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Abstract

Vision-language models (VLMs) like CLIP (Contrastive
Language-Image Pre-Training) have seen remarkable suc-
cess in visual recognition, highlighting the increasing need
to safeguard the intellectual property (IP) of well-trained
models. Effective IP protection extends beyond ensuring
authorized usage; it also necessitates restricting model de-
ployment to authorized data domains, particularly when the
model is fine-tuned for specific target domains. However,
current IP protection methods often rely solely on the vi-
sual backbone, which may lack sufficient semantic richness.
To bridge this gap, we introduce IP-CLIP, a lightweight IP
protection strategy tailored to CLIP, employing a prompt-
based learning approach. By leveraging the frozen visual
backbone of CLIP, we extract both image style and con-
tent information, incorporating them into the learning of
IP prompt. This strategy acts as a robust barrier, effectively
preventing the unauthorized transfer of features from au-
thorized domains to unauthorized ones. Additionally, we
propose a style-enhancement branch that constructs feature
banks for both authorized and unauthorized domains. This
branch integrates self-enhanced and cross-domain features,
further strengthening IP-CLIP’s capability to block features
Jfrom unauthorized domains. Finally, we present new three
metrics designed to better balance the performance degra-
dation of authorized and unauthorized domains. Compre-
hensive experiments in various scenarios demonstrate its
promising potential for application in IP protection tasks
for VLMs.

1. Introduction

Driven by the availability of large-scale data and power-
ful computing hardware, vision-language models (VLMs)
like CLIP have recently achieved remarkable generaliza-
tion across a wide range of downstream tasks [24, 35, 36],
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Figure 1. Illustration of model IP protection with IP-CLIP. Do-
main and image tokens form the IP-Prompt, which a CLIP-based
model audits to verify data origin. This prevents unauthorized
transfers and degrades performance in unauthorized domains. No-
tably, IP-Prompt is a lightweight, plug-and-play module for CLIP-
based models.

leading to a surge in their commercial significance. How-
ever, developing a well-trained VLM is a resource-intensive
endeavor, requiring substantial investments in time, man-
power, and resources. This includes the design of special-
ized architectures [2, 10], access to vast amounts of high-
quality data [6, 18, 31], and the use of expensive compu-
tational resources [37]. As a result, protecting these mod-
els’ intellectual property (IP) has garnered significant atten-
tion [28-30, 32].

Previous research on IP protection has primarily concen-
trated on two aspects: ownership verification (i.e., verify-
ing who owns the model) [3, 20, 22, 25] and usage autho-
rization (i.e., authorizing who has the right to deploy the
model) [9, 23]. Some of these approaches incorporate deep
watermarks, embedding unique identifiers such as inputs,
parameters, gradients, architectures, or even outputs. Oth-
ers extract distinctive model characteristics, acting as “fin-
gerprints” [21] for deep models. While these techniques
provide a degree of protection, they can be easily bypassed
through fine-tuning or retraining. Moreover, authorized
users are often unrestricted in how they apply the model, al-
lowing them to effortlessly transfer high-performance mod-
els to similar tasks, which can lead to implicit IP infringe-
ment. This problem stems from the fact that VLM’s trained
visual backbones often generalize across domains, which



can breed model stealing, leading to illegal misuse and im-
plicit intellectual property infringement. An intuitive solu-
tion is to refine the model’s generalization boundary to fo-
cus on domain-specific features and restrict their use to au-
thorized domains. NTL [28] achieves this by amplifying the
maximum mean discrepancy (MMD) between authorized
and unauthorized domains, thus narrowing the model’s gen-
eralization scope. In contrast, CUTI-domain [29] intro-
duces an intermediate domain that combines features from
both domains, preventing unauthorized transfers. Although
existing deep model IP protection methods can provide
commendable performance in specific scenarios, they face
two fundamental challenges. Firstly, they require train-
ing models from scratch or extensive fine-tuning, which
is particularly demanding for VLMs due to their resource-
intensive nature. To address this, some prompt tuning
methods techniques, such as CoOp [36] and MaPLe [16]
have shown superior performance on some specific down-
stream tasks. CoOp uses soft prompts to learn text prompts,
while MaPLe introduces visual language prompts to en-
hance synergy. Secondly, some methods [28, 29] attempt to
constrain model performance by generating supplementary
data. However, these methods often introduce additional
training steps, and the generated data typically lack ade-
quate constraints and control, complicating practical use.

