross-silo FL [9, 15, 21].

Finally, we conduct a series of experiments to verify the
effectiveness of our proposed PN and NPN in the context
of FL with small and large batch sizes, respectively (Sec-
tion 5). The results demonstrate that PN effectively reduces
the reliance on training batch size and alleviates the neg-
ative impact of data heterogeneity on normalization. Fur-
thermore, the artificial noise injected in our NPN method
effectively improves the generalization performance given
large training batch sizes.

Our main contributions are summarized as follows:
• We propose a mormalization technique PN for federated

learning, which demonstrates superior performance given
small batch sizes and data heterogeneity.

• In training with large batch sizes, we propose NPN based
on PN, which introduces stochastic uncertainty by inject-
ing artificial noise to improve generalization ability.

• We conduct extensive experiments to verify the effective-
ness of our method.
Notations: Given a positive integer d, we define [d] to be

the set {1, 2, . . . , d}. For a vector x ∈ Rd, we let [x]i be its
i-th component with i ∈ [d]. We denote by wi,j the element
in the i-th row and the j-th column of a real-valued matrix
w. Let A ∪B be the union of two sets A and B. Moreover,
we denote byN (µ, σ2) the Gaussian distribution with mean
of µ and variance of σ2.

2. Related Work

2.1. Normalization Techniques
BN [17] is a standard normalization technique, which en-
ables the training of very deep neural networks, and the
most representative result is ResNet[11], which cannot be
easily trained to converge without BN. It can also achieve
significant imporement in generalization. Therefore, the in-
vention of BN is a major milestone in the development of
deep learning.

As aforementioned, small batch size or non-iid mini-
batch can diminish the effect of BN on the training acceler-
ation or even result in training failure, due to the inaccurate
mean and variance estimations [16]. Moreover, large batch
size leads to huge memory cost. This issue hinders BN’s
usage in FL applications, where the clients often have lim-
ited computational resources and the datasets are usually
heterogeneous. This in turn prevents the training of large
networks in FL. Recently, some new normalization meth-
ods have been proposed as alternatives to BN, and they can
be roughly divided into two categories, i.e., normalization
along the batch dimension [16], and mini-batch indepen-
dent normalization [2, 31, 37, 40]. The former alleviates
the reliance on the batch size by using techniques such as
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moving average. The latter ones achieve this by normaliz-
ing the activation of neurons in a network along other di-
mensions. For example, Group Normalization [40] divides
the channels in each hidden layer into groups and normal-
izes the activations in each group with its mean and vari-
ance. Empirical studies show that all these methods achieve
comparable training speedups with BN. However, the gen-
eralization performance they achieved is inferior to that of
BN.

Besides the above studies, there is another line of re-
search [4, 26, 29, 32, 39] that focuses on understanding BN.
One of the main conclusions in these investigations is that
with BN, the effective objective function used in training is
different from the original one. Specifically, [32] showed
that by inserting BN layers into a network, the loss land-
scape becomes smoother, which naturally explains why BN
enables one to use large learning rates. The studies [29, 39]
focuse on the regularization effect of BN. They showed
that the objective function with BN can be divided into two
parts: an empirical loss under population normalization and
an explicit regularizer named gamma decay.

2.2. Federated Learning
FL emerges as an effective paradigm to train models on dis-
tributed devices without centralizing local private data [3, 8,
13, 19, 42]. Specifically, it can be formulated as follows:

min
θ

L(θ,D) ≜
M∑

m=1

ρmLm(θ,Dm), (2)

where M is the number of clients and θ is the model
to be learnt. The global dataset D = ∪Mm=1Dm, where
Dm = {(xi, yi)}|Dm|

i=1 is the locally kept dataset on client
m. Lm(θ,Dm) = 1

|Dm|
∑

ξ∈Dm
ℓ(θ, ξ) denotes the local

empirical risk with the loss function ℓ(·, ·) and ρm = |Dm|
|D| .

Typically, the most popular FL algorithm FedAvg [30]
solves the problem (2) based on local-SGD [34]. Specifi-
cally, in the cth round, it updates the global model on the
server as follows:

θc+1 =
1

M

M∑
m=1

ρmθcm, (3)

where θcm denotes the received local model from client m
after local training in this round. The updated global model
θc+1 is then distributed to the clients to initiate the (c+1)-th
round of training.

