
Split Adaptation for Pre-trained Vision Transformers

Lixu Wang1, 2*, Bingqi Shang1*, Yi Li1, Payal Mohapatra1, Wei Dong2, Xiao Wang1, Qi Zhu1

1Northwestern University. 2Nanyang Technological University.
lixu.wang@ntu.edu.sg, {bingqishang2025, yili2023.1, payalmohapatra2026}@u.northwestern.edu,

wei dong@ntu.edu.sg, {wangxiao, qzhu}@northwestern.edu

Abstract

Vision Transformers (ViTs), extensively pre-trained on
large-scale datasets, have become fundamental to founda-
tion models, enabling adaptation to diverse downstream
tasks. Existing adaptation methods typically require direct
data access, rendering them infeasible in privacy-sensitive
domains where clients are often reluctant to share their
data. A straightforward solution may be sending the pre-
trained ViT to clients for local adaptation, which poses is-
sues of model intellectual property and incurs heavy client
computation overhead. To address these issues, we propose
a novel split adaptation (SA) method that enables effective
downstream adaptation while protecting data and models.
SA, inspired by split learning (SL), segments the pre-trained
ViT into a frontend and a backend, with only the frontend
shared with the client for data representation extraction.
But unlike regular SL, SA replaces frontend parameters
with low-bit quantized values, preventing direct exposure of
the model. SA allows the client to add bi-level noise to the
frontend and the extracted data representations, ensuring
data protection. Accordingly, SA incorporates data-level
and model-level out-of-distribution enhancements to miti-
gate noise injection’s impact. Our SA focuses on the chal-
lenging few-shot adaptation and adopts patch retrieval aug-
mentation for overfitting alleviation. Extensive experiments
on multiple datasets validate SA’s superiority over state-
of-the-art methods and demonstrate its defense against ad-
vanced data reconstruction attacks while preventing model
leakage with minimal computation cost on the client side.
The source codes can be found at https://github.
com/conditionWang/Split_Adaptation.

1. Introduction

In recent years, pre-trained vision transformers (ViTs) [13]
have become mainstream foundational models in computer
vision, delivering remarkable performance across a range of

*Equal contributions.

visual tasks [13, 28, 50, 52]. ViTs have been equipped with
general semantic knowledge during large-scale pre-training,
which can be readily transferred to other domains including
sensitive fields such as healthcare [41], finance [10], and
manufacturing [8]. However, adapting pre-trained ViTs in
these sensitive domains is extremely challenging.

In real-world scenarios, model adaptation often follows a
two-party framework, where the pre-trained model is hosted
on a server, and the training data resides on a client. In
non-sensitive domains, training data can be directly shared
with the server. Real-world examples include users upload-
ing data to access OpenAI’s CLIP model API [40] or tune
GPT-3.5 [3]. However, in sensitive domains, data is often
tightly linked to personal privacy [12, 14], intellectual prop-
erty (IP) [19, 47], and ethical concerns [15], making any
form of public exposure, sharing, or transfer strictly prohib-
ited. In this context, an alternative solution might involve
sending the model to the client for local adaptation, as in
federated learning [11, 27, 46]. However, large pre-trained
models are expensive to obtain, making their owners un-
likely to share or transfer them freely [47]. Moreover, given
that these pre-trained models consist of billions of param-
eters, adaptation on the client side would incur substantial
computational and storage costs.

To our knowledge, there have been a few preliminary
attempts to achieve downstream adaptation of pre-trained
models while safeguarding data and models. Split learning
(SL) [1, 44] divides the model into segments managed by
different parties, which can partially protect the model from
full exposure. Additionally, SL only communicates inter-
mediate representations, avoiding the leakage of raw data.
However, SL has critical drawbacks. On one hand, emerg-
ing malicious attacks, such as data reconstruction attacks
(DRA) [16, 23, 38, 53, 54], can infer sensitive information
from the intermediate representations. On the other hand,
standard SL places the model training on the client side,
imposing high computational costs. Beyond SL, a recent
method called offsite tuning (OT) [49] has been proposed,
which involves the server sending an emulator—a simpli-
fied version of the pre-trained model—to the client. The

20092

!"#$%&'$()$(

FrontendPre-trained ViT Backend

Pre-trained ViT

Client
Dataset

Pre-trained ViT
Tuned

Backend
Client

Dataset

Noisy
Quantized
Frontend

Task
Head

�7�D�V�N
�+�H�D�G

Task
Head

Client
Dataset

�$�G�G�L�Q�J���1�R�L�V�H

OOD
Quantization -
aware Tuning

�2�2�'���(�Q�K�D�Q�F�H�G���4�X�D�Q�W�L�]�D�W�L�R�Q

'$()$(!"#$%&

�^���Œ�À���Œ !"#$%&

�[���2�ô�Í�X
�„�X�:�æ���2��

�‹�U�+���e
�[�ô�Í�X�2���2��

!"#$%
&'("%(%$)*

Figure 1. The comparison between different downstream task
adaptation approaches. Our SA can achieve effective few-shot task
adaptation with minimal computation cost on the client side while
protecting both the model and data.

client can then fine-tune this emulator using its data, typi-
cally employing parameter-efficient techniques like adapter
tuning [5]. After training, the client uploads these adapters
back to the server, where they are integrated into the pre-
trained model. However, while OT protects data, the emu-
lator is fully exposed, allowing adversaries to create high-
performance models easily. Moreover, OT’s adaptation
depends on the substantial computational and storage de-
mands for adapter tuning on the client side.

