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Abstract

In this paper, we present a new generic Structure-from-
Motion pipeline, GenSfM, that uses a non-parametric cam-
era projection model. The model is self-calibrated during
the reconstruction process and can fit a wide variety of
cameras, ranging from simple low-distortion pinhole cam-
eras to more extreme optical systems such as fisheye or
catadioptric cameras. The key component in our frame-
work is an adaptive calibration procedure that can esti-
mate partial calibrations, only modeling regions of the im-
age where sufficient constraints are available. In experi-
ments, we show that our method achieves comparable accu-
racy to traditional Structure-from-Motion pipelines in easy
scenarios, and outperforms them in cases where they are
unable to self-calibrate their parametric models. Code is at
https://github.com/Ivonne320/GenSfM.git

1. Introduction
Structure-from-Motion (SfM) has a long history in com-
puter vision, dating back to Ullman [32]. It tackles the
problem of jointly estimating the underlying 3D structure
and camera poses given an arbitrary image collection. It is
for example used to build maps for localization [22, 29] or
to estimate initial camera geometry and calibration for fur-
ther dense or implicit reconstruction [10, 17, 25].

While there have been some recent progress in non-
sequential pipelines (e.g. [19]), the incremental paradigm
which alternates registering images with triangulation and
bundle adjustment, has dominated the field in the last
decade. Common to both approaches is to model the cam-
era intrinsic calibration using low-dimensional paramet-
ric models, usually polynomials or rational functions with
around 3 to 12 parameters. In the literature, there exists a
plethora of different camera models [6, 7, 21] that fit dif-
ferent types of optical systems, ranging from simple pin-
hole cameras to complex catadioptric setups. As lens dis-
tortion is dominated by the radial component for most cam-
eras, many models are designed to be radially symmetric.

*Equal contribution
†The work is completed during exchange study at ETH Zurich.

Figure 1. Non-parametric Camera Models in Strcuture-from-
Motion. Our framework jointly performs Structure-from-Motion
while calibrating a non-parametric camera model. The camera
model is flexible and can fit a wide variety of cameras, including
severely distorted images such as fisheye or catadioptric.

In other words, the distortion only varies with the distance
to the image center, but not the angle.

In a parallel development, there are also geometric es-
timation methods that avoid explicitly estimating the lens
distortion. Examples are methods relying on the Radial
Alignment Constraint (RAC), originally from Tsai [31].
These methods derive geometric constraints that are in-
variant to the radial distortion by ignoring the radial off-
set, which is the distance to the center, and only consid-
ering the radial angle towards the projection. This has
been used for stratified calibration methods for radial distor-
tion (e.g. [11, 12, 31]) and multi-view pose estimation [8].
Larsson et al. presented a full incremental Structure-from-
Motion framework in [13] based on this projection con-
straint, which recovers the 3D structure and partial camera
geometry while ignoring the radial distortion of the cam-
eras. Another recent approach is to implicitly model the
distortion map by regularization, for example, requiring it
to be monotonic [4] or smooth [18].

In this paper, we present a novel generic incremental
Structure-from-Motion pipeline, GenSfM, that instead uses
a non-parametric model for the intrinsic calibration as illus-
trated in Fig. 1. We introduce a natural spline-based rep-
resentation for the calibration map, which enables smooth,
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invertible, and generic modeling of diverse camera distor-
tions. The proposed system adopts a stratified approach that
combines the 1D radial reconstruction framework ([8, 13])
with the implicit distortion pose estimation [18] to bootstrap
the reconstruction and camera poses before estimating the
intrinsic calibrations. To deal with the large degrees of free-
dom present in the non-parametric models we propose an
adaptive calibration scheme that can estimate partial cali-
brations for regions of images that have enough constraints.
We designed a mixed triangulation method to leverage full
2D reprojection constraints for points within the calibrated
regions while using the distortion-invariant radial reprojec-
tion error for points outside.

In thorough experiments, we demonstrate that our
Structure-from-Motion pipeline can robustly and accurately
reconstruct image collections while jointly estimating com-
plex intrinsic calibrations. We show that our non-parametric
model is flexible and can fit a wide variety of camera mod-
els, including more extreme projection mappings such as
fisheye or catadioptric. We compare favorably against state-
of-the-art Structure-from-Motion frameworks and surpass
them in cases where they are not able to self-calibrate com-
plex image models during reconstruction.