To tackle these challenges, we introduce IP-CLIP, a
novel approach for IP protection in CLIP-based models. IP-
CLIP utilizes a lightweight prompt-tuning technique called
IP-Prompt (illustrated in Fig. 1) to distinguish between au-
thorized and unauthorized prompts without requiring full
fine-tuning of all pre-trained parameters. Our approach in-
volves learning new prompts consisting of two types of to-
kens: i) Authorized/unauthorized domain token: this to-
ken captures the multi-scale style information of autho-
rized/unauthorized domains from the CLIP visual encoder.
ii) Image token: to effectively learn the visual distribu-
tion in the semantic space and obtain cue distributions for
each class, we utilize multi-scale visual feature responses
from various layers of the CLIP visual encoder. The down-
stream CLIP-based model integrates these two tokens into
its decision-making process, allowing it to simultaneously
identify both the Authorization and category of the input
image. This enables accurate predictions for images from
the authorized domain while deliberately producing incor-
rect results for samples from unauthorized domains. No-
tably, IP-Prompt functions as a lightweight, plug-and-play
module that can be positioned at the front end of various
CLIP-based models to provide IP protection. Additionally,
we introduce a style enhancement branch with feature banks
for both authorized and unauthorized domains. This branch
integrates self-enhanced and cross-domain features into the
model, improving its ability to recognize authorized fea-
tures while excluding unauthorized ones. Finally, we design
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three new metrics tailored to the IP protection scenario to
balance performance between authorized and unauthorized
domains. The main contributions of this paper are summa-
rized as follows:

We propose the IP-CLIP framework, an innovative ap-
proach for IP protection of VLMs, with only minimal
parameter updates. This framework is designed to pre-
vent the unauthorized transfer of well-trained, large-scale
VLMs from authorized to unauthorized domains.

We design a lightweight, plug-and-play IP-Prompt that
can be integrated into various CLIP-based models for ef-
fective IP protection of VLMs.

Our approach includes a style enhancement branch
that generates diverse visual features and integrates self-
enhanced and cross-domain features into the model. This
enables the protected model to better identify authorized
features and exclude unauthorized ones.

We introduce three new metrics for a comprehensive
evaluation of IP protection capabilities, addressing gaps
in current methods. Extensive experiments demonstrate
the effectiveness of IP-CLIP on various datasets and sce-
narios, providing strong evidence that our method offers
a robust solution for model IP protection.*

2. Related Work
2.1. Visual Language Models and Prompt Tuning

Large-scale visual language models (VLMs) integrate vi-
sual and textual inputs for a more comprehensive under-
standing, achieving strong performance in various computer
vision tasks [13, 14, 17]. Models like CLIP [24] and Vi-
sualBERT [19] rely on pre-trained language models (e.g.,
BERT [7], GPT [1]) for text encoding, while visual inputs
are processed via convnets or visual transformers. As these
models scale up, their computational demands increase,
making updates costly. To address this, parameter-efficient
tuning methods are essential.

Prompt tuning is one such approach, which focuses
on learning a small set of parameters while keeping the
larger model frozen [15]. CoOp [36] introduced the use
of soft prompts in VLMs, demonstrating that carefully
crafted text prompts can enhance image recognition per-
formance. By incorporating lightweight neural networks
to dynamically generate prompts for individual images,
CoCoOp [35] addresses the issue of prompt overfitting.
VPT [15] achieved strong results by using a small number
of visual prompts, and MaPLe [ 16] further combined textual
and visual prompts within CLIP to improve the alignment
between text and image representations. Although these pa-
rameter fine-tuning methods have demonstrated effective-
ness, they offer insufficient security. Lacking robust IP pro-
tection, the critical issue of safeguarding IP in large-scale

“https://github.com/LyWang12/IP-CLIP



models has garnered growing attention and scrutiny.
2.2. Intellectual Property (IP) Protection

A comprehensive IP protection strategy should address
both ownership verification and applicability authoriza-
tion. Ownership verification identifies the rightful owner
of the model, typically using watermarks or fingerprinting.
Peng et al. [22] introduced a general adversarial perturba-
tion fingerprinting method, which uses contrastive learn-
ing to match fingerprints with similarity scores. Bai et
al. [3] proposed BadCLIP, which impacts image and text en-
coders using trigger-aware prompts, while. Ren ef al. [25]
adopted a poison-only backdoor approach for embedding
watermarks and used hypothesis testing for remote verifica-
tion. However, these methods have been proven vulnerable
to certain removal and covering techniques.

Applicability authorization focuses on restricting the
model’s generalizability to specific domain. Wang et
al. [28] introduced non-transfer learning (NTL), which uses
an estimator with a feature kernel to highlight domain-
specific differences. Zeng et al. [33] extended NTL to natu-
ral language processing and auxiliary domain classifiers for
better domain separation. Hong et al. [11] further proposed
H-NTL, leveraging a causal model to disentangle content
and style as latent factors, thereby guiding the learning of
non-transferable representations based on intrinsic causal
relationships. Wang et al. [29] proposed an innovative com-
pact non-transferable isolation domain (CUTI-domain) to
isolate authorized and unauthorized domains, limiting per-
formance transfer. Existing IP protection methods can be
effective but often require extensive training or fine-tuning,
which is resource-intensive for VLMs. Additionally, meth-
ods relying on supplementary data often lack necessary con-
straints and controllability, complicating their practical use.

