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Abstract

This paper proposes a new autoregressive model as an
effective and scalable monocular depth estimator. Our
idea is simple: We tackle the monocular depth estimation
(MDE) task with an autoregressive prediction paradigm,
based on two core designs. First, our depth autoregressive
model (DAR) treats the depth map of different resolutions
as a set of tokens, and conducts the low-to-high res-
olution autoregressive objective with a patch-wise causal
mask. Second, our DAR recursively discretizes the entire
depth range into more compact intervals, and attains the
coarse-to-fine granularity autoregressive objective
in an ordinal-regression manner. By coupling these two au-
toregressive objectives, our DAR establishes new state-of-
the-art (SOTA) on KITTI and NYU Depth v2 by clear
margins. Further, our scalable approach allows us to scale
the model up to 2.0B and achieve the best RMSE of 1.799 on
the KITTI dataset (5% improvement) compared to 1.896
by the current SOTA (Depth Anything). DAR further show-
cases zero-shot generalization ability on unseen datasets.
These results suggest that DAR yields superior performance
with an autoregressive prediction paradigm, providing a
promising approach to equip modern autoregressive large
models (e.g., GPT-4o) with depth estimation capabilities.
Project page: https://depth-ar.github.io/.

1. Introduction

The Monocular Depth Estimation (MDE) task aims to pre-
dict per pixel depth from a single RGB image, which
plays a crucial role in scene understanding and reconstruc-
tion [9, 21]. This task has broad applications, including
autonomous driving [58], robotics [23], augmented real-
ity [37], medical endoscopic surgery [36], etc. Most deep
learning (DL) based methods typically followed top-down-
bottom-up encoder-decoder architectures [2, 3, 11, 12, 22,
25, 27, 31, 34, 38, 47, 62, 64, 66], which extract and fuse
low-level and high-level features for depth estimation.

Depth AutoRegressive Model (DAR)
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Figure 1. We exploit two “order” properties of the MDE task that
can be transformed into two autoregressive objectives. (a) Res-
olution autoregressive objective: The generation of depth maps
can follow a resolution order from low to high. For each step of
the resolution autoregressive process, the Transformer predicts the
next higher-resolution token map conditioned on all the previous
ones. (b) Granularity autoregressive objective: The range of
depth values is ordered, from 0 to specific max values. For each
step of the granularity autoregressive process, we increase expo-
nentially the number of bins (e.g., doubling the bin number), and
utilize the previous predictions to predict a more refined depth with
a smaller and more refined granularity. Our proposed DAR aims
to perform these two autoregressive processes simultaneously.

Recently, autoregressive (AR) architectures have demon-
strated strong generalization capabilities and significant
scalability across a multitude of tasks: (i) Generalization:
AR models achieve remarkable zero- and few-shot perfor-
mance on previously unseen datasets, and exhibit substan-
tial flexibility in adapting to diverse downstream tasks [7,
42]. (ii) Scalability: As suggested by scaling laws [17, 24],
AR models allow flexible model size scaling for optimal
performance across various practical applications. Recent
advances in large language models (LLMs) [7, 41, 42] and
multi-modal large language models (MLLMs) (e.g., GPT-4
and LLaVA [1, 35]), built upon AR architectures, achieved
outstanding results in a wide range of tasks, including text-
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Figure 2. RMSE performances (↓) vs. model sizes on the KITTI
dataset. Our DAR shows strong scalability and achieves better
performance-efficiency trade-off among cutting-edge methods.

to-image generation [13, 28, 53], video generation [60, 61],
object detection [10] and tracking [59], among others.

This naturally leads to an interesting question: Can an
autoregressive model be developed for the MDE task?

However, autoregressive modeling relies on a well-
organized sequential data formation, where each step’s pre-
diction is logically connected to the previous steps. While
this sequential dependency may be common in other tasks,
it is not intuitively align with the MDE requirements, where
meaningful sequential prediction targets are less apparent.

