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Figure 1. PromptHMR is a promptable human pose and shape (HPS) estimation method that processes images with spatial or semantic
prompts. It takes “side information” readily available from vision-language models or user input to improve the accuracy and robustness
of 3D HPS. PromptHMR recovers human pose and shape from spatial prompts such as (a) face bounding boxes, (b) partial or complete
person detection boxes, or (c) segmentation masks. It refines its predictions using semantic prompts such as (c) person-person interaction
labels for close contact scenarios, or (d) natural language descriptions of body shape to improve body shape predictions. Both image and
video versions of PromptHMR achieve state-of-the-art accuracy. https://yufu-wang.github.io/phmr-page

Abstract

Human pose and shape (HPS) estimation presents chal-
lenges in diverse scenarios such as crowded scenes, person-
person interactions, and single-view reconstruction. Exist-
ing approaches lack mechanisms to incorporate auxiliary
“side information” that could enhance reconstruction accu-
racy in such challenging scenarios. Furthermore, the most
accurate methods rely on cropped person detections and
cannot exploit scene context while methods that process the
whole image often fail to detect people and are less accurate
than methods that use crops. While recent language-based
methods explore HPS reasoning through large language or
vision-language models, their metric accuracy is well below
the state of the art. In contrast, we present PromptHMR,

a transformer-based promptable method that reformulates
HPS estimation through spatial and semantic prompts. Our
method processes full images to maintain scene context
and accepts multiple input modalities: spatial prompts
like bounding boxes and masks, and semantic prompts like
language descriptions or interaction labels. PromptHMR
demonstrates robust performance across challenging sce-
narios: estimating people from bounding boxes as small as
faces in crowded scenes, improving body shape estimation
through language descriptions, modeling person-person in-
teractions, and producing temporally coherent motions in
videos. Experiments on benchmarks show that PromptHMR
achieves state-of-the-art performance while offering flexible
prompt-based control over the HPS estimation process.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
The estimation of 3D human pose and shape (HPS) is clas-
sically viewed as regressing the parameters of shape and
pose from pixels. In particular, most methods take a tightly
cropped image of a person and output the pose and shape
in camera coordinates. While the accuracy of such methods
has increased rapidly, they do not address the whole prob-
lem. In particular, an HPS method should be able to take
an image or video containing complex human-human and
human-scene interactions, return the parameters of every
person in the scene, and place these people in a consistent
global coordinate frame.

Our key observation is that the classical “pixels to pa-
rameters” formulation of the problem is too narrow. Today,
we have large vision-language foundation models (VLMs)
that understand a great deal about images and what people
are doing in them. What these models lack, however, is an
understanding of 3D human pose and shape. Recent work
[10, 15] has tried to bring together VLMs and 3D HPS but
with 3D accuracy well below the best classical methods.

Consequently, we need to think about the problem in a
different way and ask whether we can exploit readily avail-
able side information (e.g. provided by a VLM) to improve
3D HPS regression robustness, usefulness, and accuracy. To
that end, we develop a novel “promptable” HPS architecture
called PromptHMR. Consider the sample images shown in
Fig. 1. In crowded scenes, existing person detection meth-
ods struggle, while face detection methods remain reliable.
When people closely interact, their body parts overlap and
occlude each other, introducing ambiguity in pose estima-
tion. Moreover, 3D body shape estimation from monocular
views is challenging due to perspective ambiguity. In all
these cases, we can extract cues, or prompts, that provide
“side information” that can help an HPS method better an-
alyze the scene. PromptHMR formalizes this intuition by
combining image evidence with different types of spatial
and semantic information that can come from either humans
or AI systems such as VLMs.

Specifically, our approach combines three key compo-
nents: (1) a vision transformer that extracts features from
high-resolution full images to preserve scene context, (2) a
multi-modal prompt encoder that processes spatial and se-
mantic inputs, and (3) a transformer decoder that attends
to both prompt and image tokens to generate SMPL-X [45]
body parameters. This design addresses the limitations of
cropped-image HPS methods by processing full images us-
ing side information in the form of prompts. It addresses the
challenges that full-image HPS methods have in detecting
all people in a scene by accepting readily available bound-
ing boxes. Last, our method incorporates auxiliary semantic
information through text descriptions or interaction labels.