In FL, especially in mobile edge scenarios, both limited
device capacity and non-IID distribution of clients’ local
data raise challenges to the training procedure [27]. Vari-
ous works attempt to tackle the non-IID distribution of data
for federated learning from the perspective of local training
regularization [18, 22, 23], server aggregation [5, 28, 38,
41, 43], personalized federated learning [10, 20, 24, 35],

Algorithm 1 Population Normalization

Input: activation: x; mean and variance: µ and 1/γ2;
scale and shift parameters: α and β.
Normalize using the population statistics:

x̂ =
x− µ√
γ2 + ϵ

Scale and shift:

y = αx̂+ β ≡ PNµ,γ
α,β(x)

Return: y

etc. However, they do not explore the reduced effectiveness
of batch normalization in federated learning. FedBN [25]
uses local BN parameters to tackle non-iid federated learn-
ing. However, FedBN is only applicable to local inferences
where only clients participating in the training with local
statistics can perform inference, without providing a global
model for new clients or global data. Also, FedBN does
not consider the small batches caused by limited local re-
sources.

3. Population Normalization

We now present our method PN (see Alg.1). Its key idea
is to eliminate the impacts of heterogeneous statistics and
inaccurate statistic estimations by learning the population
mean and variance during the training process, instead of
estimating them within the mini-batch as BN has done. Pre-
cisely, given an activation x, we normalize it as follows:

x̂ =
x− µ√
γ2 + ϵ

,

where µ and γ2 are the population mean and variance, re-
spectively, and they will be learned during the training pro-
cess, of which the details are specified later in Eqn.(3).
ϵ > 0 is a small constant. Then, to compensate the effect of
normalization on the effective capacity of a neural network,
we scale and shift the normalized activation x̂ as:

y = αx̂+ β ≡ PNµ,γ
α,β(x), (PN)

where the coefficients α and β are learned in the training
process together with µ and γ.

Below, we take a fully connected neural network f(x) ∈
R as an example to show how to insert PN layers into
DNNs. Specifically, given an input x ∈ Rd, let the input
layer be f (0)

j (x) = [x]j with j ∈ [n(0)] = [d]. The ℓ-th hid-
den layer containing n(ℓ) hidden nodes with ℓ ∈ [L] takes
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the form of

f
(ℓ)
j (x) = h(ℓ)

(
z
(ℓ)
j (x)

)
with (4)

z
(ℓ)
j (x) =

n(ℓ−1)∑
k=1

w
(ℓ)
j,k

α
(ℓ−1)
k

f
(ℓ−1)
k (x)− µ

(ℓ−1)
k√(

γ
(ℓ−1)
k

)2

+ ϵ

+ β
(ℓ−1)
k


︸ ︷︷ ︸

(ℓ−1)−th PN layer

,

where j ∈ [n(ℓ)], z(ℓ)j (x) is the pre-activation, h(ℓ) is the

activation function and w(ℓ) ∈ Rn(ℓ)×n(ℓ−1)

is the weight
matrix connecting layer ℓ and ℓ − 1. µ(ℓ−1)

k and γ
(ℓ−1)
k are

the population mean and standard deviation of the hidden
nodes f

(ℓ−1)
k (x). α

(ℓ−1)
k and β

(ℓ−1)
k are the parameters of

the linear transformation. The final output layer is defined
as

f(x) =

n(L)∑
k=1

uk

f
(L)
k (x)− µ

(L)
k√(

γ
(L)
k

)2

+ ϵ


︸ ︷︷ ︸

final PN layer

+c0, (5)

where u ∈ Rn(L)

is the weight vector connecting the output
to the L-th hidden layer, µ(L)

k and γ
(L)
k are the population

mean and standard deviation of the hidden nodes f
(L)
k (x).

The scaling and shifting parameters are absorbed into uk

and c0, respectively.
To eliminate the dependency of PN on batch size, we

learn the statistics µ
(ℓ)
k and γ

(ℓ)
k in training by introducing

two natural constraints derived from the definition of mean
and variance. The statistic estimation is optimized together
with the model parameters during local training, and aggre-
gated on the server by FL algorithms, such as FedAVG. To
be precise, given the loss ϕ(·, ·) : R × {0, 1} → R and the
global datasetD = ∪Mm=1Dm, the training objective in Eqn.
(2) of a FL problem becomes

min
θ
L(θ,D) s.t.