3. Method
3.1. Problem Definition

IP protection aims to confine model performance to the au-
thorized domain while reducing its recognition ability in the
unauthorized domain. Formally, we define the IP protection
task as follows [12]:

Definition 1 (IP protection): Let D, = {z4, ym‘}é\iﬁ
denote the dataset for the authorized domain, and D, =
{Tuiy Yui }ZVZ“I represent the dataset for the unauthorized do-
main, where N, and N,, are the number of samples in the
authorized and unauthorized domains, respectively. Data
X, and X, from these domains are drawn from different
distributions but share the same label space Y. In the au-
thorized domain, the model aims to map data to labels:

F(X,) =Y. (1)

The challenge of the IP protection task is to achieve non-
transferability to the unauthorized domain while minimally
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affecting performance in the authorized domain:

F(X,) LY and F(X,) L F(X.), 2)
where L denotes statistical independence. Current IP pro-
tection methods usually rely solely on visual backbones [ 12,
28, 29], which may lack sufficient semantic richness. To
bridge this gap, we introduce IP-CLIP, a lightweight IP pro-
tection strategy tailored for vision-language models.

3.2. Overview of IP-CLIP

Fig. 2 (a) illustrates the details of our proposed IP-CLIP
framework. The primary objective is to constrain model
performance to the authorized domain by learning both im-
age and domain-specific tokens, thereby emphasizing the
unique features of the authorized domain while preventing
unauthorized generalization. To accomplish this, we feed
both the authorized domain data z, and the unauthorized
domain data z,, into CLIP’s frozen visual encoder in paral-
lel, producing the output features f2 and f', respectively.
A learnable IP Projector is employed to capture multi-scale
features from different layers of the visual encoder, gener-
ating authorized / unauthorized domain tokens 7, / T,, and
image tokens [V1,Va,..., VL], which are concatenated as
input prompts for the frozen text encoder of CLIP, as de-
scribed in Sec. 3.3. The prediction result is obtained by
calculating the similarity between text feature f; and vi-
sual feature f,, and the label is denoted as y. The style
enhancement branch (Sec. 3.4), associated with the feature
banks, further improves the robustness of the features in dis-
tinguishing between authorized and unauthorized domains.
The frozen layers of our proposed IP-CLIP framework are
labeled with snowflakes, while the few trainable layers are
marked with sparks.

3.3. Our Proposed Prompt Learning

Instead of the static prompting technique, we aim to learn
prompts directly from the visual domain to efficiently en-
code visual distributions. Our IP protection approach
has two main objectives in prompt tuning: i) introduce
domain-specific tokens for authorized / unauthorized do-
mains, and ii) generate domain-independent image to-
kens for visual recognition tasks, as illustrated in Fig. 2
(c). Specifically, multi-scale features [fq(,l), féz), ceey f,SM)}
are extracted from the frozen visual encoder, where fﬁm)
represents the response from the m-th layer of the en-
coder. To create domain-specific tokens for authorized
/ unauthorized domains, multi-scale style features (rep-
resented by first-order and second-order batch-wise fea-
ture statistics) are computed and combined, resulting in
(oW ) (M) which are then processed by
the IP Projector to produce domain-specific tokens 7'. Ad-

ditionally, the multi-scale features | 51)7 52), R ff,M)] are
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Figure 2. (a) The architecture of IP-CLIP is based on a frozen CLIP backbone, where snowflakes denote frozen layers and sparks represent
trainable layers. During training, inputs from both the authorized domain x, and unauthorized domain x,, are fed into the frozen CLIP
visual encoder in parallel to generate feature vectors f; and f.'. The IP projector extracts domain tokens and image tokens from the visual
encoder, which are then used to construct prompts as inputs to the text encoder. The style enhancement branch takes the frozen feature bank
and f, as input, with s, representing the enhanced visual features. The prediction result is derived by calculating the similarity between
the visual feature s,/f, and the text feature f;. y and £ represent the label and loss function, respectively. (b) The Inference process of
IP-CLIP. (c) Structure of Prompt, and Prompt,,. (d) Construction of Feature bank B, and B,, where D and F' represent the input
dataset and its corresponding visual feature set, respectively. During training, the feature banks remain frozen. (e) Structure of STAM.

passed through IP Projector to generate L image-specific
tokens [V1, Va, ..., Vi]. Finially, the prompt for the autho-
rized domain is denoted as:

Prompt, = [T,; V1, Va, ..., V; [CLS]], 3)
while for the unauthorized domain, it is denoted as:
PTOmptu = [T’LL7V17‘/277VL7[CLS]]7 (4)

which are then input into the frozen text encoder to generate
text features f* and f}*, respectively.

3.4. Style-Enhancement Branch

For the style enhancement branch, we construct feature
banks for both the authorized and unauthorized domains
and introduce a style augment module (STAM) to diversify
the features.