In this paper, we introduce a simple, effective, and scal-
able depth autoregressive (DAR) framework for MDE. Our
new approach leverages two key ordering properties of
MDE, and we incorporate them as autoregressive objec-
tives, as shown in Fig. 1. The first property is “depth map
resolution”: We generate depth maps at varying resolu-
tions, ordered from low to high, and treat the sequences
of depth maps of different resolutions as prediction tar-
gets [53]. This approach reframes depth map genera-
tion as a low-to-high resolution autoregressive objec-
tive, where each step generates a higher-resolution depth
map based on previous predictions. The second property
is “depth values”, which inherently exist in a continuous
space. Typically, known methods discretize the depth val-
ues into several intervals (or bins) to formulate an ordi-
nal regression task [14]. By further discretizing the depth
range into progressively finer intervals, we recast MDE as a
coarse-to-fine autoregressive objective.

For the resolution autoregressive objective, we develop
a depth autoregressive Transformer that predicts the next-
resolution depth map based on its prefix predictions with
the patch-wise causal mask. To achieve the granularity au-
toregressive objective, we propose a novel binning strategy
called Multiway Tree Bins (MTBin), which queries the cor-
responding bin using prior depth predictions and then re-

cursively refines each bin into sub-bins with error tolerance
for subsequent autoregressive steps. Importantly, these bins
are used to not only compute the final depth values but also
embed granularity information into the latent token maps,
effectively guiding the depth map generation process.

Comprehensive experiments show that our DAR
achieves state-of-the-art (SOTA) performance on the
KITTI and NYU Depth v2 datasets. With a similar
model size, DAR outperforms current SOTA (Depth Any-
thing) in all the metrics, particularly by 3% in the RMSE
metric on KITTI. DAR also exhibits scaling laws akin to
those witnessed in LLMs, and its size can be easily scaled
up to 2.0B, which establishes a new SOTA performance,
as shown in Fig. 2. Lastly, we showcase DAR’s zero-shot
generalization capabilities on unseen datasets. These results
further validate the generalizability and scalability of DAR.

The contributions of this work are multi-fold:
(1) To the best of our knowledge, we introduce the first

autoregressive model for monocular depth estimation
(MDE), called DAR — a simple, effective, and scalable
framework. Our key insight lies in transforming two or-
dered properties in MDE, depth map resolution and gran-
ularity, into autoregressive objectives.

(2) We reformulate the low- and high-level feature fu-
sion process in existing encoder-decoder models as a
low-to-high resolution autoregressive objective. We
introduce a new Depth autoregressive Transformer that
uses the patch-wise causal mask and progressively gener-
ates depth maps at increasing resolutions, conditioned on
tokens from the input RGB images.

(3) We propose a novel binning strategy called multiway tree
bins (MTBin), tailored for the granularity autoregressive
objective, which transforms MDE tasks into an autore-
gressive bin sequence prediction task. By using Bins In-
jection strategy, DAR effectively connects the resolution
and granularity autoregressive processes.

(4) DAR establishes new state-of-the-art performance
on the KITTI and NYU Depth v2 datasets, and
exhibits stronger zero-shot capability than Depth
Anything [63]. A series of DAR models, ranging
from 440M to 2.0B parameters, is developed based on
decoder-only Transformer [42, 55]. The largest model
achieves 0.205 RMSE and 0.982 δ1 on NYU Depth
v2, largely outperforming the existing methods.

2. Related Work
Monocular Depth Estimation (MDE). Monocular Depth
Estimation has a long development of methods, ranging
from traditional methods to deep learning (DL) techniques.
Traditional methods relied on handcrafted features [20, 33]
and used Markov Random Fields [46] to predict depth
maps. However, they suffered limitations in handling com-
plex scenes. Modern DL techniques approached the prob-
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Figure 3. An overview of DAR. We begin with encoding the input RGB images into image tokens as the context condition. At each step,
DAR Transformer with the patch-wise causal mask performs autoregressive predictions, that is, it allows the input token map (upsampled
from the previous resolution token map rk−1) to interact with only the prefix tokens and global image feature tokens for the next-resolution
token map modeling. The output latent tokens are then sent to the ConvGRU module, which injects the prompts of new refined bin
candidates ck (generated by MTBin from the previous prediction D̃k−1) for further granularity guidance and generates the next-resolution
token map rk. The new depth map D̃k is generated by a linear combination of the next-granularity bin candidates ck and softmax value
pk of the next-resolution token map, achieving concurrently a resolution and granularity autoregressive evolution.