To address the challenge of adapting pre-trained ViTs
in sensitive domains, we propose a split adaptation (SA)
method, which is shown in Figure 1. Like SL, SA divides
the pre-trained ViT into two parts: a frontend and a backend.
The server sends the frontend to the client, enabling data
representation extraction. However, unlike SL, SA innova-
tively uses quantization to replace the frontend’s parame-
ters with low-bit values, preventing direct exposure of the
original parameters. For data protection, the client injects
random noise into the received frontend and its extracted
data representations. Such injected noise unavoidably hurts
the following adaptation, hence SA includes data-level and
model-level out-of-distribution enhancements to improve
the model generalization. SA is particularly designed for
the challenging few-shot adaptation scenario, where it uses
a patch retrieval augmentation technique to alleviate over-
fitting. Extensive experiments across four datasets demon-
strate that SA significantly outperforms other state-of-the-
art approaches in adaptation performance. Moreover, SA
effectively defends against advanced DRAs and prevents
model leakage. In particular, SA’s effectiveness only relies
on small computation cost on the client side. In summary:
• We focus on solving a practical and important problem—

adapting pre-trained ViTs for downstream tasks while
protecting data and models. Solving this problem enables
wider application of pre-trained models in sensitive fields.

• We propose Split Adaptation (SA) that innovatively lever-
ages model splitting and quantization to protect data and
models during downstream task adaptation. SA focuses

on challenging few-shot scenarios, in which SA uses a
patch retrieval augmentation to combat overfitting.

• We conduct extensive experiments across multiple
datasets and state-of-the-art baseline approaches, with re-
sults validating SA’s effectiveness in achieving superior
adaptation while ensuring data and model protection.

2. Related Works

2.1. Split Learning

Split learning (SL) [44] is a collaborative learning approach
widely used in the multi-party computation framework. SL
operates by dividing the machine learning (ML) model into
segments, with each managed by a different party. This ap-
proach enhances privacy by transmitting only intermediate
data representations rather than raw data. Many practical
examples of SL in training and adapting ML models across
various domains emerge, including healthcare [1, 44], fi-
nancial [1, 42], and edge computing [17, 18]. Despite these
successes, more adversarial attacks illustrate the vulnera-
bility of privacy leakage in SL, with the severest one –
data reconstruction attack (DRA) [23]. DRA aims to re-
cover the raw data from its corresponding model represen-
tations. In the context of SL, a variety of DRAs have been
witnessed, among them, some are based on optimization to
imitate the ground-truth representations (e.g., FSHA [38]
and PCAT [16]), while others leverage generative models
to recover the raw data by exploiting the intrinsic seman-
tics (e.g., Ginver [54] and FORA [53]). Therefore, new SL
approaches are needed to help protect data privacy better.

2.2. Vision Transformer Adaptation

The vision transformers (ViT) [13] are usually pre-trained
with large-scale data to learn general semantics and knowl-
edge. Representative pre-training approaches include su-
pervised [28] and self-supervised learning like contrastive
learning [4, 6, 21, 40] and auxiliary task training [22, 37,
57]. Owing to such extensive pre-training, adapting pre-
trained ViT for distinct downstream tasks has become a
mainstream paradigm. The most regular method is to
tune the entire model, which consumes substantial com-
putational and memory resources. Another widely used
approach is linear probing [29], which only trains a task
module while keeping the ViT frozen, but the prominent
shortcoming is the inferior performance. Recently, more
parameter-efficient approaches have been proposed, like
adapter tuning [5], prompt tuning [26], and prefix tun-
ing [51]. However, these approaches still require direct ac-
cess to the task data. In contrast to the above approaches, a
new method called offsite tuning [49] can work effectively
without direct data access. However, extensive training hap-
pens on the data owner side, and there is a high risk of model
disclosure, making it impractical in real-world scenarios.

20093

3. Methodology

3.1. Preliminaries
3.1.1. Vision Transformer
The vision transformer (ViT) [13] is built upon sequential
attention encoder layers. Specifically, each encoder layer
consists of a multi-head self-attention (MSA) block and
a Multi-Layer Perceptron (MLP) block. Layernorm (LN)
is applied before every block and residual connections are
placed after every block. The MLP contains two linear lay-
ers with an intermediate GELU activation. To handle 2D
images, ViT reshapes the image I ∈ RH×W ×C into N flat-
tened patches Ip ∈ RP 2·C , where H , W , and C are the
image height, width, and channels, respectively, and P is
the pixel resolution of each patch. For the first layer of ViT,
to unify the vector dimensions, a trainable linear projection
layer with neuron weights [WE

1 , · · · , WE
N] is used to map

each vectorized patch into dimension d. In this case, the
input to the first transformer layer is:

X1 = [xCLS; Ip
1 WE

1 ; · · · ; Ip
N WE

N] + EPOS,

where WE ∈ R(P 2·C)×d, EPOS ∈ R(N+1)×d,
(1)

where xCLS ∈ Rd is a classification token, and EPOS is the
position encoding. Then for each of the following layers,
the input sequence Xl is fed into each head of the MSA
module to obtain three linearly projected matrices: Query
Ql = XlWQ

l , Key Kl = XlWK
l , and Value Vl = XlWV

l .
Then the Softmax function is applied to normalize the at-
tention score Al =QlK"

l and the output Zl is:

Zl = MSA(Xl) = Softmax
(

Al√
d

)
Vl. (2)

Suppose the two linear layers in MLP are parameterized by
Wl,1, bl,1 and Wl,2, bl,2, the output is then computed as:

MLP(Zl) = GELU(ZlWl,1 + bl,1)Wl,2 + bl,2. (3)

Finally, both the MSA and MLP modules are linked via
residual connections, thus we have the final output of
each transformer layer: Xl+1 = LN(Zl + MLP(Zl)) ∈
R(N+1)×d, where Zl =LN(Xl + MSA(Xl))∈R(N+1)×d.

3.1.2. Problem Formulation
When adapting pre-trained ViT for certain downstream
tasks, we consider a representative client-server frame-
work in which the client queries the server for the adap-
tation request. The client owns the task adaptation dataset
DC ={(xi, yi)}NC

i=1 (NC is the sample number, in practice,
we suppose NC is small even few-shot) with each sample
drawn from a marginal input distribution xi ∼ PC

X and la-
beled with a marginal task distribution PC

Y .