By combining spatial and semantic prompting, our
method offers a powerful and versatile approach to 3D HPS

estimation from the whole image. At test time, we show
that this promptable structure (1) can take various bound-
ing boxes or segmentation masks to recover full body HPS
in a robust way, (2) improve its body shape predictions
by using textual descriptions as input, (3) is capable of
modeling person-person close interaction directly in the re-
gression process, and (4) uses full image context to recon-
struct people coherently in the camera space and the world
space. Our model can handle video by incorporating tem-
poral transformer layers at the SMPL-X decoding phase,
yielding temporally stable and smooth motions. Last, fol-
lowing TRAM [65], we combine the temporal version of
our model with metric SLAM to estimate human motion in
world coordinates.

We make several key design choices that make Prompt-
HMR successful. To achieve robustness to different spa-
tial inputs, we train our model by simulating noisy full-
body and face-region bounding boxes. For improved body
shape estimation, we leverage SHAPY [8] to generate au-
tomatic body shape descriptions for training samples and
process them with a pretrained text encoder [48]. To en-
hance person-person interaction reconstruction, we use seg-
mentation masks as more precise spatial prompts and de-
velop person-person attention layers that operate between
prompted people, producing coherent reconstructions of
close interactions. Through random masking of different
input types during training, our model learns to work with
any combination of prompts at test time.

Quantitative experiments on the EMDB [24],
3DPW [63], RICH [20], Hi4D [68], CHI3D [16] and
HBW [8] benchmark datasets demonstrate that our method
outperforms state-of-the-art (SOTA) approaches and strong
baselines. We also provide many qualitative examples of
in-the-wild images and videos that illustrate the robustness
and generalization of PromptHMR.

By moving away from the pure pixels-to-parameters ap-
proach, PromptHMR not only achieves a new SOTA, it
shows a new way of improving both accuracy and robust-
ness by leveraging side information that is easily available.
One can think of this as a collaboration between VLMs,
which know a lot about people in images but not in 3D,
and a metric regressor that knows a lot about 3D humans
but not about the semantics of what they do. We show that
this combination has significant upside potential to increase
both generality and accuracy. Our code and model are avail-
able for research purposes.

2. Related Work
Human pose and shape estimation from images. Exist-
ing methods for human pose and shape (HPS) estimation
can be broadly categorized into two main approaches. The
first [6, 17, 22, 27, 28, 30–32, 39, 64, 70] uses a tightly
cropped image of an individual as input, and estimates
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pose and shape in camera coordinates. While effective for
isolated individuals, this approach discards scene context
that is essential to resolve human pose in cases of occlu-
sion, severe overlap and close interaction in multi-person
scenes [16, 68].

The second category [2, 21, 55, 57–59] build upon object
detection frameworks [5, 12] to jointly detect humans and
estimate their pose and shape parameters. Having access to
the entire image, they can better perceive occluded individ-
uals and infer depth relationships, but they often suffer from
detection failures due to the difficulty in simultaneously per-
forming detection and reconstruction. Our “promptable” ar-
chitecture leverages detection box prompts to resolve such
conflicts while having access to the entire scene context.
Human pose and shape estimation from video. Methods
for human motion estimation from video can also be divided
into two main categories. The first [7, 23, 26, 36, 56] fo-
cuses on estimating smooth human motion in camera space.
These methods build upon single-person HPS estimation
approaches [22, 30] by adding temporal layers during the
SMPL decoding phase to introduce temporal coherence.

More recent methods estimate human motion in world
coordinates from videos captured with dynamic cameras.
These methods follow a two-stage approach, first estimating
camera motion using SLAM techniques [18, 19, 40, 41, 60,
61], and then leveraging human motion priors to optimize
the human world motion [29, 67, 69]. Others [51, 52] learn
temporal models to directly regress human world motion
from image and camera features. Still others [65, 71] use
monocular metric depth estimation to solve for the scale of
camera motion and transform human motion from camera
space to world coordinates.

In our approach, we extend PromptHMR to video by
taking the SMPL-X output tokens and utilizing a tempo-
ral transformer module to estimate temporally stable and
smooth human motion and translation in camera space. We
follow TRAM [65] to transform human motion to world co-
ordinates due to its simplicity and effectiveness.
Semantic reasoning about 3D humans in images. Re-
cent methods explore combining different types of seman-
tic information, such as language descriptions and knowl-
edge of person-person interactions, to improve reasoning
about 3D humans from images and videos. For example,
ChatPose [15] follows the common approach of visual lan-
guage models (VLMs) [34] by fine-tuning a large language
model (LLM) with a combination of images and tokens to
estimate SMPL parameters. In a similar direction, PoseEm-
broider [10] is a multi-modal framework that aligns image,
3D pose, and text representations in a shared latent space.
While ChatPose focuses on combining high-level scene rea-
soning with 3D HPS, PoseEmbroider exploits detailed lan-
guage descriptions of human pose. While promising, nei-
ther method achieves SOTA accuracy on the HPS task. Note

that many other methods relate language to human pose or
motion, without considering images [1, 9, 35, 46, 62], but
these are outside our scope.