lem as a dense regression problem. Successive improve-
ments mainly came from three fronts: model architecture,
data-driven, and language guidance. (1) Model architec-
ture: The main improvement came from the transforma-
tion of model backbones, from CNNs [12, 27, 34, 38, 64]
to Transformers [2, 3, 31, 62] to the current diffusion
models [11, 22, 25, 47, 66]. (2) Data-driven methods:
The milestone data-driven method MiDas [43] proposed to
train well-generalized models on large amounts of data by
mixing different datasets, which achieved excellent zero-
shot transfer performance. ZoeDepth [6] and Depth Any-
thing [63] further leveraged the benefits of large-scale unla-
beled data (62M) via self-supervised learning to obtain out-
standing zero-shot generalization. (3) Language-guided
methods: Benefited from the rich visual and text informa-
tion of CLIP and other language-vision pre-training models,
VPD and other methods [8, 39, 65, 66] used language de-
scription to facilitate depth estimation and achieved SOTA
results on standard depth estimation datasets.
MDE as Ordinal Regression. Another main line of work
is to treat MDE as an ordinal regression task [16, 18], which
aims to predict labels on an ordinal scale. By discretizing
the depth space into several bins, DORN [14] first proposed
an ordinal regression network to predict discrete depth val-
ues. Since then, many studies [4, 32, 49] developed various
depth binning strategies to discretize depth range and solve

MDE as ordinal regression. In particular, Ord2Seq [56]
treated ordinal regression as a label sequence task, and pro-
posed an autoregressive network to predict the more refined
labels progressively. Inspired by this, we transform MDE
as an autoregressive prediction task from a bin perspective
to achieve more granular prediction progressively.
Autoregressive Visual Generation. Many recent meth-
ods [13, 28, 45] explored the effectiveness of autoregressive
models in the visual domain. VQGAN [13] proposed to use
VQVAE [54] to conduct the autoregressive process in the la-
tent space. It employed GPT-2 decoder-only Transformer to
generate tokens in the raster-scan order. VQVAE-2 [45] and
RQ-Transformer [28] also followed this raster-scan manner,
but used extra scales or stacked codes. VAR [53] proposed
text-to-image autoregressive generation via next-scale pre-
diction, which transforms the entire image into a set of to-
kens and treats them as input to predict the next-scale target
image. Inspired by this, we transform MDE as an autore-
gressive prediction task from a scale perspective to achieve
larger resolution predictions progressively.

3. Method
3.1. Preliminaries
Ordinal Regression-based MDE. Some methods [4, 14]
tackled MDE in an ordinal regression fashion, learning the
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Figure 4. Illustrating the patch-wise causal mask for ensuring that
the current token map can interact only with tokens from itself and
the prefix token maps.

probabilistic distribution on each pixel and using a linear
combination with depth candidates as the final depth pre-
diction. Suppose we divide the depth range [L,R] into N

bins. Then the i-th bin’s center ci is L+ (i−0.5)
N ∗ (R−L).

For each pixel, the model will predict N Softmax scores
{p1,p2, . . . ,pN}, referring to the probabilities over the N
bins. The final predicted depth value D̃ is calculated from
the linear combination of Softmax scores and bin centers at
this pixel, as:

D̃ =

N∑
i=1

cipi. (1)

3.2. Overview
We propose a new Depth AutoRegressive (DAR) modeling
approach to explore the potential of autoregressive models
in dealing with the depth estimation task. We define the
task as follows: Given an input RGB image I ∈ R3×H×W ,
where H and W are the height and width of I respectively,
predict the depth map D̃ of I. Our model predicts the depth
maps of different scales {D̃1, D̃2, . . . , D̃K} progressively in
an autoregressive process. That is, each depth map at step k
is conditioned by the previous predictions, as:

p(D̃1, D̃2, . . . , D̃K) =

K∏
k=1

pθ(D̃k | D̃1, D̃2, . . . , D̃k−1). (2)

Our proposed autoregressive model DAR involves optimiz-
ing pθ(D̃k | D̃1, D̃2, . . . , D̃k−1) over a dataset, and finally
predicts depth map D̂ = D̃K . Fig. 3 shows an overview of
our proposed DAR. DAR involves two autoregressive ob-
jectives with ordinal properties: resolution and granular-
ity. The former, resolution autoregressive objective, aims
to predict the depth map from low resolution to high resolu-
tion; the latter, granularity autoregressive objective, aims to
predict the depth map from coarse granularity to fine gran-
ularity. Specifically, DAR consists of four parts:
• Image Encoder: We apply an Image Encoder to extract

RGB image features, which extracts image features into
imaging tokens with latent representations.