Constructing feature banks. Leveraging CLIP’s zero-
shot capabilities, we extract text and image features from
D, and D,, as in Fig. 2 (d). For the authorized domain, we
compute a confidence score (i.e., the maximum probabil-
ity) for each image based on CLIP’s predictions. Similarly,
in the unauthorized domain, we calculate confidence scores
and assign pseudo-labels based on the highest score. We

then select the visual features with the highest confidence
in each category from both domains to construct N-way K-
shot feature banks, where [V is the number of categories and
K = 5 is the number of samples per category. Finally, the
centroid features for each category are calculated to form
the authorized domain feature bank (B,) and the unautho-
rized domain feature bank (B,,), both expressed as RAXC
where C' denotes the feature dimension. Note that the fea-
ture bank is built by iterating over the data only before train-
ing, after which it is frozen during the training process.
STyle Augment Module (STAM). STAM utilizes the
frozen feature banks to guide images in acquiring self-
enhanced and cross-domain features, as illustrated in Fig. 2
(e). First, the query @ is calculated from the input feature
+» while the key K, and value V,, are derived from the au-
thorized domain bank. Similarly, K, and V,, are calculated
from the unauthorized domain bank. We derive enhanced
5% and s} by utilizing a learnable attention layer combined
with a residual connection. This mechanism enables the
image feature to concentrate on the features from the autho-
rized or unauthorized domain banks. This process can be
formally expressed as:

T
a

Vi

5o = Conv(softmax ( ®)

)Va> e
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Here, \/dy denotes the scaling factor, while 7" represents
the transpose operation.

sy = Conv(softmax ( (6)

) Vi) + f.

3.5. Training Strategy

Target-specified IP-CLIP. We begin by detailing the train-
ing process for our proposed IP-CLIP, assuming both the
authorized and unauthorized domains are known. To allow
the model to effectively differentiate between the authorized
domain token 7, and unauthorized domain token 7, we
use mean squared error (MSE) loss to maximize their sepa-
ration, as described by:

Lo =Lyse(Te, Ty). (N

Next, we utilize contrastive loss function £, / L, to opti-
mize the image-text mapping between image feature f /
fu& and the text feature f*/ f;*, as shown in:

__exp((f3, [ (Ya))/7)
S exp((fa, fe(k)) /)

where 7 denotes temperature parameter, K denotes the
number of classes and (-, -) denotes the cosine similarity.

Similarly, the enhanced feature s / s¥ is aligned with
the text representation f{* / f{* by L4; / L,:, which can be
expressed as:

®)

a

exp({sy, fi'(ya))/T)
S exp({ss, £ (k) /)
For text representations, we use Kullback-Leibler (KL)

divergence loss to further separate the distances between the
authorized and unauthorized domains:

Lo = ©))

Ly = KL(f{, fi"). (10)

Additionally, we impose constraints on the similarity
distribution of the unauthorized domain’s text features, en-
suring they maintain low entropy through:

Een = ‘Centropy(ftu)-

Finally, our overall loss function can be expressed as:

(1)

L= £a_£u+£ai_£ui_£kl_)\1'£m+)\2'£en~ (12)

Where A\; and A\, are weight factors. The overall training
strategy is shown in Supplementary Algorithm 1.
Target-free IP-CLIP. In a restricted setting where only
authorized domain data is accessible, our IP protection fo-
cuses on reducing recognition performance for potential
out-of-domain (OOD) data with similar content but differ-
ent styles. Unlike Wang [29]’s use of GANs for OOD data
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synthesis, we intervene on the style factor to achieve this.
Our method enhances style [5] without changing the content
(as in Supplementary Tab. 1). We treat all style-augmented
images as unauthorized and train the model similarly to
target-specific IP-CLIP. The full algorithm is detailed in
Supplementary Algorithm 2.

Inference. During testing, as shown in Fig. 2 (b), the
sample is input into visual encoder, and the trained IP Pro-
jector generates the corresponding prompt, which is then
fed into text encoder. Finally, the cosine similarity between
fv and f; is computed to produce the prediction p:

pzargm?ﬂft,fv,i% (13)

where 7 denote the index of class.

4. Experiment

4.1. Implementation Details

We evaluated our method on three popular domain adapta-
tion / generalization benchmarks, which feature more cat-
egories, larger numbers, and more complex content com-
pared to the existing works [28-30]:

1. Office-31 [26] comprises images from three distinct do-

mains—Amazon, Dslr, and Webcam—spanning 31 cat-

egories and containing over 4,000 samples.

Office-Home-65 [27] consists of over 15,000 images

distributed across four domains—Art, Clipart, Product,

and Real-World—organized into 65 distinct categories.

. Mini-DomainNet [34] contains over 140,000 images
across domains including Clipart, Painting, Real, and
Sketch, with 126 categories.

The substantial differences in image style and quality across

domains in these datasets make them ideal for evaluating

the effectiveness of model IP protection algorithms in cross-
domain image recognition tasks.

Our comprehensive experiments are implemented on the
PyTorch platform and an NVIDIA GeForce RTX 3090 GPU
with 24GB of memory. The Adam optimizer, with an ini-
tial learning rate of e~?, is employed for model optimiza-
tion. We utilize the pre-trained CLIP backbone architecture.
Consistent with standard evaluation protocols, accuracy (%)
is used as the primary performance metric for each task.