Additionally, several methods [8, 47, 53] focus on mod-
eling the relationship between SMPL body shape and nat-
ural language descriptions. These methods show that lan-
guage descriptions and images can provide complementary
information to solve this task. Other approaches, such as
BUDDI [38] and ProsePose [54], address the challenge
of estimating person-person interactions. BUDDI is an
optimization-based approach that leverages diffusion model
as a prior over interacting people, while ProsePose queries
a VLM to estimate contact points on the human body sur-
face and uses these contact points to guide an optimization
process for improving human interaction.

Overall, methods like ChatPose [15] and PoseEmbroi-
der [10] are promising steps toward jointly learning the re-
lationship between vision, language, and 3D humans, but
their understanding of 3D humans remains limited, as indi-
cated by their relatively low 3D pose accuracy. Meanwhile,
SHAPY [8], BodyShapeGPT [47], and BodyTalk [53] focus
solely on exploring the relationship between SMPL body
shape and natural language. BUDDI and ProsePose are
post-processing approaches for interaction that do not di-
rectly reason using image information.

Our approach addresses the limitations of these methods
by training a single model capable of flexible prompting that
achieves state-of-the-art (SOTA) performance, not only on
standard HPS benchmarks but also on benchmarks tailored
to body shape and person-person interaction.

3. Method
Given an image I containing N people and a set of prompts,
our main goal is to recover the pose, shape, and locations of
the people in the camera space to form a coherent human-
centric 3D scene. Figure 2 shows an overview.

3.1. Promptable mesh regression

We adopt SMPL-X [45] to represent each person i in the 3D
space, including the orientation ϕi ∈ R3, local body pose
θi ∈ R22×3, shape βi ∈ R10, and translation τi ∈ R3 in the
camera space. We do not include face and hand parameters
in this work. Each human Hi is mapped to a 3D mesh with
the differentiable SMPL-X layer.

Hi = {ϕi, θi, βi, τi}. (1)

Each person can be prompted with spatial and seman-
tic prompts. Spatial prompts include a bounding box bi ∈
R2×2 (the two corners) and a segmentation mask mi ∈
Rh×w. Semantic prompts consist of text and two-person
interaction labels. The text prompt is the CLIP embedding
ti of a sentence describing the body shape. The interac-
tion prompt is a binary variable ki indicating whether two
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Figure 2. Method overview. PromptHMR estimates SMPL-X parameters for each person in an image based on various types of prompts,
such as boxes, language descriptions, and person-person interaction cues. Given an image and prompts, we utilize a vision transformer
to generate image embeddings and mask and prompt encoders to map different types of prompts to tokens. Optionally, camera intrinsics
can be embedded along with the image embeddings. The image embeddings and prompt tokens are then fed to the SMPL-X decoder. The
SMPL-X decoder is a transformer-based module that attends to both the image and prompt tokens to estimate SMPL-X parameters. Note
that the language and interaction prompts are optional, but providing them enhances the accuracy of the estimated SMPL-X parameters.

people are in close contact. While semantic prompts are op-
tional, each human needs at least one spatial prompt to be
reconstructed. Overall, the input prompts are represented as
Pi:

Pi ⊆ {bi,mi, ti, ki}
bi ∈ Pi or mi ∈ Pi

(2)

Promptable human mesh recovery (PromptHMR) is defined
as a learnable function that maps an image and a set of
prompts to a set of 3D humans

f : (I, {Pi}Ni=1) → {Hi}Ni=1. (3)

This task definition integrates all available contexts to locate
and reconstruct prompted humans in the image.

3.2. Model

Image encoder. The image is first encoded as tokens by a
vision transformer (ViT) encoder from DINOv2 [11, 42]:

F = Encoder(I), (4)

To ensure sufficient resolution for modeling humans at both
near and far distances, we use 896 × 896 images. The en-
coder is run once per frame regardless of the number of peo-
ple prompted. When camera intrinsics are provided, we add
positional encoding of the camera rays to the image tokens
to make them camera-aware [2, 14].
Mask encoder. When available, masks are first processed
by an encoder consisting of strided convolutional layers that
downsample the masks. The output mask features are added
to the image tokens. If no mask is provided, a learned “no
mask” token is added instead.