• DAR Transformer: Our DAR Transformer can progres-
sively predict different resolution token maps conditioned

…
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Figure 5. A schematic diagram of the multiway tree bins strategy.

on extracted RGB imaging tokens via the patch-wise
causal mask.

• Multiway Tree Bins (MTBin): We develop a Multiway
Tree Bins strategy to transform the depth range of each
pixel into different granularity (number) bins.

• Bins Injection: Bins Injection utilizes the bin candidates’
information to guide the refinement of the latent features
of the depth token maps.

3.3. Resolution Autoregressive Objective
This section elaborates on our DAR Transformer with the
patch-wise causal attention mask for the resolution autore-
gressive objective.
DAR Transformer. Our DAR Transformer follows the
vanilla architecture in [55], composed of Multi-headed Self-
Attention (MSA), Layer Normalization (LN), and Multi-
headed Cross-Attention (MCA) layers with residual con-
nections, aiming to predict the logits sequence of differ-
ent scale. Unlike text-to-image models that use class labels
as the condition, depth estimation is mainly based on input
RGB image features. Thus, we take the image features X
as the condition to control depth estimation. At each step
k, we first upsample the token map rk−1 of the previous
step to the next resolution as the input token map ykin. The
DAR Transformer takes ykin as input query and sends it to
the MSA and MCA layers to finally produce the logits ykout,
where MSA takes the previous token maps y1:kin to compute
keys and values via the patch-wise causal attention mask,
and MCA takes image features X for attention calculation.
We formulate the process at time step k as:

yk = Upsampling(rk−1),

ykhidden = LN(MSA(ykWQ; y1:kWK ; y1:kWV ;Mask)),

ykout = LN(MCA(ykhidden;X)),
(3)

where WQ, WK , and WV are weight matrices for comput-
ing queries, keys, and values, and Mask denotes the patch-
wise causal attention mask tailored for the next-resolution
autoregressive paradigm (to be discussed below). The log-
its ykout are then used to generate a latent token map rk of
step k guided by the Bins Injection module (to be discussed
below). During this process, DAR can integrate previous
knowledge, global image features, and bin candidate infor-
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Table 1. Model sizes and architecture configurations of DAR.

Model Model Size Layers Hidden Size Heads

DAR-Small 440M 5 1024 4
DAR-Base 1B 9 2048 8
DAR-Large 2B 11 3072 12

mation to accommodate the detailed feature requirements
for generating a higher-resolution depth map.
Patch-wise Causal Attention Mask. Note that to achieve
“next-resolution” prediction, we adopt a patch-wise causal
attention mask that treats the entire token map as a merged
patch-wise token, as shown in Fig. 4. This novel mask can
ensure that each token of yk can interact only with its prefix
tokens belonging to y≤k and other tokens within yk.

3.4. Granularity Autoregressive Objective
To achieve the autoregressive objective on granularity, we
introduce two core modules: Multiway Tree Bins (MTBin)
and Bins Injection.
Multiway Tree Bins (MTBin) Strategy. This strategy
aims to use the previous depth map’s prediction to generate
smaller bins for the next step’s finer-grained depth predic-
tions. Instead of using a fixed number of bins with equal-
size intervals, MTBin recursively searches for more high-
quality depth by progressively reducing the search range, as
illustrated in Fig. 5. Assuming that at step k − 1, the depth
range is divided into N bins in the uniform space, as:

[b1
k−1,b

2
k−1, . . . ,b

N+1
k−1 ], (4)

where bi
k−1 represents the left boundary of the i-th bin in

step k − 1, except bN+1
k−1 represents the right boundary of

the N -th bin. Suppose the predicted depth D̃k−1(x) for a
pixel x lies in the t-th target bin [bt

k−1,b
t+1
k−1], that is:

bt
k−1 ≤ D̃k−1(x) ≤ bt+1

k−1. (5)