1

|D|
∑

(x,y)∈D

(
f
(ℓ)
k (x)−µ

(ℓ)
k

)2(
γ
(ℓ)
k

)2
+ϵ

= 1

1
|D|

∑
(x,y)∈D f

(ℓ)
k (x) = µ

(ℓ)
k

,

k ∈ [m(ℓ)], ℓ ∈ {0} ∪ [L]

where θ is the set of all the trainable parameters, i.e.,
θ = {w(ℓ)}∪{u}∪{µ(ℓ)}∪{γ(ℓ)}∪{α(ℓ)}∪{β(ℓ)}∪{c0}
and L(θ,D) =

∑M
m=1 ρm

∑
(x,y)∈Dm

ϕ(f(x), y). This
training problem can be solved by various stochastic algo-
rithms with arbitrary batch sizes (even equals to 1), such as
moving average or the method of Lagrangian multipliers. In
the experiments of this paper, we use stochastic Lagrangian
multipliers and the details can be found in the appendix.

Discussion. (1) Since the statistics µ and γ are learned in
the training process instead of being estimated from mini-
batches, the resulting training problem can be solved by

stochastic solvers of FL with arbitrary batch sizes (even
equals to 1). Thus the reliance on batch size is elimi-
nated. This enables resource limited clients to train larger
deep neural networks. (2) Both µ and γ are treated as nor-
mal trainable parameters in local training, communication
and aggregation, our PN layers are consistent among the
clients although the datatsets on the clients are heteroge-
neous. This enables us to eventually obtain an off-the-shelf
global model, which is often required in reality.

Remark 3.1 We should point out that our PN layer can
also be inserted before the activation functions.
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Figure 1. Training loss (left) and test loss (right) of BN, LBN and
LBN+noise. Injecting artificial noise into estimated BN statistics
successfully decreases the test loss and improves generalization.

4. Noisy Population Normalization
We observe that PN demonstrates inferior performance rel-
ative to BN when batch size becomes larger. We explore
this issue and find its cause to be that PN lacks stochastic
uncertainty in the mean and variance estimations. In prac-
tice, large batch sizes may often be used in cross-silo feder-
ated learning, where the participants are companies and or-
ganizations with huge amounts of data as well as abundant
computational resources [9, 15, 21]. Therefore, to enable
our method to be more flexibly used in such scenarios, we
propose NPN, which injects artificial noise into the learned
statistics during training to boost generalization. The details
are presented in the following subsections.

4.1. The Role of Stochastic Uncertainty in BN
We provide an in-depth exploration into the role of stochas-
tic uncertainty of the mini-batch statistics in BN. This pro-
vides a deep understanding of BN’s batch size reliance.

We start with a simple experiment to show the effect of
batch size on BN. Precisely, we compare the performances
of BN with a reasonable batch size (m=128) and a very large
size (m=2048) in training VGG-16 on CIFAR-10. For sim-
plicity, we refer to BN with m=2048 as LBN. For fair com-
parison, in LBN, to eliminate the effect of large batch size
on SGD, we only use large batches to obtain batch statistics
and calculate the stochastic gradient with respect to the loss
on mini-batches of size 128.

We present both the training and test losses of the learned
models with BN and LBN over the training process in Fig
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1, from which we can see that LBN converges faster than
BN, due to the more accurate population statistics estima-
tion. However, there is a noticeable gap between their test
losses, which becomes larger after the learning rate decays.
Therefore, the effect of BN in improving generalization is
reduced when the batch size becomes too large. This indi-
cates that the stochastic uncertainty in estimates of the mean
and variance is important for BN.