4.2. Result of Target-Specified IP-CLIP

In the target-specified scenario, we randomly select two do-
mains from each dataset: one as the authorized domain and
the other as the unauthorized domain, thereby forming a IP
protection task. We first compute AL /ASL  the perfor-
mance of supervised learning CLIP with prompt fine-tuning
(SL-CLIP) trained on the authorized domain and tested on
the authorized / unauthorized domain, and AP /ALP | the
performance of IP-CLIP on the same domain. This process
is denoted as: ASL = AP with results shown in Tab. 1.



Authorized/Unauthorized | ~Amazon Dslr Webcam | Wy © Dyt Dl
Amazon 794=794 875= 175 888= 88 | 6352 80.00 0.00

Dslr 83.8= 38 957=957 988= 6.3 | 8254 8625 0.00

‘Webcam 80.0= 38 925= 25 944=944| 7845 83.10 0.00

Mean | / | 7484 8312 000

Table 1. The accuracy (%) of target-specified IP-CLIP on the
Office-31 [26]. The vertical/horizontal axis denotes the autho-
rized/unauthorized domain. In each task, the left of =" shows
the test accuracy of supervised learning CLIP on the unauthorized
domain, while the right presents the accuracy of IP-CLIP. W,
represents the weighted drop, while D,, and D, denote the drop
rates for the unauthorized and authorized domains, respectively.

Given CLIP’s strong feature extraction capabilities, it tends
to generalize well, resulting in higher A°Z. However, our
goal is to restrict the model to the authorized domain, lead-
ing to a lower A", Additionally, the previous method only
assessed the drop rates D, = A5 — AL for the authorized
and D, = p(ASY — AIP) for the unauthorized domains,
which is insufficient. An effective IP protection model must
balance maintaining high performance in the authorized do-
main with degrading performance in the unauthorized do-
main. To address this, we define a new weighted metric,
Wa, as follows:

Waa = AP . [D, — D,]. (14)

Tab. 2 present the performance comparison between
the proposed IP-CLIP and SOTA methods on the Office-
31 [26]. The results for CUTI [29] and NTL [28] were ob-
tained by reproducing their original implementations. For a
fair comparison, we adapted these methods into CLIP-based
versions, referred to as CUTI' and NTL', respectively.
The results indicate that the CLIP-based model exhibits
stronger protection capabilities compared to the CNN-based
model, achieving an average W,,, of 74.84% for IP-CLIP,
72.48% for CUTI!, 54.98% for NTL', 70.09% for CUTI,
and 62.11% for NTL. IP-CLIP achieves the highest scores
across nearly all metrics. Although CUTI slightly outper-
forms IP-CLIP in D,, in the "webcam” domain, its D, is
2.5%, significantly above IP-CLIP’s 0.0%. The goal of the
IP protection task is to reduce performance in the unautho-
rized domain while preserving accuracy in the authorized
domain. Thus, relying solely on D,, or D, is insufficient
for comprehensive evaluation, making a combined metric
like W, essential for a balanced assessment.

Additionally, we evaluated the proposed IP-CLIP on
Office-Home-65 [27] and Mini-DomainNet [34] to further
verify its effectiveness and versatility. The experimental re-
sults are summarized in Tab. 2, with further details avail-
able in Supplementary Tab. 2-16. Across these datasets,
the CLIP-based IP protection scheme consistently outper-
forms its CNN counterpart, with IP-CLIP demonstrating the
strongest protection capabilities. Fig. 3 presents several vi-
sualization examples.
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4.3. Result of Ownership Verification

To further verify model ownership, erroneous results are de-
liberately triggered. Specifically, a conventional backdoor
watermark is applied to each authorized domain [29], with
the processed data used as the corresponding unauthorized
domain. For ease of observation and analysis, we com-
puted the accuracy of the supervised convolutional neural
network (SL-CNN) related to CNN-based NTL/CUTI, as
well as the supervised CLIP (SL-CLIP) according to CLIP-
based NTL/CUTI!/IP-CLIP. After computing A, and A,,,
a new weighted metric is introduced based on these values:

Oua _ AgL . [AJaVIethod _ AuMethod]. (15)

As presented in Tab. 3, the difference in accuracy be-
tween SL-CNN/SL-CLIP with a watermark (A5%) and
without a watermark (Af LY is minimal, indicating low sen-
sitivity to the watermark. In contrast, [P-CLIP shows a
significant reduction in accuracy on unauthorized domains
with embedded watermarks (AL). This disparity in perfor-
mance serves as an effective measure for verifying model
ownership. Furthermore, the performance comparison be-
tween IP-CLIP and other state-of-the-art methods reveals
that, compared to CNN-based models, CLIP-based models
show stronger model protection capabilities. Notably, O,
of IP-CLIP is 71.3%, outperforming CUTI' and NTL' by
approximately 5.6% and 18.7%, respectively, with statisti-
cally significant differences (p < 0.05 [4, 8]).