The proposed system complements traditional SfM
pipelines by providing a bootstrapping mechanism or serv-
ing as an alternative in the presence of complex cameras or
in-the-wild images with unknown distortion patterns. We
believe it opens up the possibility of incorporating a much
wider range of cameras into computer vision tasks.

2. Background and Related Works
Parametric and Non-Parametric Camera Models. For
wide field-of-view cameras, the standard pinhole model is
generally insufficient. To handle the deviation, which is also
referred to as distortion, various types of non-linear distor-
tion functions are introduced. The projection can for exam-
ple then be formalized as

x = f · D(Π(RX+ t)) + c, (1)

where f is the focal length, Π the pinhole projection (deho-
mogenization), c the principal point and D the non-linear
function for the distortion modeling. Commonly, the distor-
tion function is radially symmetric and only depends on the
radial offset from the principle point. One common choice
for the distortion mapping is then

d(r) = 1 + k1r
2 + k2r

4 + · · · , (2)

which is the Brown-Conrady model [3, 5]. Such formula-
tions fails in the case of very large field-of-view cameras
(e.g. fisheye or catadioptric systems). To address this, [23]
instead reformulate the projection as

λ

[
x

F (∥x∥)

]
= RX+ t, (3)

where F : R+ → R represents the distortion function.
Other variations exist, such as [9], which instead expresses
the distortion in terms of the opening angle, i.e.

d(r) = 1 + k1θ
2 + k2θ

4 + · · · , (4)

where θ = atan2(
√
x2 + y2, z), (x, y, z)⊤ = RX+ t. The

above formulations assume pre-determined polynomials for
the camera distortion modeling, so they are referred to as
parametric camera models.

Meanwhile, another category of camera models known
as non-parametric camera models are introduced in the
literature. Instead of relying on polynomials with fixed
form, it models the camera intrinsics on a per-point ba-
sis. Since first introduced by Grossberg and Nayar [6], a
series of works are proposed to improve the performances
[1, 7, 20, 21, 27]. In line with this regime, [4, 18] proposes
camera pose estimation algorithms based on the monotonic-
ity of image radii concerning the image ray and on the
smoothness of the focal length concerning the image radii
respectively. Recently, [36] proposes to model camera in-
trinsics with neural networks. Due to its simplicity, differ-
entiability, and high accuracy, we adopt [18] as the algo-
rithm for camera pose estimation.

Multiple View Geometry of 1D Radial Cameras. The
multiple view geometry of 1D radial cameras was origi-
nally studied by Thirthala and Pollefeys [30]. It is shown
that the estimation of camera poses with any bi- or trifocal
tensors in general position is not possible, and geometric
constraints first start to appear in four views. In [30], the
authors further proposed linear and minimal solvers where
three views have intersecting principal axes or are planar.
Larsson et al. [13] introduce two additional solvers with
purely radial trifocal tensor and a mixed trifocal tensor with
one central camera and two radial cameras in general posi-
tion. Hruby et al. [8] take one step further and describe the
minimal solutions for radial camera relative pose for quadri-
focal in the uncalibrated, calibrated, and upright case for
the first time. It observes that though seemingly intractable
with 3584 solutions, the problem can be decomposed sig-
nificantly, and can be addressed by solving a sequence of
subproblems with 28, 2, and 4 solutions. In this work, we
adopt the solver proposed by [8] in the initialization step.

Structure-from-Motion Pipelines. Algorithms address-
ing the problem of Structure-from-Motion generally fall
into two categories: incremental method and global
method. Though some recent progress has been made [19],
the incremental pipelines have dominated the field over
decades. Bundler [28], VisualSfM [35] are representative
works that date back decades ago. COLMAP [24, 25] is
by far the most popular Structure-from-Motion software.
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Figure 2. Pipeline for incremental SfM with non-parametric camera model. Without known calibration or specific parametric model, we
collect initial 2D-3D correspondences with radial alignment constraint as in [8]. As images iteratively registered to the 3D model, we
progressively calibrate the camera by fitting a non-parametric distortion map initialized with implicit distortion model [18].