The next question we want to investigate is whether we
can artificially inject a proper amount of data-independent
noise into LBN to improve its generalization performance.
Note that the noise of estimating µB and σB in BN is data
dependent. To answer this question, we should first cal-
culate the uncertainty explicitly. The studies [29, 36] show
that for sufficiently large batch size M, the estimated µB and
σB can be viewed as two random variables sampled from
two Gaussian distributions, i.e.,

µB ∼ N
(
µ,

σ2

m

)
and σB ∼ N

(
σ,

(
µ4/σ

4 − 1

4m

)
σ2

)
, (6)

where µ and σ are the mean and variance of the acti-
vation x ∈ R and µ4 is its 4-th central moment, i.e.,
µ4 = Ex(x − µ)4. The item µ4/σ

4 in Eqn.(6) is well-
known as the kurtosis [6]]. It holds that µ4/σ

4 ≥ 1 for any
distribution. Although there is no upper limit to kurtosis
of a general distribution, for most well-known distributions,
e.g., Gaussian distribution, uniform distribution and logis-
tic distribution, it is finite [6]. Therefore, the variance of σB
can always be regarded as O(σ

2

m ).
Notice that the magnitudes of both µB and σB of differ-

ent neurons could be quite different. The analysis above
indicates that to inject noise into µB and σB, it is better to
multiply them by a Gaussian noise centered at 1 with proper
variance instead of add them by two zero-mean noises. One
reason is that the standard deviation of σB is proportional to
σ when m is sufficiently large. More importantly, it is im-
possible to choose the right amount of noise for each µB and
σB if we add noises additively. Therefore, we multiplica-
tively inject noise into its mean and variance estimations of
LBN as follows:

µB ← µB · nµ and σB ← σB · nσ,

where nµ and nσ are two noises sampled from N (1, 0.1)
and they are treated as untrainable parameters in each back
propagation. The result is presented in Fig 1. It shows that
with such noise, the performance of LBN can be boosted to
be comparable with BN.

The main conclusion we can reach in the experiment
above is that data-independent noise can be used to improve
the performance of LBN. Moreover, it also indicates that
the effect of BN on improving generalization can be de-
composed into two parts: one is population normalization
(can be seen from the improvement of LBN over w/o bn)
and the other is the stochastic uncertainty contained in the

mini-batch statistics (can be seen from the improvement of
LBN+noise over LBN). This phenomenon inspires us to in-
ject stochastic noise into our PN to improve its generaliza-
tion performance.

4.2. Noisy Population Normalization
Below, we develop our final method NPN (Alg.2) to achieve
better generalization performance. It is inspired from our
above understandings of the stochastic uncertainty in BN.
In particular, we showed that data independent noise can be
injected into LBN to boost the generalization performance.

At first, for each activation x, we insert data-independent
noise into the corresponding µ and γ to improve general-
ization. In order to reduce the effects of different magni-
tudes of µ and γ corresponding to different neurons, similar
to LBN+noise in Section 4.1, we multiply µ and γ by two
noises centered at 1 instead of adding two zero-mean ones
as follows:

µ̂ = µ(1 + nµ) and γ̂ = max{0, γ(1 + nγ)},

where nµ and nγ are independently sampled noises from a
zero-mean distribution, e.g., Gaussian, and max is used to
avoid negative γ̂. We then normalize, scale and shift x by:

x̂ =
x− µ̂√
γ̂2 + ϵ

and y = αx̂+ β, (NPN)

where µ, γ, α and β are trainable parameters. The training
process with NPN is almost the same as PN, except that
the injected noises nµ and nγ are treated as constants in
back propagation. The details of the training process can be
found in the appendix.

Discussion. NPN has the following appealing features.
As the injected noises nµ and nγ are data independent,we
are able to flexibly inject a proper amount of noise into the
learnt estimation of statistics to improve generalization abil-
ity, which is particularly important when large batch sizes
are used. This scenario is often encountered in cross silo
federated learning. The idea of injecting data independent
noise to improve generalization can also be combined with
other normalization methods. The success of NPN shows
that one can directly learn the population statistics in the
training process instead of estimating them from the mini-
batches. This can inspire new normalization methods.