4.4. Result of Target-Free IP-CLIP

In a more rigorous setting, i.e., the target-free scenario, we
generate unauthorized domains for each authorized domain,
as described in Sec. 3.5. Specifically, to assess the perfor-
mance of target-free IP-CLIP on the Office-31 [26] dataset,
we conduct three transfer tasks. For each task, one domain
is selected as the authorized domain, with unauthorized do-
mains generated accordingly, while the remaining unknown
domains are used for testing. The experimental results are
presented in Tab. 4 and Tab. 5.

Similarly, we constructed tasks using more datasets and
compared the results with the SOTA method, as shown
in Tab. 5 (with additional details provided in Supplemen-
tary Tab. 17-31). After analyzing the results, we found that
IP-CLIP consistently achieved the highest W,,, across all
three datasets. This demonstrates its ability to effectively re-
duce recognition accuracy for unauthorized domains while
maintaining strong recognition performance for authorized
domains, even in tasks of varying complexity, thus proving
its effectiveness in the restricted model IP protection task.

4.5. Result of Applicability Authorization

In the applicability authorization scenario, we assess the
model’s effectiveness by limiting its generalization ability



Datasels Authorized Waa T D¥ 1 D(} +

Domain |NTL [28] CUTI [29] NTL' [28] CUTI' [29] IP-CLIP|NTL [28] CUTI [29] NTL' [28] CUTI' [29] IP-CLIP|NTL [28] CUTI [29] NTL' [28] CUTI' [29] IP-CLIP

Amazon | 41.37 60.94 56.34 62.06 63.52 | 55.50 74.40 75.80 79.35 80.00 3.10 0.80 1.80 0.60 0.00

Office-31 Dslr 70.94 75.33 76.09 80.13 82.54 | 74.20 81.90 77.35 85.05 86.25 1.55 0.80 1.30 0.70 0.00

[26] Webcam | 74.02 74.02 32.50 75.24 7845 | 75.80 38.70 75.80 84.38 83.10 0.00 0.00 3.10 2.50 0.00

Mean 62.11 70.09 54.98 72.48 74.84* | 68.50 76.32 65.00 82.93 83.12 1.55 0.53 2.07 1.27 0.00*

Art 27.53 35.62 13.44 41.58 52.00 | 37.27 47.16 15.83 53.40 61.33 0.80 0.30 0.10 3.00 0.30

Office- Clipart 43.23 45.67 48.83 53.37 5645 | 54.31 57.35 65.67 72.40 7547 0.20 0.20 0.30 0.63 0.10

Home-65 | Product 41.31 41.78 39.90 56.82 5871 | 45.01 45.82 43.00 61.83 63.77 0.30 0.50 0.00 0.37 0.30

[27] RealWorld | 22.93 35.87 28.87 49.41 53.25 | 30.37 42.95 34.67 57.33 59.33 2.40 0.30 1.90 1.50 0.10

Mean 33.75 39.73 32.76 50.29 55.10* | 41.74 48.32 39.79 61.24 64.98* 043 0.33 0.57 1.38 0.20

Clipart 25.63 30.29 38.62 50.26 5147 | 36.60 40.87 46.30 59.40 61.00 2.10 0.80 0.60 0.20 0.30

Mini- Painting 19.53 19.88 41.66 46.88 53.85 | 32.37 3323 53.80 66.90 67.07 0.50 0.70 1.60 5.30 0.50

DomainNet| Real 29.26 31.52 52.29 54.77 58.82 | 35.87 38.40 59.03 62.30 65.27 1.20 1.10 0.80 1.10 0.20

[34] Sketch 29.37 30.18 33.78 51.09 54.59 | 45.77 46.90 42.77 64.57 68.57 1.00 0.96 0.60 0.70 0.50

Mean 25.95 27.97 41.59 50.75 54.68* | 37.65 39.85 50.48 63.29 65.48* 1.27 0.87 1.00 2.20 0.33*

Table 2. Wyq, Dy, and D, of target-specified IP-CLIP, CUTI', NTL', CUTI and NTL. W.,,,, represents the proposed weighted drop, while
D,, and D, denote the drop rates for the unauthorized and authorized domains, respectively. The best performance is indicated by the
numbers in bold. Statistical significance (p-value < 0.05 [4, 8]) is denoted with: *(IP-CLIP vs. others).