On the server side, the pre-trained ViT FΘ parame-
terized on Θ is assumed to consist of LF attention lay-
ers, and each layer is parameterized on θ, i.e., F :=
[fθ1 , · · · , fθLF]. Besides, we assume the server owns an-
other dataset DS = {(xi, yi)}NS

i=1 collected from public do-
mains with the marginal input and task distributions, PS

X
and PS

Y , respectively. In real-world scenarios, the datasets
owned by the client and the server are distinct but relevant,
i.e., PC

X $=PS
X , PC

Y $=PS
Y but I(X C; X S)>0, I(YC; YS)>0

where I(·; ·) calculates the mutual information.

Objective of Task Performance. Pre-trained ViT adapta-
tion aims to obtain a downstream task module g parameter-
ized on γ that can achieve as good performance as possi-
ble on the client data distribution when combined with FΘ.
Certainly, such adaptation also allows FΘ tuning if it can
enable performance improvement on the downstream task.
In this case, the objective is formulated as,

Θ, γ = arg min
Θ,γ

Ex∼PC
X ,y∼PC

Y
L(x, y; Θ ◦ γ), (4)

where L(·; ·) is a loss function that measures the model per-
formance regarding certain data distribution.

Objective of Privacy Protection. In addition to the above
standard objective, the intrinsic privacy concerns of the
server-client framework should be addressed, i.e., the pre-
trained model and client data should be protected during
adaptation when supposing the server and the client may be
semi-honest. On the one hand, the adaptation should pro-
hibit the client from stealing surrogate models with good
performance or obtaining them at a small cost, on the
other hand, any client data reconstruction on the server side
should be avoided.

3.2. Overview of The Proposed Split Adaptation

To achieve effective adaptation while protecting the pre-
trained ViT and client data, we propose a method called
Split Adaptation (SA), shown in Figure 2. Our SA starts
with dividing the pre-trained ViT FΘ into two parts: a fron-
tend F F and a backend F B. The original F F is not sent
to the client, instead, we leverage model quantization to
send a quantized version F̂ F to the client. To mitigate
the influence of frontend quantization, SA includes out-
of-distribution (OOD) augmentations from both data and
model levels to enhance the cross-distribution generaliza-
tion of the frontend and backend. As for the client side,
it adds random noise to the received F̂ F first and adopts a
patch-level retrieve-then-replace strategy to generate more
client data representations that help alleviate overfitting in
few-shot adaptation. Before being uploaded to the server
for the final adaptation, these augmented representations are
protected by adding noise again.

20094

!"#$%&'(

!"#$%&'! !"#$%&$' !"#$%&'()
*+,$%($)-.

!"#$%&'()-
*+,$%($)-/

!"#$%&'()-
*+,$%($)-0

!"#$%&')

!"#$%&$'

!"#$"#
%&'&("'

)"#*"+,
!"#$"#
%&'&("'

!"#$%&'()-
*+,$%($)-0

-./(0,
12&3'/4"+,
5#.3'"3+,6

"#$%&'
()')*%'

!"#$%&'()-
*+,$%($)-0

!"#$%&'()-
*+,$%($)-/

1"23(%-.

1"23(%-/

*"44-1(%

()*+&$'

,"&-%").$&'/0.1

Out-of-distribution Enhanced Quantization Out-of-distribution Quantization-aware Tuning

!"#$"#

%&'"()

5"$()
6#78($)

Final Adaptation

Client Bi-level Noisy Representation Extraction with Patch Retrieval Augmentation

7++/3*
-./("

!

" # !

" # !

!

!!

!

! !
!

8"'#/"$",'9"3,
8":;&<",=&'<9

)"#*"+,
!"#$"#
%&'&("'

!"#$%&'('&)*+,-&.
/01.%*')'"-*

23#"''"*1

7++/3*
-./("

!

!

!

!

!

!

Figure 2. Overview of Split Adaptation (SA) for pre-trained ViT adaptation. SA divides the pre-trained ViT into a frontend and a backend.
After applying Out-of-distribution Enhanced Quantization to the frontend, its quantized version is sent to the client. To mitigate the impact
of quantization, SA adopts Out-of-distribution Quantization-aware Tuning to enhance backend’s generalization. As for the client, it injects
random noise to the received frontend and retrieves then replaces randomly selected patches to augment more client data representations,
which are sent to the server for the final adaptation after being added with noise again.

3.3. Model Splitting on The Server Side

At the beginning of SA, the pre-trained ViT is divided into
a frontend F F := [fθ1 , · · · , fθK] and a backend F B :=
[fθK+1 , · · · , fθLF] at the K-th layer (K > LF /2). Then
the frontend is distributed to the client for representation
extraction. Although we empirically found that the fron-
tend cannot perform well (Section 4.3), we still hope to
protect it from disclosing the original model parameters.
Quantization [20, 34], as a representative model compres-
sion approach, can significantly reduce the computational
and memory cost without sacrificing model performance.
As quantization works by representing model weights and
activations with low-precision values, it can potentially pro-
tect the model. However, standard quantization needs a cer-
tain amount of data drawn from the target task, which is
inaccessible for the server in our problem. In this case, the
left choice is to leverage the server dataset DS to quantize
the model, but a dedicated design for enhancing the quan-
tized model’s cross-distribution generalization is needed.
Therefore, we propose an augmentation technique to gen-
erate OOD data in terms of DS for quantization.

3.3.1. Out-of-distribution Enhanced Quantization
In practice, we have to consider extreme cases in which the
client dataset differs significantly from the server dataset
and they may only share general semantics. Hence our aug-
mentation technique should generate OOD data with a large
discrepancy to DS. Inspired by signal processing, we no-

!""#$%&'#()*+%,*-./01*2

3456-.7)%!2"#'+89)%
:'+6%+6)%;-+%<2-7)

3456-.7)%!2"#'+89)%:'+6%+6)%=*'7'.-#%>17%<2-7)

Figure 3. Visualization of our Hilbert Transform data augmenta-
tion. Compared to amplitude-exchange augmentation [45] (bot-
tom row), our augmentation method (top row) generates data that
diverges further from the original in appearance while preserving
the original semantics (dog category).

tice that there is a technique called Hilbert Transform (HT),
which only captures the most sharp edge in images. Intu-
itively, the sharp edges contain the most general semantics,
making HT suitable for our problem. Applying HT to a sig-
nal in standard signal processing results in a phase shift of
π/2 in the frequency domain [36]. In the visual domain,
we can implement HT by transforming an image I to the
frequency domain with the spectrum index ξ via Fourier
transform, then the negative ξ needs to multiply with the
imaginary unit i, while the positive ξ needs to multiple with

20095

−i, i.e.,

HT(I) = F−1{−i · sgn(ξ)F(I)}, (5)

where F(·) and F−1(·) are Fourier transform and inverse,
respectively, and sgn(·) is a sign function. However, pure
HT only provides new images with black backgrounds. To
diversify the HT-generated image, we replace its amplitude
in the frequency domain with that of the original image.
In this way, the generated image is much better than the
standard amplitude-exchange augmentation [32, 45] (please
refer to Figure 3 for a visual comparison).