Fi = Encoderm(mi) + F. (5)

Prompt encoder. The prompt encoder consists of a set of
transformations that map different types of prompts to to-
ken vectors of the same dimension. When a prompt is not
available, it is replaced with a learned null token.

For bounding boxes, we encode bi using positional en-
coding summed with learned embeddings to form the box
prompt tokens Tbi = PE(bi), with Tbi ∈ R2×d. We de-
sign different box transformations during training to allow
the model to use different boxes as a human identifier. In
the training phase, each instance is prompted with either a
whole-body bounding box, a face bounding box, or a trun-
cated box covering part of the body. Gaussian noise is added
to both corners. At inference time, the model accepts boxes
without needing to know the box types.

Language is a natural way to supply semantic informa-
tion, and in this paper, we use language to supplement spa-
tial prompts with information on body shape. A sentence
such as “a muscular and tall male” is encoded with the CLIP
text encoder Tti = CLIP(ti), with Tti ∈ Rd. To generate
paired (image, text) data, we run SHAPY’s [8] shape-to-
attribute method on the ground truth shape parameters to
obtain shape attribute scores and randomly pick a subset of
top attributes to form a sentence.

The interaction prompt ki passes through the prompt en-
coder without modification and directly switches on-off the
cross-person attention that is described in Sec. 3.3.
SMPL-X decoder. The SMPL-X decoder appends two
query tokens Tsmpl, Tdepth with the prompt tokens Tbi, Tti to
form the person-specific prompt Ti ∈ R5×d.

Finally, we use a standard transformer decoder and two
MLP heads to produce the final output

T ′
smpl, T

′
depth = Decoder(Fi, Ti)

ϕi, θi, βi = Headsmpl(T
′
smpl)

τi = Headdepth(T
′
depth).

(6)

The transformer consists of three attention blocks.
Each block applies self-attention on the tokens, cross-
person attention (described in Sec. 3.3), and then two-way
cross-attention between the tokens and the image embed-
dings [25]. The self-attention and cross-attention with the
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image are applied to each prompted person independently.
We use separate tokens Tsmpl and Tdepth to make the location
representation invariant to the 3D human pose and shape
representation.

Regressing the location of the human in the camera space
is much more challenging than most prior work that models
humans in a cropped image space. Therefore, we do not
regress τ directly. We regress focal length normalized 2D
translation pxy ∈ R2 and inverse depth pz ∈ R, and then
transform them to τ as follows

txy =
pxy
pz

tz =
1

pz
× f

fc
τ = [txy, tz], (7)

where f is the ground truth or estimated focal length of
the image, and fc is the canonical focal length. Predicting
the normalized inverse depth follows the recent monocular
depth literature [49] and is also intuitive since the inverse
depth is linearly related to the size of the human in the im-
age. Predicting pxy is equivalent to predicting the 2D loca-
tion of the human in a normalized image plane.

3.3. Two-person interaction

We introduce promptable layers in the decoder to model
two-person interaction. We describe the case where there
are two people in the image, but the implementation can
extend to model an interacting pair in a larger group.

The promptability is modeled as a flow control with a
residual connection (Fig. 3). Specifically, if two humans
are interacting (as indicated by ki), their query tokens pass
through an additional self-attention layer; otherwise, non-
interacting humans skip this.

Applying attention to every person often creates unnec-
essary dependency in crowded scenes, and there is limited
training data for large-group scenarios. However, there is
high-quality data featuring two-person social interactions.
By making the interaction layers promptable, we mitigate
data diversity issues and increase flexibility, regardless of
the number of people in the scene.

Our proposed interaction layer uses a standard self-
attention mechanism. First, we add positional encodings to
the query tokens to distinguish the two individuals. The en-
coded tokens then go through a self-attention layer, whose
output is combined with the original tokens via a residual
connection. Our experiments demonstrate that including
these interaction layers significantly improves inter-person
pose accuracy in two-person interaction benchmarks.

3.4. PromptHMR video version

In addition to the single-image variant of PromptHMR, we
train an extended version that processes videos to estimate
human motion in world coordinates. To achieve this, we in-
troduce a simple and efficient temporal transformer module.
Given a monocular video sequence {It}Tt=0, we first run

Figure 3. SMPL-X decoder. The top row shows one attention
block in the decoder. The cross-person interaction module can be
turned on/off. The bottom row shows the cross-person attention.