Authorized CNN-Based Models CLIP-Based Modesl

Datasets |with / without| SL-CNN NTL [28] CUTI [29] SL-CLIP [24] NTLT [28] CUTIT [29] IP-CLIP
Patch Au/Aa, Au/An, Oua T Au /Aa Oua T Au,/Aa Au/An, Oua T Au/Aa Oua T AU/AG, Oua T
Office-31 Amazon |59.4 /78.1|3.1/67.2 38.1 |1.6/78.1 454 | 80.0/81.3 |15.0/77.5 50.0 |3.8/80.0 61.0 |3.8/81.3 62.0
[26] Dslr 50.0 /98.4/0.0 /92.2 46.1 |47 /93.8 446 | 97.5/98.8 |50/950 878 |25/950 90.2(3.8/975 914
- Webcam  (62.5/95.3/1.6 /93.8 57.6 (4.7/922 547 | 950/97.5 |25/93.8 86.7 |7.5/950 83.1|1.3/963 903
Office- Art 54.7/76.8|1.6 /45.6 24.1 |[1.6/76.0 40.7 | 83.5/85.5 |16.5/87.3 59.1 |6.0/87.0 67.6 |5.0/87.5 68.9
Home-65 Clipart 70.8 /78.1/1.6 /549 37.7 |3.1/69.0 46.7 | 73.8/743 |55/73.5 502 |17.0/73.3 415 |55/735 50.2
7] Product |65.9 /92.2|2.3 /69.8 44.5 (2.6 /91.1 58.3 | 90.5/94.0 [60.5/92.5 29.0 |31.0/93.0 56.1 |2.0/92.8 82.2
- RealWorld (61.2 /82.6/1.8 /773 462 |03/83.6 51.0 | 87.5/88.5 |17.5/87.8 61.5|50/863 71.1 [6.5/92.0 74.8
Mini- Clipart 50.3 /65.5/0.8 /37.8 18.6 |1.6/67.8 33.3 | 84.0/85.1 |57.1/86.4 24.6 |13.7/852 60.1 [5.6/854 67.0
DomainNet Painting  [39.6 / 57.6/0.8 /46.1 179 [1.0/569 22.1 | 79.5/81.9 |31.1/80.0 389 |4.1/788 594 |4.1/81.1 61.2
[34] Real 50.2 /82.6/0.0 /40.3 202 |0.5/83.2 415 | 88.9/894 |26.2/919 584 |114 /921 71.7 |59/89.7 1745
’ Sketch 57.6 /63.5/03 /574 329 |0.7/61.3 349 | 81.0/81.0 |39.7/79.7 324 |48/79.7 60.7 |2.5/79.1 62.0
Mean / / 34.9 / 43.0 / / 52.6 / 65.7 / 71.3*

Table 3. The results of ownership verification by SL-CNN [29], NTL [28], CUTI [29], NTLT, CUTIT, and IP-CLIP. O, represents the
proposed weighted drop, while A,, and A, denote the accuarcy for the domain with and without patch, respectively. The best performance
is indicated by the numbers in bold. Statistical significance (p-value < 0.05 [4, 8]) is denoted with: *(IP-CLIP vs. others).

Authorized/Test | Amazon Dslr Webcam | Wuot DuT Dol
Amazon 794=790 875= 9.8 888=1383] 5032 64.10 040
Dslr 83.8=233 957=953 988= 0643 | 4489 4750 040
Webcam 80.0=17.8 925=100 944=925| 65.17 7235 190
Mean | / | 5346 6132 0.90

Table 4. The accuracy (%) of target-free IP-CLIP on the Office-
31 [26]. The vertical/horizontal axis denotes the authorized/test

domain.

to the authorized domain. Specifically, following the ap-
proach outlined in Sec. 4.3, we designate one domain as the
original domain, to which we apply a specific watermark,
resulting in the processed data being classified as the autho-
rized domain. The unauthorized domain set is then formed
by mixing the original domain, the domain generated from
the original domain, and the generated domain with the wa-
termark. During testing, the original domain and other un-
known domains are used as the test set.

Tab. 6 and Tab. 7 present the experimental results of IP-

CLIP and SOTA methods on the Office-31 [26], while re-
sults from additional datasets are shown in Tab. 6 (see Sup-
plementary Tab. 32-46 for further details). An interesting
pattern emerges from the Tab. 7: in some domains, the A,
of NTL and CUTI outperform that of IP-CLIP, while their
A, is lower than that of IP-CLIP, and even in extreme cases
is only one-third; Conversely, in certain cases, the A, per-
formance of NTL, CUTI, and IP-CLIP is comparable, but
their A, performance is worse. This demonstrates that re-
lying on a single indicator (i.e., A, and A,) to assess IP
protection is inadequate, highlighting the need for a com-
prehensive weighted metric D, = Ay - [Aa — Au]- As
expected, IP-CLIP consistently achieves the highest D,
across various domains, confirming that its generalization
is effectively constrained to the authorized domain.