Remark 4.1 It is unclear that whether NPN has some other
nice properties of BN, e.g., auto-tuning of learning rates
due to scale invariance [1, 7], while our empirical results
demonstrate the effectiveness of NPN. We argue that differ-
ent from standard training, the performance improvements
achieved by these properties could be negligible compared
to normalization itself in FL as the training in FL is more
challenging than standard training. Such theoretical anal-
ysis is left as future work. Thus, we would like to point out
that NPN is a normalization technique for FL instead of a
general approach.
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batch size Normalization α (CIFAR-10) α (CIFAR-100)
0.04 0.08 0.16 1.00 0.04 0.08 0.16 1.00

8

w/o 69.83 83.22 85.05 87.59 45.13 50.43 54.26 58.47
IN 67.68 78.55 82.62 84.09 35.51 40.02 45.48 45.45
GN 71.05 82.54 83.35 86.11 45.45 49.22 52.20 54.75
BN 70.22 82.27 85.77 89.42 52.13 55.91 58.16 64.88

FedBN 71.49 83.05 84.41 89.30 52.05 56.12 57.97 64.43
PN 78.59 85.45 88.05 89.63 53.06 57.43 61.87 65.00

4

w/o 70.69 82.02 85.11 86.93 46.99 50.83 55.08 59.45
IN 60.53 74.08 78.11 82.39 36.04 42.96 46.17 49.89
GN 68.63 78.53 82.01 85.52 44.21 48.18 51.85 54.67
BN 70.18 82.47 86.32 89.52 51.31 55.78 60.35 64.32

FedBN 72.24 83.57 86.03 89.46 51.45 55.77 59.91 65.10
PN 78.40 85.05 87.52 89.59 52.28 56.85 62.42 65.82

2

w/o 67.03 79.98 83.43 87.01 43.93 48.56 54.77 59.43
IN 55.42 68.93 75.43 78.79 36.15 43.90 47.72 47.30
GN 66.02 78.82 81.75 85.23 44.40 46.17 50.60 53.24
BN 65.32 79.68 83.30 87.25 45.87 50.66 55.06 58.74

FedBN 65.50 80.02 82.17 86.40 46.04 51.30 55.52 59.68
PN 72.53 82.59 86.23 88.98 48.97 54.92 60.64 65.46

1

w/o 60.49 71.83 78.65 84.93 38.24 42.26 49.49 54.59
IN 35.47 54.93 66.45 73.74 33.60 39.06 43.29 48.82
GN 60.55 71.83 75.25 79.68 46.04 49.26 53.97 56.64
BN NA NA NA NA NA NA NA NA

FedBN NA NA NA NA NA NA NA NA
PN 64.38 78.89 82.13 86.69 46.13 49.32 59.19 62.97

Table 1. The results of different normalization methods on CIFAR-10/100 with different batch sizes and Non-IID degree α. Or PN
consistently outperforms other methods by a large margin across different α and batch sizes.

Algorithm 2 Noisy Population Normalization

Input: activation: x; population mean and variance: µ
and 1/γ2; scale and shift parameter: α and β; noise level:
σ.
Inject noise into µ and γ:

µ̂ = µ(1 + nµ) and γ̂ = max{0, γ(1 + nγ)},

where nµ and nγ are noises from N (0, σ2).
Normalize using noisy population statistics:

x̂ =
x− µ̂√
γ̂2 + ϵ

Scale and shift:

y = αx̂+ β ≡ NPNµ,γ
α,β(σ;x)

Return: y

5. Experiments

In this section, we conduct two sets of experiments. Firstly,
we verify the effectiveness of of PN in the federated learn-
ing setting given small batch sizes and heterogeneous client
data. Secondly, we demonstrate the superior generalization
ability of our NPN given large training batch sizes.

5.1. Settings and Baselines
To verify the advantage of our population normalization
method, we compare it with other normalization counter-
parts in the FL setting. Specifically, we compare with batch
normalization [16], group normalization [40], instance nor-
malization [37] and without normalization. We compare
with FedBN [25] by averaging the BN parameters in the
clients. Extensive experiments are conducted on two image
classification benchmarks (i.e., CIFAR-10 and CIFAR-100)
with models VGG-16 [33] and ResNet [11] to evaluate the
effectiveness of our method.