To achieve effective quantization, we adopt the most
popular uniform symmetric quantization [20] to implement
SA, in which a floating-point value w is projected into a k-
bit integer value wq with a scaling factor ∆:

ŵ = Ψk(w, ∆) = clamp(round(
w
∆

), −2k−1, 2k−1 − 1),
(6)

where round(·) turns a value into an integer and
clamp(·, min, max) constrains the output in the range from
min to max. Intuitively, the scaling factor ∆ directly im-
pacts the model performance after quantization. Previous
studies [7, 34] have tried a variety of measurements to quan-
tify the model output changes and accordingly determine
the optimal scaling factors. Among these studies, we fol-
low Yuan et al. [55] to choose a Hessian-guided metric for
scaling factor determination. Suppose the pre-trained ViT
FΘ is equipped with a task module g′

γ′ that is tuned on the
server dataset DS, the model performance can be measured
by a loss Ex∼PS

X ,y∼PS
Y

L(x, y; Θ ◦ γ′) (we omit x and y
to simplify the used symbols in the following descriptions).
Then if we regard that the quantization brings a small per-
turbation ε to the model parameters, i.e., Θ̂ = Θ+ε, we can
analyze the influence of quantization on the task loss using
Taylor series expansion:

E[L(Θ̂ ◦ γ′)] − E[L(Θ ◦ γ′)] ≈ ε"∇Θ +
1
2

ε"HΘε, (7)

where ∇Θ is the gradients and HΘ is the Hessian ma-
trix. Then the optimal scaling factors are the ones cor-
responding to minimal influence caused by quantization,
i.e., ∆ = arg min∆(E[L(Θ̂ ◦ γ′)] − E[L(Θ ◦ γ′)]). Cer-
tainly, determining and adopting a general scaling factor
for the entire model is too coarse to perform well, thus we
apply a layer-wise reconstruction method [31] to achieve
fine-grained quantization, then the searching optimization
of Eq. (7) can be approximated by:

arg min
∆l−1

E
[
(X̂l − Xl)"diag

(
∂L
∂Xl

)
∂L
∂Xl

)
(X̂l − Xl)

]
,

(8)
where Xl and X̂l are the outputs of the (l−1)-th layer before
and after quantization, respectively, and) represents the
Hadamard product of a matrix.

With the augmented neighborhood data, the frontend can
be quantized with improved cross-distribution generaliza-
tion. Specifically, we first conduct HT-based data augmen-
tation on the server dataset DS to obtain HT(DS). Then the
optimal scaling factor for each layer in the frontend F F is
empirically determined by optimizing Eq. (8) on the merged
dataset DS

∪ = DS ∪ HT(DS) and we can obtain a quantized
frontend F̂ F in the end.

3.3.2. Out-of-distribution Quantization-aware Tuning
To achieve better adaptation performance, the backend also
needs to resist the unavoidable parameter difference be-
tween the original and quantized model as well as the noise
injected by the client that we will introduce in Section 3.4.
As a result, we propose an OOD quantization-aware tun-
ing technique to enhance the backend’s resistance when en-
countering OOD data and frontends.

To simulate potential OOD frontends, we first divide the
merged server dataset DS

∪ into M subsets and denote these
subsets as {DS

∪m
}M

m=1. Next, each subset DS
∪m

is used to
quantize the original frontend F F to obtain a quantized ver-
sion F̂ F

m. Then let us use a single quantized frontend F̂ F
m

to introduce how to tune the backend. To begin with, since
the backend is represented and the tuning is performed us-
ing floating-point values, the data representations extracted
by the quantized frontend should be transformed back to
floating-point values through the dequantization:

w̃ = Ψ−1(ŵ, ∆) = ŵ · ∆. (9)

In this way, we can obtain the floating-point representation
X̃K by dequantizing the K-th layer’s output with the scal-
ing factor ∆K . Note that X̃K is different from the original
representation XK extracted by the original frontend F F

due to the range constraints of round and clamp functions
in Eq. (6). Our following design aims to tune the back-
end to resist such differences. The most straightforward
method is to forward the floating-point representation X̃K
to the backend and conduct tuning using task loss. How-
ever, such tuning will make the backend over-fitted to the
server dataset DS. We solve this by a representation-mixup
strategy. Specifically, for a particular data sample x, we
feed it to a quantized frontend F̂ F

m and the original frontend
F F to extract representations X̂K,m, XK,m. After dequan-
tizing X̂K,m into the floating-point form X̃K,m, we obtain
a mixup representation:

X∗
K,m = λX̃K,m + (1 − λ)XK,m, (10)

where λ is drawn from a widely-used beta distribution
Beta(λ; 0.75, 0.75). Then considering all available quan-
tized frontend, we can tune the backend with the loss:

Ltune =
∑

DS
∪

M∑

m=0

L(X∗
K,m, y; ΘB ◦ γ′). (11)

20096

Note that X∗
K,0 originates from feeding x to the frontend

F̂ F quantized on the full set of DS
∪.

3.4. Client Bi-level Noisy Representation Extraction

In our SA model, the quantized frontend F̂ F will be sent
to the client after the OOD enhanced quantization (Sec-
tion 3.3.1), and then the client can forward its data to F̂ F to
extract representations and send them to the server. How-
ever, there is a risk of data reconstruction when sharing rep-
resentations, thus we propose a bi-level noisy representation
extraction mechanism to defend against such attacks.