More recently, PixSfM [15], VGGSfM [33] and Zhang et
al. [37] proposes learning based methods for Structure-
from-Motion task. However, the above methods share a
similar drawback in that they all rely on parametric cam-
era models and can struggle in the presence of large un-
known distortion in images. In contrast, we present a non-
parametric Structure-from-Motion pipeline that is applica-
ble to various camera models, ranging from simple pinhole
cameras to fisheye cameras and to catadioptric systems.

Calibration-free Structure-from-Motion. Larsson et
al. [13] presents the first full incremental Structure-from-
Motion framework, based on the radial alignment constraint
(RAC) only. In [13], the authors demonstrate the possibility
of reconstructing scenes in the presence of high distortion,
where traditional parametric-camera model-based pipelines
(e.g. [24]) fail. However, without camera calibration, the es-
timation of the camera pose is only accurate up to 5 degree-
of-freedom, with the forward motion of cameras remaining
ambiguous. In contrast, our framework is able to recover
the full 6 degree-of-freedom camera pose by jointly self-
calibrating non-parametric camera models.

3. Intrinsic Calibration Representation
In this section we present the non-parametric camera model
which we use in our Structure-from-Motion pipeline. We
assume that the camera is radially symmetric and that the
principal point is known (taken as the image center unless
otherwise stated). For ease of notation we will assume all
image points are centered (x = xori − c).

In this case, the intrinsics calibration of the camera can
be modeled as a mapping between the opening angle θ,
i.e. angle to the principal axis, and the image radius r =
∥x∥. Let M : R → R denote this map, i.e. M [θ] = r.
The 3D point X then projects into the image of the camera
(R, t) as

xproj = M [θ] · R12X+ t12
∥R12X+ t12∥

(5)

where θ = atan2 (∥R12X+ t12∥, R3X+ t3), with
(R12, t12) denoting the first two rows of (R, t).

In our framework, we use an adaptive spline-based rep-
resentation for the map M [θ] which can model generic
smooth functions. The representation consists of a collec-
tion of control points

(θ1, . . . , θK), θ1 < θ2 < · · · < θK (6)

together with corresponding image radii (r1, . . . , rK). The
calibrated interval [θ1, θK ] and the position/value [r1, rK ]
of the control points are adaptively estimated and updated
during the reconstruction process. This is further detailed
in Section 4.3.2. The map M [θ] can then be evaluated effi-
ciently through cubic interpolation and it is easy to compute
analytic derivatives for optimization.

Note that since this mapping should be invertible (no dis-
tinct image rays should project onto the same image point),
we could also have chosen to represent the intrinsic calibra-
tion in terms of the opposite map, i.e. going from radii to
angles, M−1[r] = θ. However, since we need to optimize
over the 2D reprojection error ∥x−xproj∥ in our framework,
it is more convenient to model the θ − r mapping.

In the cases where the inverse map is needed, e.g. for
triangulation, the inverse can be efficiently computed us-
ing Newton’s method. Initialize θ0 to be the corresponding
value with the closest radii of the control point that θ0 = θk
where k = argmink |rk − r|, then we update θ with the
following rule

θt+1 = θt −
M [θt]− r

M ′(θt)
(7)

where M ′(θ) is the first order derivative of M(θ). We pro-
ceed until convergence of M(θt) = r.

4. Framework
The overall design of the framework follows the incremen-
tal pipeline in [13, 24], and is illustrated in Figure 2. The re-
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Figure 3. Reconstruction results from pinhole-like images to
severely distorted images. The reconstructions in each row come
from COLMAP [24], RadialSfM [13] with pose upgraded and
bundle adjusted with [18] and our pipeline, from left to right.

construction is first initialized by estimating a radial quadri-
focal tensor using the minimal solver from [8] and then pro-
ceeds to the iterative reconstruction stage. During this stage,
images are registered with the camera pose estimation al-
gorithm from [18], and progressively calibrated using the
spline-based representation in a robust scheme. Points are
triangulated with mixed constraints, using combinations of
2D and 1D radial errors depending on the availability of the
calibration map. The cameras, structure and calibration are
refined in interleaving local and global bundle adjustments.

4.1. Initialization

To initialize the reconstruction we select four images and
estimate the radial quadrifocal tensor using the 13-point
solver from [8] in a RANSAC framework. Once the initial
four poses are estimated, 3D points are triangulated using
the radial constraints. At this stage, all cameras are fully
uncalibrated and treated as 1D radial cameras.