For FL experiments, we adopt FedAvg [30] as the base
algorithm. We use 80 clients in total with participation rate
set to 0.4 throughout all experiments. For the clients’ local
update, we adopt SGD with momentum. For batch size of
8, the learning rates are set to be the best among {0.005,
0.01, 0.15, 0.02, 0.25} for each normalization method, and
linearly down-scaled for other smaller batch sizes. We run
200 global communication rounds with local epoch set to 1.
We examine the superiority of our method against the base-
line under various batch sizes and heterogeneity degrees.
We follow prior work [5, 28] to use Dirichlet distribution
for simulating the non-IID data distribution, where the de-
gree of heterogeneity is defined by α, smaller α value cor-
responds to more severe heterogeneity. We report the global
model’s average performance in the last five rounds evalu-
ated using the test split of the datasets. For other details,
please refer to the Appendix.
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Figure 2. (a) Training (left) and test (right) loss of BN, PN, and NPN as the training processes; (b) Sensitivity of NPN on noise level.

For experiments with large batch sizes, we adopt the dis-
tributed training setting, where the model is being trained by
4 different participants. The batch size is set to 2048. The
other hyper-parameters are set to be the same as in the FL
setting. We conduct the experiments using VGG-16 trained
on CIFAR-10 and CIFAR-100 datasets.

5.2. Federated Learning with Small Batch Size
We point out that with small batch sizes, SGD already intro-
duces enough stochastic uncertainty in gradient estimation,
which helps generalization. Therefore, we do not need to
inject additional noise for PN and thus the experiments with
NPN are omitted in this section.

Comparison with Various Normalization Methods We
compare PN with other counterparts under different batch
sizes and non-iid degrees in Table 1. Specifically, we con-
duct experiments with α ∈ {0.04, 0.08, 0.16, 1.00} and
batch sizes {1, 2, 4, 8}. We adopt VGG16 as the trained
network. As demonstrated in the table, we observe that our
method consistently outperforms BN and other baselines,
while the advantage is more significant when the batch size
is small and the heterogeneity degree is higher. Notably, our
method works well even with batch size set to 1, while the
vanilla BN becomes inapplicable under this scenario. This
enables our method to be used when the computational re-
source is limited on the client side.

Experiments with Various Networks We confirm the ef-
fectiveness of PN across different network architectures and
capacities. As shown in Table 3, we conduct experiments
with VGG16, ResNet18 and ResNet50. We fix the hetero-
geneity degree α to be 0.08 and trial with batch sizes of
{1, 2, 4, 8}. We observe consistent performance advantage
over the baselines for different networks. Interestingly, one
may notice that networks with higher capacities do not nec-
essarily lead to better performances, which is opposite to
standard training. This phenomenon is also reported in [5],
which may be due to clients’ local over-fitting or further

drifting from each other in the parameter space. However,
PN still demonstrates superior performances compared with
other normalization techniques.

5.3. Federated Learning with Large Batch Size

We now extend our PN to NPN to enable stronger general-
ization ability for training with large batch sizes. The results
are demonstrated in Table 4. As can be seen, when training
with large batch sizes, PN is outperformed by BN due to the
lack of stochastic uncertainty in the normalization layer. On
the other hand, NPN remedies this issue by injecting artifi-
cial noise into the statistics estimation, which in turn leads
to better test performance. The training progress is also vi-
sualized in Figure 2(a). We can see that although the train-
ing loss of NPN is larger than that of BN, its testing loss is
significantly smaller than BN. This demonstrates that bene-
fiting from the injected noise, NPN can prevent the training
process from over-fitting more effectively than BN.

Method Loss Top-1 Top-5 Top-10

BRN 0.44 93.21 97.52 98.83
BRN + noise 0.29 93.60 97.83 99.02

Table 2. Batch Renormalization + noise.

Finally, we point out that there are only a small num-
ber of participants in this scenario, which makes the trained
model less prone to the adverse impact of heterogeneity
and thus shows better performance than the previous exper-
iments with more participating clients (Table 1).

5.4. Abative Experiments

Noise Level Sensitivity. We evaluate the sensitivity of
NPN to the injected noise level. We conduct experiments
with VGG-16 on CIFAR-10. We set the batch size to 2048
and vary the variance of the noise injected into NPN in
{0.5, 0.1, 0.01, 0.001}. The results are presented in Fig-
ure 2(b). It shows that the test loss increases gradually and
slowly when we vary the variance of the noise from 0.5 to
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Normalization batch size (VGG-16) batch size (ResNet-18) batch size (ResNet-50)
1 2 4 8 1 2 4 8 1 2 4 8

w/o 71.83 79.98 82.02 83.22 75.48 79.94 80.21 81.49 65.59 72.33 77.80 79.94
IN 35.47 68.93 74.03 78.55 63.53 69.36 70.68 71.35 60.37 64.65 68.28 69.10
GN 60.55 78.82 78.53 82.54 66.03 70.44 72.59 75.13 60.63 68.72 70.73 71.25
BN NA 78.65 82.09 82.27 NA 78.55 79.64 81.94 NA 72.39 78.20 81.83
PN 78.89 82.22 85.13 85.45 80.20 83.97 84.53 84.67 67.72 73.63 79.59 83.54