Intuitively speaking, the key to data reconstruction de-
fense is to use the model unknown by the server to extract
the representations. Therefore, we allow the client to inject
a certain degree of random noise into the received frontend
F̂ F. For each layer in the frontend, we inject a multiplica-
tive noise n×

l , and an additive noise n+
l , which are sampled

from two Gaussian distributions, i.e., n×
l ∼ PN (1,αθl) and

n+
l ∼PN (0,αθl) (α =0.01 controls the noise degree), to the

model parameters:

θ′
l = n×

l · θl + n+
l . (12)

Next, the client feeds its dataset DC to the noisy fron-
tend F̂ F′

to extract representations {X̂C
K,i}NC

i=1. However,
it is still insecure to share these representations. We found
that our model-level noise can amplify the defense effect
of the regular noise obfuscation [24] at the representation
level, which allows to add a smaller degree of Laplace noise
(PLaplace(0,0.8)) to representations for better protection.

3.5. Patch-retrieval-augmented Model Adaptation
In few-shot adaptation scenarios, like the backend tuning on
the server (Section 3.3.2), the adaptation also faces overfit-
ting challenges, but the overfitting here is due to the limited
client data available. To tackle such challenges, we design
a patch-level retrieval augmentation approach to generate
more client data representations.

Our patch-level retrieval augmentation is inspired by the
intuition that different images may contain similar patches.
As introduced in Section 3.1.1, the data representations of
each layer in a ViT hold the dimension (N +1)×d, which
can be denoted as X̂C

K,i = [xCLS
i ; xi,1, · · · , xi,N] (we omit

some symbols for simplification). Then we can form N
retrieval sets from all client data representations (before
adding Laplace noise) and each corresponds to a patch, i.e.,
{Sj}N

j=1 where Sj = {xi,j}NC

i=1. With these sets, for each
augmentation of X̂C

K,i, we randomly select NP =50 patches
(please see the sensitivity analysis in Supplementary Mate-
rials) {xi,Pj }NP

j=1 (subscript Pj meets 1 ≤ Pj ≤ N) and
delete them from their corresponding retrieval sets. Next,
each xi,Pj retrieves the most similar patch Ω(xi,Pj) from

its corresponding retrieval set:

Ω(xi,Pj) = arg max
x∈S′

Pj

xi,Pj · x
|xi,Pj ||x|

, (13)

where S ′
Pj

= SPj \ xi,Pj . After the retrieval operations
for all selected patches {xi,Pj }NP

j=1, we replace them with
the retrieved patches {Ω(xi,Pj)}NP

j=1 in the original repre-
sentation X̂C

K,i to form a new one X̂
′C
K,i. Note that the se-

lected patches are determined randomly, resulting in newly
generated representations that differ across augmentation
runs. To generate sufficient augmented representations, we
run the augmentation NAug times for all client data rep-
resentations and produce an augmented representation set,
i.e., X̂ C

K = { {X̂Cj
K,i}

NAug

j=0 }NC

i=1 (we denote the original rep-
resentation as X̂C0

K,i and the augmented representations as
X̂C1∼NAug

K,i). The above patch retrieval augmentation is run
by the client, and it adds Laplace noise (Section 3.4) to all
representations in X̂ C

K before uploading to the server.
After receiving the representations, the server dequan-

tizes them into floating-point form with the K-th layer’s
scaling factor ∆K by Eq. (9) and launches the adaptation.
To further alleviate the overfitting due to limited client data,
different from Split Learning, we only allow high-level fea-
ture learning in the backend to prevent low-level features
from becoming biased. Then the server randomly initializes
a task module gγ and tunes it with the backend F B (that has
been tuned in Section 3.3.2) by following the loss:

Ladapt =
NC∑

i=1

NAug∑

j=0

L(X̂Cj
K,i, y; ΘB ◦ γ). (14)

To protect the client’s labels, the server sends the task mod-
ule output to the client, allowing the task loss Ladapt to be
computed on the client side and then sent back to the server.

4. Experiments
4.1. Experimental Settings
Datasets. ImageNet [9] is the most widely used image
dataset collected from public domains, thus we use its
test set as the server dataset. For the client datasets, we
use CIFAR-100 [30], Places365 [35], and DomainNet [39].
Places365 is a scene recognition dataset that contains 365
classes. DomainNet (D.Net) is a challenging multi-domain
dataset, which includes six domains. We select the smallest
domain—Clipart (Cl) for the few-shot adaptation scenarios.
Implementation Details. We conduct experiments on three
pre-trained model architectures: ViT-Large [13], DeiT-
Base [43], and Swin-L [33] (DeiT-Base and Swin-L’s ex-
periments are reported in Supplementary Materials). For
the Places365 dataset, the target task module is composed

20097

Table 1. Performance comparison between our SA and other baseline approaches in 3-shot, 5-shot, and 10-shot adaptation scenarios over
3 datasets. The SA can substantially exceed other methods. We bold and blue the best, and bold the second best.