Note that in [13], a combination of two three-view
solvers was used which make strong assumptions on the
particular camera motion (intersecting principal axes). In
contrast, the solver from [8] allows us to initialize with cam-
eras in arbitrary configuration.

4.2. Image Registration

To register a new image to the reconstruction we estab-
lish tentative 2D-3D correspondences using standard 2D-
2D transitive matching (following [24]). We then apply the
camera pose estimation method from Pan et al. [18] which
leverages an implict distortion model. If multiple images
are taken by the same camera, we use the joint estimation
scheme proposed in [18] to improve accuracy.

In the case where the image belongs to a camera that al-
ready has (partial) calibration available, it would be possi-
ble to also use the known distortion mapping together with
a standard Perspective-n-Point (PnP) method. However, we
found that estimating pose with [18] disentangles the steps
of image registration and intrinsic estimation, making the
registration process more robust to inaccurate calibrations.
Also, this allows us to identify inliers in the uncalibrated
region, which is the basis for growing the calibrated region.

4.3. Updating the Calibration Map

Once we have sufficient constraints on the intrinsic calibra-
tion we start estimating and updating the calibration map
M [θ] for each camera. Each 2D-3D correspondence yields
pairs of angles and radii (θi, ri), which we de-noise using
the regularization-based method from Pan et al. [18].

To estimate the distortion map we use a two-step process
which first identifies a calibrated interval [θmin, θmax] fol-
lowed by a robust spline fitting scheme. The goal is to only
calibrate regions of the image which have sufficient con-
straints for accurate calibration and postpone calibrating the
remainder until more constraints become available.

4.3.1 Calibrated Area Recognition

In order to maintain robustness in the presence of poorly es-
timated distortion from sparse correspondences, we do not
directly use all angle-radius pairs {(θi, ri)}. Instead, we
split the segments into pieces based on the distance of points
to their neighbors and only accept the largest piece whose
observations are sufficiently close to each other. To deter-
mine the threshold, we collect the distance for every point
to its previous point and denote the collection as D = {di}.
Then, we use ϵd = D̄ + σd as the threshold. Here, D̄, σd

stands for the mean and the standard deviation of D. When
the number of observations is abundant, this threshold can
be unnecessarily small. Thus, the effective threshold is cho-
sen to be the maximum between ϵd and a constant c. We set
c to be 0.1◦ in our experiments. This process ensures that
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our interval [θmin, θmax] contain enough points with suffi-
cient density to constrain the calibration.

In theory, multiple disjoint segments can be maintained
to further enlarge the calibrated region, however, we no-
ticed in the experiments a single segment [θmin, θmax] can
cover the majority of the well-calibrated region. Also, mul-
tiple segments would introduce the problem of inconsistent
endpoints from different segments. Thus, we maintain our
design of using a single segment.

4.3.2 Robust Spline Fitting

To robustly estimate the calibration map, we perform
RANSAC sampling of control points within the cali-
brated region. The two endpoints of the calibrated re-
gion are always included in the sample to ensure full cov-
erage. The output of this step is a collection of con-
trol points (θ1, . . . , θK) together with corresponding image
radii (r1, . . . , rK), where the endpoints correspond to the
interval boundaries, i.e. θ1 = θmin and θK = θmax. By
default, we choose 10 control points in our pipeline. The
impact of K is analyzed in the ablation study in Section 5.3.

4.4. Mixed Triangulation

For triangulation, we need to deal with combinations of cal-
ibrated and uncalibrated points, either coming from cam-
eras being fully uncalibrated or points lying outside the cal-
ibrated region. For this we propose to use a mix between
2D constraints and the distortion-invariant 1D radial con-
straints, allowing both correspondence types to contribute.

For a 2D-3D correspondence in the uncalibrated region,
it is only required to lie on the radial line, thus it yields a
single constraint on the 3D point,

[
−y x 0

]
·

r⊤1 t1
r⊤2 t2
r⊤3 t3

 ·
[
X
1

]
= 0 (8)

This can be interpreted as restricting X to the plane passing
through the camera center and the radial camera line that
n⊤X+ d = 0. Here, n = xr2 − yr1 and d = xt2 − yt1.