PromptHMR to obtain per-subject SMPL-X decoder output
tokens T ′

smpl and T ′
depth, assuming that the subject identities

are provided with the prompts. These tokens, along with
the positional encoding of time t, are fed to a decoder-only
temporal transformer module with twelve attention blocks.
The output tokens are converted to SMPL-X parameters
ϕt, θt, βt, translation τt, and joint contact probabilities ct.
The contact probabilities indicate whether a given joint is
in contact with the ground plane similar to [50–52].

To obtain results in world coordinates, we adopt the ap-
proach from TRAM [65]. Specifically, we use DROID-
SLAM [60] and a monocular metric depth estimation
model, ZoeDepth [3], to estimate camera motion in met-
ric world coordinates. The translation parameters τt are
then transformed to world coordinates using the estimated
camera motion. To refine the human trajectory and miti-
gate foot-skating artifacts, we leverage the estimated con-
tact probabilities and run a fast postprocessing that opti-
mizes the contact joints to have zero velocity.

3.5. Losses

PromptHMR is trained with a combination of 2D and 3D
losses, following traditional HMR methods [22, 30]:

L = λ1L2D + λ2L3D + λ3LSMPL + λ4LV + λ5Lt

with each term calculated as

L2D = ||Ĵ2D −Π(J3D)||2F
L3D = ||Ĵ3D − J3D||2F

LSMPL = ||Θ̂−Θ||22
LV = ||V̂ − V ||2F
Lt = ||p̂xy − pxy||2F + ||p̂z − pz||2F

where J3D and V are the 3D joints and vertices of the
SMPL-X model, with the hat operator denoting the ground
truth. Π is the camera reprojection operator. Additionally,
on datasets with ground truth translation labels, we super-
vise the normalized translation pxy and inverse depth pz .
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4. Experiments

Datasets. We train PromptHMR with standard datasets:
BEDLAM [4], AGORA [44], 3DPW [63], COCO [33],
and MPII [37]. Following 4DHumans, we add AIC [66]
and InstaVariety [23] as in-the-wild data, with pseudo-
ground truth from CamSMPLify [43]. Additionally, we add
CHI3D [16] and HI4D [68] to enable learning two-person
interaction following the train-test splits from BUDDI [38].
Including CHI3D and HI4D does not improve performance
on other benchmarks.
Implementation. We train PromptHMR with AdamW with
a batch size of 96 images of resolution 896×896. We use
a learning rate of 1e−5 for the image encoder and 3e−5 for
the prompt encoder and the SMPL-X decoder, with a weight
decay of 5e−5. The training converges within 350K steps.
Evaluation. We evaluate camera space reconstruction ac-
curacy on 3DPW [63], EMDB [24] and RICH [20], using
MPJPE, Procrustes-aligned MPJPE (PA-MPJPE) and Per
Vertex Error (PVE) [22]. We evaluate inter-person accu-
racy on HI4D and CHI3D by Pair-PA-MPJPE, which aligns
the two people as a whole with the ground truth [38].

To evaluate world-grounded motion on EMDB with
PromptHMR video (PromptHMR-vid), we compute World-
aligned MPJPE (WA-MPJPE100), World MPJPE (W-
MPJPE100) and Root Translation Error (RTE in %) [52, 67].

4.1. Reconstruction accuracy

For camera space reconstruction, as shown in Table 1,
PromptHMR and PromptHMR-Vid demonstrate state-of-
the-art performance, matching crop-based methods while
achieving better results than other full-image methods.
PromptHMR and CameraHMR use the same training data
and have similar performance, which validates that this
prompt-based approach can achieve metrically accurate
results. For representative results, see Fig. 7, where
PromptHMR recovers coherent 3D scenes of people.

For interaction reconstruction, PromptHMR achieves
good accuracy as indicated in Table 2. Compared to BUDDI
which is also trained on CHI3D and HI4D, our method
achieves better overall accuracy on per-person and inter-
person metrics. We show qualitative results in Fig. 8. As
a monocular regression method, PromptHMR still cannot
avoid interpenetration between closely interacting people.

PromptHMR-Vid achieves SOTA performance among
methods that estimate human motion in world coordinates,
as shown in Table 4. Unlike TRAM, we estimate the joint
contact probabilities similar to [51, 52]. Therefore, we
achieve lower foot skating than TRAM, even though we
use the same metric SLAM method to transform motion
in camera space to world coordinates. Please refer to our
supplementary material (SupMat) for qualitative results of
PromptHMR-Vid.

Figure 4. Effect of box prompts. Our method remains stable with
different boxes, including noisy truncated boxes.