Then MTBin will recursively divide this bin into more fine-
grained sub-bins, and update the depth range. However, the
ground truth may fall outside of the target bin, due to depth
prediction error. Thus, to maintain the model’s error toler-
ance, the new depth range first will be expanded to adjacent
bins [bt−1

k−1,b
t+2
k−1], which is then split into sub-bins in the

uniform space. This process can be formulated as:

L =
b
min{t+2,N+1}
k−1 − b

max{t−1,1}
k−1

N
, (6)

bi
k = bt−1

k−1 + (i− 1) · L, i = 1, 2, . . . , N, (7)

where min{t+2, N +1} and max{t− 1, 1} are for avoid-
ing out-of-right/left boundaries. Since this splitting process
looks like a multiway tree, we call this concept Multiway
Tree Bins. Each pixel’s decision process is unique, ranging
from coarse to fine granularity progressively. These sub-
bins will serve as new bin candidates to further guide the

modeling of depth features via Bins Injection (discussed be-
low) and perform the linear combination with the Softmax
values of the token maps predicted by the model to obtain
finer-grained depth maps. Specifically, we can take the bin
centers as the depth candidates at step k, formulated as:

cik =
bi
k + bi+1

k

2
, i = 1, 2, . . . , N, (8)

where ci represents the i-th bin center (depth candidate).
When we obtain the per-pixel Softmax values of rk, i.e., the
probabilistic distribution pk associated with depth candi-
dates, we compute the final depth via a linear combination:

D̃k(x) =

N∑
i=1

cik · pi
k (x) , (9)

where D̃k(x) and pi
k(x) represent the predicted depth and

i-th depth candidate probability of pixel x at autoregressive
step k, respectively. Notably, at first we initialize the full
depth range [dmin, dmax] into N bins in the uniform space:

bi
1 = dmin + (i− 1) · L, i = 1, 2, . . . , N, (10)

where bi
1 represents the left boundary of the i-th bin at step

1, N is 16 by default, [dmin, dmax] are [0.1, 10] and [0.1,
80] for NYU Depth V2 and KITTI, respectively, and L
denotes the bin width that is equal to dmax−dmin

N .
Bins Injection. Bins Injection module aims to utilize the
new valid depth range and bin candidates to guide the mod-
eling of depth features. First, we project the depth candi-
dates ck into the feature space via 3×3 convolutional layers.
Then, the obtained bin features fkbin as the context, are used
to further guide the output features of the DAR Transformer
via a ConvGRU [52] module. We formulate this process as:

fkbin = Conv3×3(c
k), (11)

rk = ConvGRU(yk
out; f

k
bin). (12)

3.5. Other Details
Image Encoder. To ensure a fair comparison with existing
methods, we choose ViT as the Image Encoder (which is the
same as Depth Anything). The conditioned image feature
tokens are obtained by aggregating the feature maps from
different layers of the Image Encoder, by bringing them all
to 1/8 resolution of the input image, resulting in a token map
of size 1536×H/8×W/8, where H and W are the height
and width of the input RGB image.
Loss Function. Since the ground-truth depth map has miss-
ing values, we cannot resize the ground-truth to different
resolutions. Thus, we upsample all the predicted depth
maps to the same size of the ground-truth, and calculate and
leverage the scaled Scale-Invariant Loss:

L =

K∑
k=1

α

√√√√ 1

|T|
∑
x∈T

(gk (x))
2 − β

|T|2

(∑
x∈T

gk (x)

)2

, (13)
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Table 2. Results on the indoor NYU Depth v2 dataset. † Data-driven methods which use a pretrained encoder on a large amount of data.