For correspondences in the calibrated region, we undis-
tort the point to the normalized image coordinates x′ =
(x′, y′) by locally inverting M [θ] (see Section 3). Then,
the normalized point (x′, y′) imposes two constraints:

[
1 0 −x′

0 1 −y′

]
·

r⊤1 t1
r⊤2 t2
r⊤3 t3

 ·
[
X
1

]
= 0 (9)

This is equivalent to standard triangulation. Since a 3D
point has 3 degree-of-freedom thus requiring at least 3 con-
straints, 3 different minimal cases exist for the triangulation:
3 uncalibrated points, 1 calibrated point + 1 uncalibrated

Figure 4. Qualitative result of estimated calibration map on Ba-
belCalib [16] with our full reconstruction pipeline. The figure
presents the point cloud, calibration map with highlighted cal-
ibrated area, the original images and their undistortion with the
estimated calibration map.

point, and 2 calibrated points. Similar to [24], we perform
the triangulation process in the LO-RANSAC [14] scheme
and iterate through all possible combinations. We also only
accept a point if it is supported by at least 4 constraints as in
[13]. For 3D points without any correspondence in the cali-
brated region, it is required to be seen in four views, while it
is only required to be observed in three views or two views
if some calibrated observations are available.

4.5. Bundle Adjustment

The difference between bundle adjustment in the proposed
pipeline and that in standard pipelines with parametric cam-
era models is that we distinguish between the calibrated re-
gion and the uncalibrated region.

For points in the calibrated region, we minimize the full
reprojection error with the estimated calibration map,

ε =

∥∥∥∥M [θ] · R12X+ t12
∥R12X+ t12∥

− x

∥∥∥∥ . (10)

For the uncalibrated region, we instead minimize the or-
thogonal distance to the radial line as in [13],

ε =

∥∥∥∥(nn⊤

n⊤n
− I

)
x

∥∥∥∥ , where n = R12X+ t12 (11)

which does not depend on the radial distortion.
The calibration maps are jointly refined with the 3D

points and camera poses during bundle adjustment. To facil-
itate the optimization process, we keep the θ values of the
control points to be fixed, only optimizing r values. No-
tice that this does not guarantee the monotonicity of the
optimization result. We perform postprocessing to restore
monotonicity. This can potentially violate the geometric
constraints of some points which will be removed in the fil-
tering. However, as these correspondences are error-prone
since they contribute to misleading optimization direction,
the performance of the pipeline remains intact.
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[16]∗ [18]∗ GenSfM (Ours)† GenSfM (Ours)

ϵBC
rms ϵrms ϵrms % Calib ϵrms % Calib

OV corner 1.52 2.09 2.11 99.8 0.89 100.0
OV cube 0.29 0.31 1.59 99.8 0.31 100.0
OV plane 0.60 0.82 0.60 99.4 0.63 97.8
Kalibr 0.21 0.30 1.30 95.4 0.25 99.9
OCamCalib 0.68 0.97 1.30 95.4 0.61 98.1
UZH DAVIS 0.41 0.42 0.71 99.5 0.42 99.9
UZH Snapdragon 0.26 0.28 0.44 100.0 0.27 99.9

Table 1. Reprojection Error (ϵrms) and ratio of calibrated points
on BabelCalib [16]. Columns marked with ∗ are taken from [18].
Results with † have principal points fixed at the image center.

AUC @ 5◦

COLMAP COLMAP COLMAP
[13] + [18]

GenSfM
(pinhole) (radial) (thin prism) (ours)

courtyard 10.8 67.2 90.0 64.2 91.1
delivery area 9.9 3.3 93.7 26.0 90.2
electro 8.2 30.7 73.9 11.1 69.2
facade 29.3 79.7 91.7 71.1 91.0
kicker 18.1 71.8 83.0 48.4 83.6
meadow 1.3 0.9 0.9 - -
office 15.0 36.4 0.3 28.5 45.7
pipes 18.6 20.9 1.0 - -
playground 16.2 72.9 80.9 20.6 93.9
relief 68.6 77.4 94.0 51.0 92.7
relief 2 50.7 80.7 94.5 0.0 91.4
terrace 24.3 71.7 95.5 32.5 91.6
terrains 25.4 37.0 0.1 1.4 92.5

Average 22.8 50.0 61.5 27.3 71.8

Table 2. Camera pose evaluation on ETH3D [26]. We achieve the
best or second-best performance on all the scenes and obtain the
highest AUC score on average.