Figure 5. Effect of mask prompts. Results are from the same
model with different prompt inputs. Masks are better for close
interaction scenarios where boxes are ambiguous.

Figure 6. Effect of shape prompts. Compared to the baseline that
does not incorporate shape description during training and testing,
the model with shape prompts has better accuracy on HBW, espe-
cially in ambiguous images.

4.2. Effect of multimodal prompts

We conduct qualitative and quantitative evaluations of the
multimodal prompts. For efficient ablation, we train models
with 448×448 input resolution and select the best model
within 150K steps of training.

For box prompts, as shown in rows 3-4 of Fig. 7, our
method is able to take a combination of different boxes
from in-the-wild images to reconstruct crowded scenes.
Figure 4 also shows an example with varying box inputs.
PromptHMR remains stable when the boxes change and
uses full image context to reconstruct the human even when
the boxes are truncated.

The mask prompt is more effective than boxes when peo-
ple closely overlap (Fig. 5), as boxes are ambiguous in such
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3DPW (14) EMDB (24) RICH (24)

Models PA-MPJPE MPJPE PVE PA-MPJPE MPJPE PVE PA-MPJPE MPJPE PVE
cr

op
pe

d
im

ag
e CLIFF⋆ [31] 43.0 69.0 81.2 68.3 103.3 123.7 68.1 103.3 128.0

HMR2.0a [17] 44.4 69.8 82.2 61.5 97.8 120.0 60.7 98.3 120.8
TokenHMR [13] 44.3 71.0 84.6 55.6 91.7 109.4 – – –
CameraHMR [43] 35.1 56.0 65.9 43.3 70.2 81.7 34.0 55.7 64.4

fu
ll

im
ag

e BEV [58] 46.9 78.5 92.3 70.9 112.2 133.4 – – –
Multi-HMR⋆ [2] 45.9 73.1 87.1 50.1 81.6 95.7 46.3 73.8 83.0
PromptHMR⋆ 36.6 58.7 69.4 41.0 71.7 84.5 37.3 56.6 65.5

vi
de

o

WHAM [52] 37.5 59.8 71.5 52.0 81.6 96.9 44.3 80.0 91.2
TRAM [65] 35.6 59.3 69.6 45.7 74.4 86.6 - - -
GVHMR [51] 37.0 56.6 68.7 44.5 74.2 85.9 39.5 66.0 74.4
PromptHMR-Vid 35.5 56.9 67.3 40.1 68.1 79.2 37.0 57.4 65.8

Table 1. Comparison of mesh reconstruction on the 3DPW, EMDB and RICH datasets, with the number of joints in parenthesis. ⋆
denotes methods that use ground truth focal length during inference. Note that we remove the test-time flip augmentation from all of the
video methods to ensure a fair comparison. All metrics are in mm.

HI4D (14) CHI3D (14)

Models PA-MPJPE MPJPE Pair-PA-MPJPE PA-MPJPE MPJPE Pair-PA-MPJPE

BEV∗ [58] 81 – 136 51 – 96
BUDDI [38] 73 – 98 47 – 68
Multi-HMR∗ [2] 49.8 67.8 80.6 31.7 54.0 100.0
PromptHMR∗ 39.2 63.9 78.1 27.2 48.0 58.5
PromptHMR 30.1 39.6 39.5 24.7 46.5 45.3

Table 2. Comparison on interaction reconstruction.
PromptHMR is more accurate in per-person and inter-person
accuracy. ∗ denote a method or baseline is not trained on HI4D
or CHI3D. All metrics are in mm. The impact of HI4D and the
interaction prompt are evaluated in Table 5.

Train
w/ text

Test
w/ text

HBW

Height Chest Waist Hip P2P-20k

× × 69 51 88 63 26√
× 69 48 86 60 26√ √

62 43 76 58 24

Table 3. Ablation of shape prompts using text. Training with
shape prompts improves shape accuracy. Using shape prompts
during inference further improves shape accuracy. The ablation
study is conducted with a 448×448 model. Errors are in mm.

cases. Ablation of HI4D (rows 1-2 in Tab. 5) shows that
using masks as the spatial prompt improves accuracy.

Experiments on the HBW validation set (Tab. 3) show
that text prompts effectively improve shape accuracy when
used during both training and testing. Moreover, training
with shape descriptions alone provides an accuracy boost
even if prompts are not given at test time. As illustrated in
Fig. 6, text prompts provide notable improvements, espe-
cially when large perspective effects create ambiguity.