Method Encoder Model Size Lower is better ↓ Higher is better ↑
Abs Rel RMSE Sq Rel log10 δ1 δ2 δ3

Eigen et al. [12] ResNet-101 45M 0.158 0.641 - - 0.769 0.950 0.988
DORN [14] ResNet-101 45M 0.115 0.509 - 0.051 0.828 0.965 0.992
BTS [30] DenseNet-161 20M 0.110 0.392 0.066 0.047 0.885 0.978 0.994
AdaBins [4] E-B5+mini-ViT 40M 0.103 0.364 - 0.044 0.903 0.984 0.997
P3Depth [38] ResNet-101 45M 0.104 0.356 - 0.043 0.904 0.988 0.998
DPT [44] VIT-L 343M 0.110 0.357 0.045 0.904 0.988 0.998
LocalBins [5] E-B5 30M 0.099 0.357 - 0.042 0.907 0.987 0.998
NeWCRFs [64] Swin-Large 270M 0.095 0.334 0.045 0.041 0.922 0.992 0.998
BinsFormer [32] Swin-Large 380M 0.094 0.330 - 0.040 0.925 0.991 0.997
PixelFormer [2] Swin-Large 365M 0.090 0.322 - 0.039 0.929 0.991 0.998
VA-DepthNet [34] Swin-Large 262M 0.086 0.304 0.043 0.039 0.929 0.991 0.998
IEBins [49] Swin-Large 273M 0.087 0.314 0.040 0.038 0.936 0.992 0.998
NDDepth [48] Swin-Large 393M 0.087 0.311 0.041 0.038 0.936 0.991 0.998
DCDepth[57] Swin-Large 259M 0.085 0.304 0.039 0.037 0.940 0.992 0.998
WorDepth [65] Swin-Large 350M 0.088 0.317 - 0.038 0.932 0.992 0.998
VPD [66] ViT-L 600M 0.069 0.254 0.030 0.027 0.964 0.995 0.999
EcoDepth [39] ViT-L 954M 0.059 0.218 0.013 0.026 0.978 0.997 0.999
ZoeDepth† [6] ViT-L 343M 0.077 0.282 - 0.033 0.951 0.994 0.999
Depth Anything† [63] ViT-L 343M 0.063 0.235 0.020 0.026 0.975 0.997 0.999
DAR-Small ViT-L 440M 0.059 0.217 0.013 0.026 0.979 0.997 0.999
DAR-Base ViT-L 1.0B 0.058 0.214 0.013 0.026 0.980 0.997 0.999
DAR-Large ViT-L 2.0B 0.056 0.205 0.011 0.024 0.982 0.998 1.000

OursEcoDepthImage Depth AnythingGround Truth

Figure 6. Qualitative results on the NYU Depth V2 dataset. A brighter color denotes a closer distance.

where gk(x) = logD̃k(x)− logDgt(x), K is the maximum
number of steps and is set to 5, T represents the set of pixels
having valid ground-truth values, and α and β are set to 10
and 0.85 based on [30].

4. Experiments

4.1. Datasets and Evaluation Metrics

Scaling Up Setting. Following [1, 17, 19, 24], we scale the
model up with different sizes of the DAR Transformer. The

configurations are shown in Table 1.

Implementation Details. Our model is implemented on
the PyTorch platform. For optimization, the AdamW opti-
mizer [26] is used with an initial learning rate of 3× 10−5.
We first linearly increase the learning rate to 5× 10−4, and
then linearly decrease it across the training iterations. The
mini-batch size is 16. We train our model for 25 epochs for
both the KITTI and NYU Depth v2 datasets. In each
step, the number of new bins is N = 16. For the DAR-
Base model, each epoch takes ∼30 minutes to train using 8
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Table 3. Results on the outdoor KITTI dataset. † Data-driven methods which use a pretrained backbone on a large amount of data.

Method Encoder Model Size Lower is better ↓ Higher is better ↑
Abs Rel RMSE Sq Rel RMSElog δ1 δ2 δ3