Alternatively, the implicit bundle adjustment process as
in [18] could also be deployed. We do not adopt such a
scheme because it needs to be performed in an iterative pro-
cess, and it relies on comparatively weaker constraints than
the calibrated bundle adjustment.

5. Experiments
In the experimental evaluation, we demonstrate the effec-
tiveness of the proposed pipeline under various conditions.
We evaluate the expressiveness of the chosen camera in-
trinsics representation in the controlled setting. We also
evaluate the performance of the proposed self-calibrating
pipeline on in-the-wild datasets. Finally, we analyze the
impact of number of control points on the performance.

5.1. Controlled Checkerboard Calibration

We first evaluate the calibration map of the proposed
pipeline from classical checkerboard data. In this experi-
ment, we consider datasets BabelCalib [16]. It contains in
total of 41 cameras, with a wide variety of field-of-view
spanning from 88◦ to 187◦. We obtain the calibration map
M [θ] as detailed in Sec. 3 and Sec. 4.3.2, followed by bun-
dle adjustment as described in Sec. 4.5 on the training set
with fixed 3D points. On the test set, we keep the spline
and 3D points fixed. We take calibration results from Ba-

AUC @ 5◦

COLMAP COLMAP COLMAP
[13] + [18]

GenSfM
(pinhole) (radial) (thin prism) (ours)

courtyard 1.7 1.8 0.1 2.2 89.1
delivery area 1.2 1.2 0.1 16.1 89.7
electro 0.8 1.0 0.1 11.0 63.0
facade 1.7 2.1 0.1 62.9 91.1
kicker 2.4 2.4 0.2 2.5 82.5
meadow 2.7 0.9 0.9 - -
office 0.6 0.4 0.3 - -
pipes 3.1 4.3 1.0 - -
playground 1.1 1.2 0.1 13.0 0.8
relief 9.1 2.5 0.2 42.2 75.2
relief 2 2.9 3.1 0.4 31.4 65.2
terrace 2.1 1.9 0.4 4.5 2.1
terrains 1.5 1.7 0.1 3.0 3.6

Average 2.4 1.9 0.3 14.5 43.2

Table 3. Results on distorted ETH3D [26]. We remain compara-
ble performance against the original dataset while other methods
significantly struggle from the distortion.

belCalib [16] and [18] as baselines.
Results can be found in Table 1. We report results with

and without principal point refinement with [18] for the
proposed method. Results show that the proposed method
with optimized principal points achieves a similar level
of reprojection error as BabelCalib [16]. Compared with
another non-parametric model [18], our method achieves
much smaller reprojection errors. We attribute this improve-
ment to the stronger regularization from full-dimensional
bundle adjustment than the smoothness constraints in [18].

Worth noting is that the reprojection error remains low
with un-optimized principal points (marked as †), although
principal points can deviate up to tens of pixels from opti-
mized ones. Such observations indicate that the assumption
of the principle point at image centers will not cause a sig-
nificant performance drop.

Qualitative results of reconstructing the dataset in a self-
calibrated manner can be found in Figure 4. The estimated
spline follows closely to the parametric pseudo-ground truth
and the estimated point cloud is clean.

5.2. Self-calibrating Structure-from-Motion

To validate the accuracy and robustness of the self-
calibrating pipeline, we conduct end-to-end reconstruction
on images with various conditions. In this section, we
mainly compare with two baselines.

COLMAP [24] COLMAP is by far the most popular
parametric Structure-from-Motion pipeline. It supports
multiple types of camera models, ranging from pinhole
cameras to camera models with larger field-of-view. We
experimented with three camera models: simple pinhole
model (denoted as pinhole) with 3 parameters (f, cx, cy),
simple radial model [3, 5] (denoted as radial) with 4 pa-
rameters (f, cx, cy, k), and thin-prism fisheye model [34]
(denoted as thin prism) with 12 parameters. We adopt
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AUC Completeness AUC Accuracy AUC F1

COLMAP COLMAP COLMAP
[13] + [18]

GenSfM COLMAP COLMAP COLMAP
[13] + [18]

GenSfM COLMAP COLMAP COLMAP
[13] + [18]