Few-shot Setup 3-shot 5-shot 10-shot

Method CIFAR-100 Places365 D.Net-Cl CIFAR-100 Places365 D.Net-Cl CIFAR-100 Places365 D.Net-Cl

Linear Probing 74.05±1.21 26.18±1.00 57.26±1.11 78.79±0.65 34.25±1.45 63.84±0.66 83.28±0.33 32.33±7.82 69.12±0.75
Fine Tuning 40.32±5.48 21.64±0.78 36.95±6.66 64.29±7.69 31.07±1.04 56.50±1.87 81.82±1.85 39.46±0.59 70.67±0.72
LN-TUNE 13.18±2.17 1.59±0.53 6.97±1.96 34.80±5.37 3.96±0.95 13.43±2.12 47.97±6.25 7.71±1.85 24.53±2.05
Split Learning 74.05±1.21 26.84±1.03 58.14±0.63 79.63±0.53 30.49±0.36 63.95±1.18 83.66±0.27 35.78±0.30 65.20±0.47
Offsite Tuning 42.37±2.98 24.98±0.55 40.56±4.00 64.83±6.17 30.45±0.80 56.43±0.45 80.11±1.07 36.22±1.33 68.43±0.64

SA (ours) 76.24±0.29 30.92±0.89 56.26±0.79 81.98±0.49 35.31±0.01 65.03±0.59 85.45±0.40 39.26±0.10 71.13±0.76

of two linear layers, whereas for other datasets, it consists of
a single linear layer. We divide 2/3 backbone model as the
fontend while the rest 1/3 is the backend. The frontend and
its inner activations are quantized to 8-bit. Each quantiza-
tion operation uses 32 data samples randomly sampled from
the server dataset or subsets, and the batch size is 4. The
Adam optimizer with a learning rate of 10−5 is adopted.
The number of epochs for OOD quantization-aware tuning
is set to 1, while the final adaptation is set to 100 epochs. All
experiments are run repeatedly 3 times with three seeds, and
we report the mean performance and standard deviation.

Baseline Approaches. SA is compared with state-of-the-
art downstream task adaptation methods including Linear
Probing [29], Fine Tuning, Split Learning [44], Offsite Tun-
ing [49], and LN-TUNE [2]. To evaluate the effectiveness
of data protection, we extend the state-of-the-art data re-
construction attacks—FORA [53]—to ViT. More details are
provided in the Supplementary Materials.

Evaluation Metrics. To evaluate the effectiveness of the
target task adaptation, we use classification accuracy to
measure the performance. As for the quality measure-
ment of data reconstruction results, we adopt three metrics:
SSIM [48] (S), PSNR [25] (P), and LPIPS [56] (L).

4.2. Effectiveness of SA for Task Adaptation

We create three few-shot adaptation scenarios for each
client dataset or domain: 3-shot, 5-shot, and 10-shot per
class, with experimental results shown in Table 1. We can
easily observe that our SA can always substantially exceed
all other baseline approaches. In particular, methods like
Fine Tuning, LN-TUNE, and Offsite Tuning lag far behind
SA, which may be attributed to the overfitting caused by the
low-level feature tuning. The method closest to SA in terms
of performance is Split Learning, but its biggest issue is the
privacy leakage, which we will discuss in Section 4.3. In
Table 2, we also provide the client memory and computa-
tion costs of each method (assuming the first three methods
are conducted on the client side), from which we can ob-
serve that SA even runs with the smallest cost. Note that SA
has no training on the client, thus we view the representa-
tion extraction time as the training time in Table 2.

4.3. Effectiveness of SA for Server Pre-trained ViT
and Client Data Protection

For privacy protection, we first test whether the quantized
frontend of SA can result in high-quality models with good
downstream task performance. We consider the three most
potential variations: 1) directly tune a task module on the
quantized frontend (Quant. Frontend); 2) tune a task mod-
ule on the original frontend though this case is impossible
in practice (Original Frontend); 3) attach a backend from
other models and tune a task module on the quantized fron-
tend and auxiliary backend (Auxiliary Backend). The ex-
perimental results are shown in Table 3, in which all varia-
tions perform much poorer than Linear Probing in Table 1
and our SA. In this case, we believe SA can protect the pre-
trained model to a great extent.

Then we launch FORA [53] to evaluate the data protec-
tion of our SA. For a fair comparison, only Split Learning is
compared with SA as only it requires the client to share in-
termediate data representations with the server. The exper-
iment results are presented in Table 5. First, we can visu-
ally observe that the reconstruction results of SA are much
worse than those of Split Learning. Then the three met-
rics also demonstrate the same phenomenon, i.e., FORA can
only recover much lower-quality images when attacking SA
compared with Split Learning. In summary, our SA offers
strong protection of the client data. More experiments on
the noise degree can be found in Supplementary Materials.

4.4. Ablation Study
We conduct comprehensive ablation studies in the 5-shot
adaptation on CIFAR-100, Places365, and DomainNet-Cl.
Hilbert Transform-based Data Augmentation. We de-
tach the use of HT data augmentation in the frontend quan-
tization and backend tuning (‘SA w/o HT Aug’). Compared
with the full SA in Table 4, the variation without HT data
augmentation performs worse, which proves its gain in im-
proving adaptation performance.
Out-of-distribution Quantization-aware Tuning. We de-
sign two variations: one is not to use OOD quantization-
aware tuning (‘SA w/o OOD QAT’), and the other is only
to use the quantized frontend F̂F characterized on the full

20098

Table 2. Comparison of client memory
(MB) and computation costs (Min) be-
tween SA and other baselines.
Methods GPU Memory Training Time

Linear Probing 6979 66
Fine Tuning 10302 34
LN-TUNE 5968 25
Split Learning 8932 15
Offsite Tuning 4896 23

SA (ours) 2233 2.5

Table 3. Risk assessment of 3 most potential
cases over 3 datasets (domains) for obtaining
high-quality models from our SA approach.

Variations CIFAR-100 Places365 D.Net-Cl

Quant. Frontend 26.34 13.45 26.70
Original Frontend 26.53 13.72 27.12
Auxiliary Backend 30.65 10.15 16.56

SA (ours) 81.98 35.31 71.13

Table 4. Ablation study of the major compo-
nents of our SA approach in 5-shot adaptation
over 3 datasets (domains).

Variations CIFAR-100 Places365 D.Net-Cl

SA w/o HT Aug 80.37 35.27 64.59
SA w/o OOD QAT 79.03 29.50 64.42
SA w/o QAT 80.05 29.59 64.16
SA w/o PR Aug 79.90 29.56 52.85

SA (ours) 81.98 35.31 71.13

Table 5. Comparison of defensive performance against the state-of-the-art data reconstruction attack—FORA [53]—between SA and Split
Learning. We visualize the reconstruction and calculate SSIM (S↓), PSNR (P↓), and LPIPS (L↑) to measure the reconstruction quality.