Eigen et al. [12] ResNet-101 45M 0.203 6.307 1.517 0.282 0.702 0.898 0.967
DORN [14] ResNet-101 45M 0.072 2.727 0.307 0.120 0.932 0.984 0.994
BTS [30] DenseNet-161 20M 0.059 2.756 0.241 0.096 0.956 0.993 0.998
AdaBins [4] E-B5+mini-ViT 40M 0.067 2.960 0.190 0.088 0.949 0.992 0.998
DPT [44] VIT-L 343M 0.060 2.573 - 0.092 0.959 0.995 0.996
P3Depth [38] ResNet-101 45M 0.071 2.842 0.270 0.103 0.953 0.993 0.998
NeWCRFs [64] Swin-Large 270M 0.052 2.129 0.155 0.079 0.974 0.997 0.999
BinsFormer [32] Swin-Large 380M 0.052 2.098 0.151 0.079 0.974 0.997 0.999
PixelFormer [2] Swin-Large 365M 0.051 2.081 0.149 0.077 0.976 0.997 0.999
VA-DepthNet [34] Swin-Large 262M 0.050 2.093 0.148 0.076 0.977 0.997 0.999
IEBins [49] Swin-Large 273M 0.050 2.011 0.142 - 0.978 0.998 0.999
iDisc [40] Swin-Large 263M 0.050 2.067 0.145 0.077 0.977 0.997 0.999
DCDepth [57] Swin-Large 259M 0.051 2.044 0.145 0.076 0.977 0.997 0.999
WorDepth [65] Swin-Large 350M 0.049 2.039 - 0.074 0.979 0.998 0.999
EcoDepth [39] ViT-L 954M 0.048 2.039 0.139 0.074 0.979 0.998 1.000
ZoeDepth† [6] ViT-L 343M 0.054 2.440 0.189 0.083 0.977 0.996 0.999
Depth Anything† [63] ViT-L 343M 0.046 1.896 - 0.069 0.982 0.998 1.000
DAR-small ViT-L 440M 0.046 1.839 0.115 0.069 0.984 0.999 1.000
DAR-Base ViT-L 1.0B 0.046 1.823 0.114 0.069 0.985 0.999 1.000
DAR-Large ViT-L 2.0B 0.044 1.799 0.110 0.067 0.986 0.999 1.000

OursEcoDepthImage Depth Anything

Figure 7. Qualitative results on the KITTI dataset. A darker color denotes a closer distance.

NVIDIA A100 GPUs.

Datasets. We conduct experiments on three benchmark
datasets including NYU Depth V2 [50], KITTI [15], and
SUN RGB-D [51]. (a) NYU Depth V2 is a widely-used
benchmark dataset that covers indoor scenes with depth val-
ues ranging from 0 to 10 meters. We follow the train-test
split in [29], which uses 24,231 images for training and 654
images for testing. The ground truth depth maps were ob-
tained using a structured light sensor with a resolution of
640×480. (b) KITTI is a widely-used outdoor benchmark
dataset, containing images with depth values ranging from
0 to 80 meters. The official split provides 42,949 images
for training, 1,000 for validation, and 500 for testing, with

resolution 352× 1216. (c) SUN RGB-D: We preprocess its
images to 480 × 640 resolution for consistency. The depth
values range from 0 to 10 meters. We use only the official
test set (5050 images) for zero-shot evaluation.

4.2. Comparisons with Previous Methods
Quantitative Results on NYU Depth V2. We report the
results in Table 2. As one can see, DAR with the same
pretrained backbone and similar model size performs bet-
ter than and above all the known methods. By scaling
up, DAR-Large establishes a new SOTA performance in all
the metrics, attaining 0.205 RMSE and 0.982 δ1 on NYU
Depth v2, largely outperforming existing methods.
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Table 4. Zero-shot generalization to the SUN RGB-D dataset [51].
The models are trained on NYU Depth V2 and tested on SUN
RGB-D without fine-tuning.

Method Lower is better ↓ Higher is better ↑
Abs Rel RMSE log10 δ1 δ2 δ3

BinsFormer [32] 0.143 0.421 0.061 0.805 0.963 0.990
IEBins [49] 0.135 0.405 0.059 0.822 0.971 0.993
VPD [66] 0.121 0.355 0.045 0.861 0.980 0.995
Depth Anything [63] 0.119 0.346 0.043 0.864 0.981 0.995
DAR 0.112 0.319 0.040 0.885 0.985 0.996