GenSfM

(pinhole) (radial) (thin prism) (ours) (pinhole) (radial) (thin prism) (ours) (pinhole) (radial) (thin prism) (ours)

courtyard 12.7 26.6 31.9 16.9 31.3 35.7 79.0 97.7 98.4 97.9 18.6 38.6 45.6 27.9 44.9
delivery area 5.8 2.1 28.5 8.0 25.9 9.8 2.7 92.0 86.5 88.7 6.9 2.2 40.8 14.3 37.7
electro 8.7 11.5 15.4 1.4 14.9 41.5 71.6 95.9 95.0 91.2 13.7 18.9 25.3 2.8 24.4
facade 21.0 34.4 39.0 18.3 38.4 34.1 74.9 91.2 72.5 90.9 25.8 45.4 52.5 27.7 51.9
kicker 21.8 27.4 28.0 15.8 28.5 82.2 93.8 97.8 98.0 97.0 32.6 40.3 41.2 26.3 41.6
meadow 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
office 13.7 17.6 0.0 11.8 17.0 73.1 94.3 0.0 99.1 97.5 22.5 28.2 0.0 20.2 27.4
pipes 7.4 7.4 0.0 0.0 0.0 83.9 80.7 0.0 0.0 0.0 13.3 13.3 0.0 0.0 0.0
playground 23.8 36.0 37.6 9.0 37.6 58.8 91.1 98.1 98.7 97.9 33.2 49.3 51.6 16.0 51.5
relief 20.2 20.6 26.8 12.4 25.6 80.3 98.6 99.2 99.7 99.1 31.3 32.8 40.1 21.7 38.6
relief 2 21.4 26.1 29.2 0.0 28.5 74.1 91.2 98.9 0.0 96.8 32.3 38.8 42.6 0.0 41.7
terrace 23.8 34.8 38.1 13.0 33.7 37.9 78.6 95.8 93.4 95.5 28.6 45.1 50.3 21.6 45.8
terrains 31.7 34.6 0.0 0.5 37.2 83.5 86.9 0.0 0.3 98.7 42.9 46.2 0.0 0.3 50.2

Average 16.3 21.5 21.1 8.2 24.5 53.5 72.6 66.7 64.7 80.9 23.2 30.7 30.0 13.8 35.1

Table 4. Point cloud evaluation on ETH3D [26], the AUC is calculated at tolerance thresholds at 1 cm, 2 cm, 5 cm, 10 cm, and 50 cm. We
achieve comparable results as parametric camera models.

COLMAP with these three camera models as our paramet-
ric baselines.

RadialSfM [13] + Implicit Model [18] We first estimated
5 DoF camera poses with RadialSfM [13], then we up-
graded them and performed bundle adjustment with the im-
plicit camera model presented in [18]. This combination
serves as a non-parametric SfM baseline.

5.2.1 Metrics

We evaluate both the quality of the estimated camera poses
and point clouds. For camera poses, we report the AUC
(Area Under the recall Curve) scores calculated from the
maximum of relative rotation and translation error between
every image pair. Such metrics are widely deployed, as seen
in [19, 33]. For point cloud quality, we report the AUC
scores in three aspects: completeness, accuracy, and F1, fol-
lowing [26], measured at distance thresholds of 1 cm to 50
cm. The completeness measures the fraction of ground truth
points falling inside a certain tolerance range from the es-
timated points, which is equivalent to recall. The accuracy
measures the fraction of estimated points within a distance
threshold of the ground truth points, equivalent to precision.

5.2.2 Raw DSLR Images

We first evaluate the performance of the proposed pipelines
on the ETH3D DSLR images [26]. ETH3D [26] presents a
collection of high-resolution images with ground-truth pose
and point cloud up to millimeter accuracy. It is a standard
benchmark for evaluating the performance of Structure-
from-Motion systems. Example input images and recon-
structions for the courtyard scene can be found in the first
two rows of Figure 3. We ignore the EXIF tags of the im-
ages to evaluate the performance of different systems with-
out prior knowledge of camera intrinsics. We also share
cameras for all images from the same scene.

Results on camera pose are summarized in Table 2.
Entries marked with “-” indicate that the initialization
fails. The proposed method largely outperforms the non-
parametric Structure-from-Motion baseline ([13] + [18]).
As for parametric baselines, it achieves a similar level of
camera pose accuracy as COLMAP with the thin-prism
fisheye model while outperforming COLMAP with the
other two camera models by a large margin.