EMDB-2 (24)

Models WA-MPJPE100 W-MPJPE100 RTE Jitter Foot Skating

WHAM [52] 135.6 354.8 6.0 22.5 4.4
TRAM [65] 76.4 222.4 1.4 18.5 23.4

GVHMR [51] 111.0 276.5 2.0 16.7 3.5
PromptHMR-Vid 71.0 216.5 1.3 16.3 3.5

Table 4. Evaluation of motion in world coordinates.
PromptHMR-Vid combined with metric SLAM from TRAM [65]
surpasses SOTA methods at predicting human motion in world co-
ordinates.

Trained with HI4D (14)

Mask Interaction HI4D PA-MPJPE MPJPE Pair-PA-MPJPE

× × × 47.0 71.4 87.2√
× × 43.4 60.5 83.0

×
√

× 43.7 61.3 73.0
× ×

√
36.3 49.4 52.6√ √ √
36.5 47.1 47.9

Table 5. Ablation on interaction prompt. The interaction mod-
ule improves inter-person reconstruction metrics Pair-PA-MPJPE
on HI4D, especially when the method does not include HI4D in
training. Ablation is conducted with a 448×448 model. All met-
rics are in mm.

For interaction prompts, we show an ablation in Ta-
ble 5. The proposed interaction module is beneficial and
largely improves inter-person accuracy on HI4D even with-
out HI4D training, indicating out-off-domain generaliza-
tion. When trained on HI4D, the interaction module does
not improve per-person PA-MPJPE but still improves inter-
person Pair-PA-MPJPE. Please refer to our SupMat for
more qualitative results on interaction prompts.
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Figure 7. Qualitative comparison: Multi-HMR vs PromptHMR . Our model can recover coherent 3D scenes of people. In crowded
scenes, face detection provides reliable box prompts for our model. Please zoom in to see the details.

Figure 8. Qualitative results. PromptHMR recovers coherent two-person close interaction. Despite suffering from some interpenetration,
the relative positions of the interacting people are accurately recovered. More examples are provided in the Supplementary.

5. Limitations
We see PromptHMR as a step towards a holistic percep-
tion model for 3D humans, but several limitations need to
be addressed in future work. Currently, the shape descrip-
tion and interaction prompts are not automatically gener-
ated and need to be supplied by the user. Future work should
explore how to effectively integrate our promptable model
with VLMs to automate prompting. We show how seman-
tic prompts can improve reconstruction accuracy, but many
other potential types of side information such as action de-
scriptions, 3D scene context, or body measurements may

provide additional benefits in different scenarios.

6. Conclusion
We have presented PromptHMR, a promptable HPS esti-
mation approach that leverages full image context with spa-
tial and semantic prompts to infer 3D humans in the scene.
Our method demonstrates state-of-the-art accuracy across
diverse benchmarks and generalizes well in the wild. Our
experiments show that incorporating diverse input infor-
mation through flexible prompting enables robustness and
adaptability in challenging scenarios.
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[47] Baldomero R. Árbol and Dan Casas. BodyShapeGPT:
SMPL body shape manipulation with LLMs. In European
Conference on Computer Vision Workshops, 2024. 3

[48] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision, 2021. 2

[49] Rene Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 44(3):1623–1637, 2022. 5

[50] Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang,
Srinath Sridhar, and Leonidas J Guibas. HUMOR: 3D hu-
man motion model for robust pose estimation. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 11488–11499, 2021. 5

[51] Zehong Shen, Huaijin Pi, Yan Xia, Zhi Cen, Sida Peng,
Zechen Hu, Hujun Bao, Ruizhen Hu, and Xiaowei Zhou.
World-grounded human motion recovery via gravity-view
coordinates. In SIGGRAPH Asia, 2024. 3, 6, 7

[52] Soyong Shin, Juyong Kim, Eni Halilaj, and Michael J Black.
WHAM: Reconstructing world-grounded humans with accu-
rate 3D motion. arXiv preprint arXiv:2312.07531, 2023. 3,
5, 6, 7

[53] Stephan Streuber, M Alejandra Quiros-Ramirez, Matthew Q
Hill, Carina A Hahn, Silvia Zuffi, Alice O’Toole, and
Michael J Black. Body talk: Crowdshaping realistic 3D
avatars with words. ACM TOG, 35(4):1–14, 2016. 3

[54] Sanjay Subramanian, Evonne Ng, Lea Müller, Dan Klein,
Shiry Ginosar, and Trevor Darrell. Pose priors from language
models. arXiv preprint arXiv:2405.03689, 2024. 3