Dataset CIFAR-100 Places365 D.Net-Cl

Ground
Truth

- - -

Split
Learning

S:0.80
P:26.1
L:0.46

S:0.43
P:20.8
L:0.67

S:0.59
P:22.1
L:0.46

SA (ours)
S:0.23
P:15.2
L:0.70

S:0.30
P:16.6
L:0.73

S:0.25
P:14.4
L:0.60

Table 6. Ablation study of SA’s bi-level noise when defending
against FORA [53] on CIFAR-100.

Dataset CIFAR-100

Ground
Truth

-

SA w/o
Laplace Noise

S:0.76
P:23.1
L:0.49

SA w/o
Model Noise

S:0.28
P:16.4
L:0.67

SA (ours)
S:0.23
P:15.2
L:0.70

server dataset (‘SA w/o QAT’). Compared with the full SA,
the effectiveness of the representation-mixup quantization-
aware tuning and the simulated OOD frontends in alleviat-
ing quantization-induced performance drop can be verified.
Patch Retrieval Augmentation. We don’t use the patch
retrieval augmentation and observe how the model perfor-
mance will change. The big difference between ‘SA w/o PR
Aug’ and ‘SA’ in Table 4 indicates the essential role of our

augmentation here in performance enhancement.

Bi-level Noisy Representation Extraction. We detach the
use of model Gaussian noise (‘SA w/o Model Noise’) and
representation Laplace noise (‘SA w/o Laplace Noise’), re-
spectively, and the experiments are shown in Table 6. Model
noise and representation noise play a synergistic role greater
than the simple sum of them in data protection.

5. Conclusion

In this work, we propose Split Adaptation (SA) to adapt
pre-trained ViTs for downstream tasks while protecting the
data and model in the sever-client framework. After divid-
ing the ViT into a frontend and a backend, SA innovatively
uses model quantization to protect the frontend. SA also al-
lows the client to introduce a bi-level noise to the quantized
frontend and the extracted data representations for data pro-
tection. Accordingly, SA uses data-level and model-level
augmentation to mitigate the influence of the quantization
and the noise. Besides, SA proposes patch retrieval aug-
mentation to address overfitting in few-shot adaptation. Ex-
tensive experiments have validated the superiority of SA in
task adaptation and data-model protection.

Acknowledgments

This work was partially supported by NTU-NAP startup
grant 024584-00001.

References
[1] Corinne G Allaart, Björn Keyser, Henri Bal, and Aart

Van Halteren. Vertical split learning-an exploration of pre-
dictive performance in medical and other use cases. In
2022 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2022. 1, 2

[2] Samyadeep Basu, Shell Hu, Daniela Massiceti, and Soheil
Feizi. Strong baselines for parameter-efficient few-shot fine-
tuning. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 11024–11031, 2024. 7, 1

[3] Tom B Brown. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020. 1

[4] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021. 2, 1

[5] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang,
Yibing Song, Jue Wang, and Ping Luo. Adaptformer:
Adapting vision transformers for scalable visual recogni-
tion. Advances in Neural Information Processing Systems,
35:16664–16678, 2022. 2

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 2

[7] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev.
Low-bit quantization of neural networks for efficient infer-
ence. In 2019 IEEE/CVF International Conference on Com-
puter Vision Workshop (ICCVW), pages 3009–3018. IEEE,
2019. 5

[8] Zeki Murat Çınar, Abubakar Abdussalam Nuhu, Qasim Zee-
shan, Orhan Korhan, Mohammed Asmael, and Babak Safaei.
Machine learning in predictive maintenance towards sustain-
able smart manufacturing in industry 4.0. Sustainability, 12
(19):8211, 2020. 1

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 6

[10] Matthew F Dixon, Igor Halperin, and Paul Bilokon. Machine
learning in finance. Springer, 2020. 1

[11] Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu,
Xiao Wang, and Qi Zhu. Federated class-incremental learn-
ing. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 10164–10173,
2022. 1

[12] Wei Dong, Qiyao Luo, and Ke Yi. Continual observation
under user-level differential privacy. In 2023 IEEE Sympo-
sium on Security and Privacy (SP), pages 2190–2207. IEEE,
2023. 1

[13] Alexey Dosovitskiy. An image is worth 16x16 words: Trans-
formers for image recognition at scale. ICLR, 2020. 1, 2, 3,
6

[14] Juanru Fang, Wei Dong, and Ke Yi. Shifted inverse: A gen-
eral mechanism for monotonic functions under user differen-
tial privacy. In Proceedings of the 2022 ACM SIGSAC Con-

ference on Computer and Communications Security, pages
1009–1022, 2022. 1

[15] Chongyang Gao, Lixu Wang, Chenkai Weng, Xiao Wang,
and Qi Zhu. Practical unlearning for large language models.
arXiv preprint arXiv:2407.10223, 2024. 1

[16] Xinben Gao and Lan Zhang. {PCAT}: Functionality and
data stealing from split learning by {Pseudo-Client} attack.
In 32nd USENIX Security Symposium (USENIX Security 23),
pages 5271–5288, 2023. 1, 2

[17] Yansong Gao, Minki Kim, Sharif Abuadbba, Yeonjae Kim,
Chandra Thapa, Kyuyeon Kim, Seyit A Camtep, Hyoung-
shick Kim, and Surya Nepal. End-to-end evaluation of fed-
erated learning and split learning for internet of things. In
2020 International Symposium on Reliable Distributed Sys-
tems (SRDS), pages 91–100. IEEE Computer Society, 2020.
2

[18] Jiahui Gong, Jingtao Ding, Fanjin Meng, Guilong Chen,
Hong Chen, Shen Zhao, Haisheng Lu, and Yong Li. A
population-to-individual tuning framework for adapting pre-
trained lm to on-device user intent prediction. In Proceed-
ings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 896–907, 2024. 2

[19] Junfeng Guo, Yiming Li, Lixu Wang, Shu-Tao Xia, Heng
Huang, Cong Liu, and Bo Li. Domain watermark: Effec-
tive and harmless dataset copyright protection is closed at
hand. Advances in Neural Information Processing Systems,
36:54421–54450, 2023. 1