Point cloud evaluation results can be found in Table 4.
Compared with [13] + [18], the proposed method achieves
a significantly more complete point cloud with similar accu-
racy. Compared with parametric SfM pipelines, it performs
similarly to COLMAP with the thin-prism fisheye camera
model while obtaining more complete and more accurate
results than the other two models.

The result also demonstrates how the choice of cam-
era model largely alternates the performance of parametric
pipeline. In this experiment, although images are apparently
without clear distortion, fitting camera models with too few
camera parameters, such as simple pinhole/radial, can still
generally hamper the accuracy of the reconstruction. How-
ever, in the scenes where there are no sufficient point, com-
plex camera models may also fail, as in the pipes or office
scene. This implies the importance of a SfM pipeline with
flexible camera models as the proposed one.

5.2.3 Artificially Distorted Images

While a parametric Structure-from-Motion pipeline can
achieve reasonable reconstruction with sufficiently complex
camera models, it starts to struggle when evident distortions
are present in the image. To analyze the performance of
different pipelines in such scenarios, we manually distort
the ETH3D DSLR [26] images with polynomial radial dis-
tortion model implemented in OpenCV [2] and reconstruct
from there. Example distorted images and reconstruction
results can be found in the second two rows of Figure 3.

Quantitative results are summarized in Table 3. Results
indicate that the parametric SfM pipeline COLMAP [24]
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Figure 5. Undistortion results with estimated calibration map on catadioptric and fisheye images.

Figure 6. Impact of control point number on the calibration, evaluated on BabelCalib [16] with refined principal point

failed to obtain accurate reconstruction with all three cam-
era models. We attribute this to failures of initializing
parameters from the limited number of matches. The
non-parametric baseline obtains more accurate results than
COLMAP but falls short of us by a large margin. Com-
pared across results from the original and the distorted im-
ages, it can be seen that the accuracy for pose estimation
drops heavily for the non-parametric baseline while that for
the proposed method is less affected. This is benefited from
the calibrated region which leads to a more complete recon-
structed point cloud and strong regularization.

5.2.4 Images with Large Field-of-View

To demonstrate the flexibility of the calibration representa-
tion, we reconstruct with images from more extreme opti-
cal systems. We consider fisheye datasets from [13], and
datasets with catadioptric images. Example images and re-
construction can be found in the last four rows of Figure 3.
Since no ground truth is available for these datasets, only
qualitative results are presented. We also undistort the im-
ages with the estimated calibration map to demonstrate the
quality of the estimated spline as presented in Figure 5.
More qualitative results can be found in Supp. Mat.

5.3. Impact of Control Point Number

The number of control points determines the degree of free-
dom of the calibration map thus the representation capacity.
We designed an ablation study on the number of control
points for detailed analysis. We experimented on the Babel-
Calib [16], and used the same principal points and implicit
calibration from [18] as the initialization. We tested with 3,
5, 8, 10, 12, and 15 control points and conducted 5 indepen-
dent trials for each configuration. Root mean squared errors

are summarized in Figure 6. From the plot, it can be seen
that the performance varies largely with different numbers
of control points. As the number of control points increases,
the representation capacity increases, resulting in a decrease
in projection errors. However, when the number of control
points becomes too large, it becomes more difficult to cali-
brate and thus more unstable. We choose 10 as the default
number in our pipeline as it strikes a balance in between.
More detailed analysis can be found in Supp. Mat.

6. Conclusion
In this paper, we presented a self-calibrating Structure-
from-Motion pipeline with non-parametric camera models.
The highly flexible spline-based calibration map allows the
pipeline to reconstruct from images ranging from simple
low-distortion pinhole cameras to more extreme optical sys-
tems such as fisheye or catadioptric cameras. The key com-
ponent in our framework is an adaptive calibration proce-
dure. It only marks a region of images calibrated when
sufficient constraints are available. Through extensive ex-
periments, the proposed system demonstrates its flexibility
and robustness under various conditions, both in controlled
and self-calibrating scenarios. The system also successfully
reconstructs with catadioptric images in a self-calibrating
manner where traditionally parametric pipelines fail. We
believe the proposed pipeline to be a complement to tradi-
tional SfM pipelines, either as a bootstrapping technique or
as an alternative when images are highly distorted or camera
calibration patterns are unknown beforehand.
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