[55] Qingping Sun, Yanjun Wang, Ailing Zeng, Wanqi Yin, Chen
Wei, Wenjia Wang, Haiyi Mei, Chi-Sing Leung, Ziwei Liu,
Lei Yang, and Zhongang Cai. AiOS: All-in-one-stage ex-
pressive human pose and shape estimation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, page 1834–1843, 2024. 3

[56] Yu Sun, Yun Ye, Wu Liu, Wenpeng Gao, Yili Fu, and Tao
Mei. Human mesh recovery from monocular images via a
skeleton-disentangled representation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
2019. 3

[57] Yu Sun, Qian Bao, Wu Liu, Yili Fu, Michael J Black, and
Tao Mei. Monocular, one-stage, regression of multiple 3D
people. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 11179–11188, 2021. 3

[58] Yu Sun, Wu Liu, Qian Bao, Yili Fu, Tao Mei, and Michael J
Black. Putting people in their place: Monocular regression
of 3D people in depth. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages
13243–13252, 2022. 7

[59] Yu Sun, Qian Bao, Wu Liu, Tao Mei, and Michael J
Black. TRACE: 5D temporal regression of avatars with
dynamic cameras in 3D environments. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8856–8866, 2023. 3

[60] Zachary Teed and Jia Deng. DRPOID-SLAM: Deep visual
slam for monocular, stereo, and RGB-D cameras. Advances
in Neural Information Processing Systems, 34:16558–16569,
2021. 3, 5

[61] Zachary Teed, Lahav Lipson, and Jia Deng. Deep patch vi-
sual odometry. Advances in Neural Information Processing
Systems, 36, 2024. 3

[62] Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel
Cohen-or, and Amit Haim Bermano. Human motion diffu-
sion model. In International Conference on Learning Repre-
sentations, 2023. 3

[63] Timo Von Marcard, Roberto Henschel, Michael J Black,
Bodo Rosenhahn, and Gerard Pons-Moll. Recovering ac-
curate 3d human pose in the wild using imus and a moving
camera. In European Conference on Computer Vision, pages
601–617, 2018. 2, 6

[64] Yufu Wang and Kostas Daniilidis. ReFit: Recurrent fit-
ting network for 3D human recovery. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 14644–14654, 2023. 2

[65] Yufu Wang, Ziyun Wang, Lingjie Liu, and Kostas Daniilidis.
TRAM: Global trajectory and motion of 3d humans from in-
the-wild videos. In European Conference on Computer Vi-
sion, 2024. 2, 3, 5, 7

[66] Jiahong Wu, He Zheng, Bo Zhao, Yixin Li, Baoming
Yan, Rui Liang, Wenjia Wang, Shipei Zhou, Guosen Lin,
Yanwei Fu, et al. AI challenger: A large-scale dataset
for going deeper in image understanding. arXiv preprint
arXiv:1711.06475, 2017. 6

[67] Vickie Ye, Georgios Pavlakos, Jitendra Malik, and Angjoo
Kanazawa. Decoupling human and camera motion from
videos in the wild. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
21222–21232, 2023. 3, 6

[68] Yifei Yin, Chen Guo, Manuel Kaufmann, Juan Jose Zarate,
Jie Song, and Otmar Hilliges. Hi4D: 4D instance seg-
mentation of close human interaction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17016–17027, 2023. 2, 3, 6

[69] Ye Yuan, Umar Iqbal, Pavlo Molchanov, Kris Kitani, and
Jan Kautz. GLAMR: Global occlusion-aware human mesh
recovery with dynamic cameras. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11038–11049, 2022. 3

[70] Hongwen Zhang, Yating Tian, Xinchi Zhou, Wanli Ouyang,
Yebin Liu, Limin Wang, and Zhenan Sun. PyMAF: 3D hu-
man pose and shape regression with pyramidal mesh align-
ment feedback loop. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 11446–
11456, 2021. 2

1158



[71] Yizhou Zhao, Tuanfeng Yang Wang, Bhiksha Raj, Min Xu,
Jimei Yang, and Chun-Hao Paul Huang. Synergistic global-
space camera and human reconstruction from videos. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1216–1226, 2024. 3

1159


	. Introduction
	. Related Work
	. Method
	. Promptable mesh regression
	. Model
	. Two-person interaction
	. PromptHMR video version
	. Losses

	. Experiments
	. Reconstruction accuracy
	. Effect of multimodal prompts

	. Limitations
	. Conclusion