[20] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. ICLR, 2016. 4, 5

[21] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
9729–9738, 2020. 2

[22] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 16000–
16009, 2022. 2

[23] Zecheng He, Tianwei Zhang, and Ruby B Lee. Model inver-
sion attacks against collaborative inference. In Proceedings
of the 35th Annual Computer Security Applications Confer-
ence, pages 148–162, 2019. 1, 2

[24] Zecheng He, Tianwei Zhang, and Ruby B Lee. Attacking and
protecting data privacy in edge–cloud collaborative inference
systems. IEEE Internet of Things Journal, 8(12):9706–9716,
2020. 6

[25] Alain Hore and Djemel Ziou. Image quality metrics: Psnr
vs. ssim. In 2010 20th international conference on pattern
recognition, pages 2366–2369. IEEE, 2010. 7

[26] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In European Conference on Computer
Vision, pages 709–727. Springer, 2022. 2

[27] Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista

Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, et al. Advances and open problems in federated learn-
ing. Foundations and trends® in machine learning, 14(1–2):
1–210, 2021. 1

[28] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 4015–4026, 2023. 1, 2

[29] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do
better imagenet models transfer better? In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 2661–2671, 2019. 2, 7, 1

[30] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 6

[31] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi
Zhang, Fengwei Yu, Wei Wang, and Shi Gu. Brecq: Pushing
the limit of post-training quantization by block reconstruc-
tion. In International Conference on Learning Representa-
tions. 5

[32] Chenxi Liu, Lixu Wang, Lingjuan Lyu, Chen Sun, Xiao
Wang, and Qi Zhu. Deja vu: Continual model generalization
for unseen domains. In The Eleventh International Confer-
ence on Learning Representations, 2023. 5

[33] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021. 6, 1

[34] Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma,
and Wen Gao. Post-training quantization for vision trans-
former. Advances in Neural Information Processing Systems,
34:28092–28103, 2021. 4, 5

[35] Alejandro López-Cifuentes, Marcos Escudero-Vinolo, Jesús
Bescós, and Álvaro Garcı́a-Martı́n. Semantic-aware scene
recognition. Pattern Recognition, 102:107256, 2020. 6

[36] Payal Mohapatra, Lixu Wang, and Qi Zhu. Phase-driven
domain generalizable learning for nonstationary time series.
arXiv preprint arXiv:2402.05960, 2024. 4

[37] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In Euro-
pean conference on computer vision, pages 69–84. Springer,
2016. 2

[38] Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi.
Unleashing the tiger: Inference attacks on split learning.
In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 2113–2129,
2021. 1, 2

[39] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1406–1415,
2019. 6

[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-

sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 1, 2

[41] K Shailaja, Banoth Seetharamulu, and MA Jabbar. Ma-
chine learning in healthcare: A review. In 2018 Second
international conference on electronics, communication and
aerospace technology (ICECA), pages 910–914. IEEE, 2018.
1

[42] Chandra Thapa, Mahawaga Arachchige Pathum Chamikara,
and Seyit A Camtepe. Advancements of federated learn-
ing towards privacy preservation: from federated learning to
split learning. Federated Learning Systems: Towards Next-
Generation AI, pages 79–109, 2021. 2

[43] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International conference on machine learning,
pages 10347–10357. PMLR, 2021. 6, 1

[44] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and
Ramesh Raskar. Split learning for health: Distributed deep
learning without sharing raw patient data. arXiv preprint
arXiv:1812.00564, 2018. 1, 2, 7

[45] Jingye Wang, Ruoyi Du, Dongliang Chang, Kongming
Liang, and Zhanyu Ma. Domain generalization via
frequency-domain-based feature disentanglement and inter-
action. In Proceedings of the 30th ACM International Con-
ference on Multimedia, pages 4821–4829, 2022. 4, 5

[46] Lixu Wang, Shichao Xu, Xiao Wang, and Qi Zhu. Address-
ing class imbalance in federated learning. In Proceedings of
the AAAI conference on artificial intelligence, pages 10165–
10173, 2021. 1

[47] Lixu Wang, Shichao Xu, Ruiqi Xu, Xiao Wang, and Qi Zhu.
Non-transferable learning: A new approach for model own-
ership verification and applicability authorization. In In-
ternational Conference on Learning Representation (ICLR-
2022), 2022. 1

[48] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 7

[49] Guangxuan Xiao, Ji Lin, and Song Han. Offsite-tuning:
Transfer learning without full model. arXiv preprint
arXiv:2302.04870, 2023. 1, 2, 7

[50] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transform-
ers. Advances in neural information processing systems, 34:
12077–12090, 2021. 1

[51] Chengming Xu, Siqian Yang, Yabiao Wang, Zhanxiong
Wang, Yanwei Fu, and Xiangyang Xue. Exploring efficient
few-shot adaptation for vision transformers. Transactions on
Machine Learning Research. 2

[52] Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal
learning with transformers: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(10):12113–
12132, 2023. 1

[53] Xiaoyang Xu, Mengda Yang, Wenzhe Yi, Ziang Li, Juan
Wang, Hongxin Hu, Yong Zhuang, and Yaxin Liu. A stealthy

wrongdoer: Feature-oriented reconstruction attack against
split learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12130–
12139, 2024. 1, 2, 7, 8

[54] Yupeng Yin, Xianglong Zhang, Huanle Zhang, Feng Li, Yue
Yu, Xiuzhen Cheng, and Pengfei Hu. Ginver: Generative
model inversion attacks against collaborative inference. In
Proceedings of the ACM Web Conference 2023, pages 2122–
2131, 2023. 1, 2

[55] Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and
Guangyu Sun. Ptq4vit: Post-training quantization for vision
transformers with twin uniform quantization. In European
conference on computer vision, pages 191–207. Springer,
2022. 5

[56] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 7

[57] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–
2232, 2017. 2

	Introduction
	Related Works
	Split Learning
	Vision Transformer Adaptation

	Methodology
	Preliminaries

	Experiments