Table 3. Results of different normalization methods on CIFAR-10. PN consistently outperforms other methods for different ntwork
architectures and batch sizes.

Normalization CIFAR-10 CIFAR-100
Loss Top-1 Top-2 Top-3 Loss Top-1 Top-2 Top-3

w/o 0.54 92.31 96.91 98.20 2.77 70.34 87.96 92.11
IN 0.46 92.45 97.00 98.31 2.54 70.68 88.49 92.33
GN 0.43 92.92 97.14 98.52 2.23 71.35 88.93 93.10
BN 0.39 93.13 97.66 98.87 2.05 72.21 90.28 93.60
PN 0.41 93.10 97.78 98.97 1.85 72.15 90.07 93.89

NPN 0.32 93.66 98.05 99.12 1.22 72.74 91.47 94.90

Table 4. Results of different normalization methods on CIFAR-10 / CIFAR-100 with large batch size.

0.001. Therefore, it is easy to select a suitable noise vari-
ance that falls within a reasonable range.

Artificial Noise for Other Normalization Methods. We
demonstrate that the artificially injected noise is also able
to improve existing normalization methods with limited
stochastic uncertainty. We take batch renormalization
(BRN) [16] as an example and conduct experiments on
CIFAR-10 with VGG-16. For simplicity and excluding
other factors, we conduct this experiment with regular train-
ing instead of FL. We inject noise sampled from N (0, 0.1)
to the moving averages µ and σ of BRN as we do for NPN.
The results are given in Table 2. It shows that with the
injected noise, the performance of BRN can be improved
effectively. Therefore, the idea of data-independent noise
injection is a very general regularization technique that can
be used to improve existing normalization methods.

5.5. Supervised Learning with PN
Intuitively, PN can also be used in non-FL scenarios. We
apply PN to supervised learning and conduct erperiments
on two image classification benchmarks (i.e., CIFAR-10,
CIFAR-100) with VGG-16 and ResNet to evaluate the ef-
fectiveness of PN in supervised learning. The batch sizes
of all the methods are set to 128. Table 5 presents the test
loss and accuracy of the final learned models. From Ta-
ble 5 we can see that our NPN can achieve much lower
test loss than BN and comparable (if no better than) test
accuracy with BN on all the three models. We can also ob-
serve that NPN can achieve a noticeable improvement over
PN, which demonstrates that artificially injected data in-
dependent noise can be used to reinforce the performance
of the normalization methods with limited stochastic uncer-

Table 5. Results of different normalization methods on image clas-
sification benchmarks

Network Normalization Loss Accuracy

VGG-16
BN 0.39 92.31
PN 0.41 93.63

NPN 0.28 93.66

ResNet-18
BN 0.46 93.76
PN 0.45 93.97

NPN 0.38 94.26

ResNet-56
BN 0.33 93.05
PN 0.42 92.56

NPN 0.25 93.99

tainty.The comparable performance of BN and NPN implies
that the effect of BN can be decomposed into two parts: one
is population normalization, and the other is the stochastic
uncertainty containing in the mini-batch statistics.

6. Conclusions

We propose a learning-based normalization technique, Pop-
ulation Normalization (PN), which reduces the reliance on
training batch size and improves robustness against data
heterogeneity in federated learning (FL). Extensive experi-
ments demonstrate that PN outperforms existing normaliza-
tion techniques by a significant margin. We further develop
Noisy Population Normalization (NPN), which injects ar-
tificial noise into the learnt normalization statistics to en-
hance generalization under large batch size conditions. We
believe that our work will offer valuable insights for the de-
sign and development of more stable and adaptable normal-
ization techniques for FL.
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