Qualitative Results on NYU Depth V2. In Fig. 6, we
present some qualitative comparison on the dataset. First,
one can observe that our model performs better in depth es-
timation at the boundaries of the objects, making it more co-
herent and smooth (e.g., the back of the chair and the long-
distant objects). This is helped by our autoregressive pro-
gressive paradigm, which maintains a coherent and smooth
depth estimation when using previous predictions for the
next-step, more refined prediction. Second, our DAR is
much more accurate when estimating the depths of small
and thin objects or long-distant visually relatively small ob-
jects, like the poles under the chair. These observations fur-
ther demonstrate the superiority of our DAR.
Quantitative Results on KITTI. To further demonstrate
the superiority of our proposed DAR in outdoor scenarios,
we report results on the KITTI dataset in Table 3. Com-
pared to the SOTA self-supervised model Depth Anything,
our DAR-small with a similar model size achieves better
performance, suggesting the superiority and potential of our
proposed DAR. Compared to the SOTA supervised model
Ecodepth, our DAR-small has smaller model sizes and per-
forms better. Notably, the scaled-up version DAR-Large es-
tablishes a new SOTA performance, which outperforms the
current SOTA (Depth Anything) in all the metrics (in par-
ticular, by 5% in RMSE).
Qualitative Results on KITTI. In Fig. 7, we present some
qualitative comparison on the KITTI dataset. One can ob-
serve that DAR preserves fine-grained boundary details and
generates more continuous depth values, further demon-
strating the effectiveness of our new AR-based framework.

4.3. Zero-shot Generalization
Unlike the SOTA zero-shot transfer method (Depth Any-
thing [63]), which requires pretraining on a large amount
of data (61M) for effective performance, we show that our
model generalizes well when trained only on a single NYU
Depth v2 dataset. Table 4 shows the quantitative results.
As one can see, DAR achieves decent results on unseen
datasets, substantiating the generalization ability of DAR.

4.4. Ablation Study
We conduct a comprehensive ablation study to examine the
effectiveness of the two sub-AR objectives with their re-

Table 5. Ablation study of DAR. “BI”: The Bins Injection module.

Method Param. Abs Rel ↓ RMSE ↓ d1 ↑
Baseline + Transformer 420M 0.063 0.229 0.976
Baseline + MTBins + BI 363M 0.061 0.220 0.978
Baseline + DAR 440M 0.059 0.217 0.979
Baseline + DAR + Scale Up 2.0B 0.056 0.205 0.982

spective components and scale up. All the experiments pre-
sented in this section are conducted on NYU-Depth-V2.
We choose the backbone of Depth Anything as the base-
line model. The comparison results are reported in Table 5.
Observe that each sub-AR objective and its components im-
prove the baseline performance, supporting our hypothesis
that the AR model is an effective monocular depth estima-
tor. Furthermore, by scaling up the model size to 2.0B, DAR
achieves the best performance in all the metrics, demon-
strating the strong scalability of DAR. We also conduct ab-
lation study on the bin number N , and show qualitative re-
sults of each step of DAR in the Supplemental Materials.

4.5. Limitations

We need to acknowledge the following limitations. First,
we apply a multi-step progressive paradigm to predict
depths, which is smoother and more continuous, but con-
sequently, it may blur the boundaries and reduce sharpness.
Second, since we use the autoregressive Transformer, the
model parameter number of DAR is relatively high, espe-
cially when scaling the model size up. But, we believe that
further improvements in the complexity-accuracy trade-off
of DAR can be achieved through large model distillation or
lightweight AR foundation model design techniques.

5. Conclusions

In this paper, we presented a novel depth autoregressive
(DAR) modeling approach to introduce scalability and gen-
eralization to an AR-based framework for monocular depth
estimation (MDE). Our key idea is to transform the MDE
task into two parallel autoregressive objectives, resolution
and granularity, inspired by the insight of ordered proper-
ties of MDE in these two aspects. Further, we proposed
the DAR Transformer and Multiway Tree Bins strategy to
achieve these two autoregressive objectives, and connect
them by the proposed Bin Injection module. We demon-
strated the effectiveness of our approach on several bench-
mark datasets, and showed that it outperforms SOTA meth-
ods by a significant margin. Our proposed DAR also offers
a promising way to integrate autoregressive depth estima-
tion into existing autoregressive-based foundation models.
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[43] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 44(3):1623–1637, 2020. 3
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