5. Conclusion

Protecting the intellectual property (IP) of visual language
models (VLMs) like CLIP is a significant challenge in ar-
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Authorized Waya T

Datasets

D, t D, |

NTL [28] CUTI [29] NTL' [28] CUTI' [29] IP-CLIP|NTL [28] CUTI [29] NTL' [28] CUTI' [29] IP-CLIP |NTL [28] CUTI [29] NTL [28] CUTI' [29] IP-CLIP

Domain

Amazon 0.56 4.69 11.90 25.60 50.32 7.80 13.30 17.25 36.65 64.10 7.05 7.05 1.90 3.10 0.40

Office-31 Dslr 6.88 6.83 36.72 38.83 44.89 9.40 9.35 43.90 43.30 47.50 2.30 2.30 3.90 1.90 0.40
[26] Webcam 2.90 2.95 45.80 30.95 65.17 8.60 5.45 50.95 33.60 72.35 5.45 2.35 1.60 0.60 1.90
Mean 3.45 4.82 31.47 31.80 53.46* 8.60 9.37 37.37 37.85 61.32* 4.93 3.90 2.47 1.87 0.90

Art 0.10 -0.19 -0.71 -0.65 4.82 1.93 6.53 2.83 3.40 12.07 1.80 6.80 3.70 4.20 6.00

Office- Clipart 0.75 1.36 0.30 5.19 14.88 1.34 8.24 0.90 8.23 19.83 0.40 6.40 0.50 1.20 0.00
Home-65 | Product 3.13 421 14.08 12.57 23.67 6.08 13.08 19.03 18.50 30.40 2.60 8.10 3.30 4.30 3.80
[27] RealWorld | 2.39 3.72 13.07 3.82 20.41 2.83 8.83 17.67 5.50 22.93 0.00 4.20 2.70 1.20 0.20
Mean 1.59 2.28 6.68 523 15.95* 3.05 9.17 10.11 8.91 21.31* 1.20 6.38 2.55 273 2.50

Clipart -3.25 -1.85 -0.89 2.24 2.95 11.80 5.30 3.50 7.07 7.63 17.30 8.00 4.60 4.30 4.00

Mini- Painting -0.52 0.27 0.39 0.21 0.97 7.53 3.87 4.40 3.57 3.93 8.50 3.40 3.90 3.30 2.70
DomainNet| Real 2.60 2.05 4.46 5.86 13.77 573 6.00 9.37 8.93 18.13 2.60 3.50 4.20 2.30 2.50
[34] Sketch 244 -1.63 3.07 1.29 3.74 14.53 6.70 7.37 5.17 8.23 10.20 9.56 340 3.50 340
Mean 0.32 -0.29 1.76 2.40 5.36* 9.90 547 6.16 6.18 9.48 9.47 4.97 4.23 3.30 3.07*

Table 5. W4, D., and D, of target-free IP-CLIP, CUTIT, NTLT, CUTI and NTL. W,,, represents the proposed weighted drop, while D,,
and D, denote the drop rates for the unauthorized and authorized domains, respectively. The best performance is indicated by the numbers
in bold. Statistical significance (p-value < 0.05 [4, 8]) is denoted with: *(IP-CLIP vs. others).

Dataset Authorized Dye 1 Ayl Ao T

Domain |NTL [28] CUTI [29] NTL' [28] CUTI' [29] IP-CLIP|NTL [28] CUTI [29] NTL' [28] CUTI' [29] IP-CLIP |NTL [28] CUTI [29] NTL' [28] CUTI' [29] IP-CLIP

Amazon 1.63 27.95 15.67 29.26 37.46 5.21 0.52 37.43 20.83 3.53 15.63 53.13 62.50 65.50 63.00

Office-31 Dslr 9.23 72.92 39.25 54.47 82.42 4.69 4.17 50.50 36.53 9.77 32.81 87.50 92.80 94.30 95.80
[26] Webcam 11.82 40.01 54.59 40.56 56.45 0.00 37.00 21.30 30.60 15.53 | 3438 84.40 85.30 80.80 83.30
Mean 7.56 46.96 36.50 4143 58.78* 3.30 13.90 36.41 29.32 9.61* 27.60 75.01 80.20 80.20 80.70

Art 8.75 35.25 49.47 54.95 60.12 | 63.93 1.04 20.45 10.38 3.88 75.52 59.90 81.30 79.50 79.50

Office- Clipart 4.98 14.78 9.74 16.86 26.52 | 50.39 0.72 27.70 20.88 1048 | 58.85 38.80 48.00 52.80 57.00
Home-65 | Product 17.49 3327 44.44 39.53 57.74 | 58.40 0.78 27.48 35.38 8.40 80.21 58.07 81.80 83.00 80.30
[27] RealWorld | 15.83 3.15 51.50 62.87 7117 | 6497 31.32 19.20 7.83 5.20 83.85 39.32 82.00 83.30 87.00
Mean 11.76 21.61 38.79 43.55 53.89* | 59.42 8.46 23.71 18.61 6.99*  74.61 49.02 73.28 74.65 75.95*

Clipart 11.96 13.75 3845 22.77 50.88 | 58.06 60.53 17.54 44.08 735 74.18 78.13 71.40 74.60 75.10

Mini- Painting 7.47 6.47 32.78 24.48 40.33 | 5826 45.15 24.18 34.73 10.93 | 69.08 56.58 70.60 69.80 69.20
DomainNet| Real 21.08 22.62 35.66 33.56 54.06 | 57.03 58.43 37.90 34.83 1840 | 8257 85.03 81.60 77.90 83.30
[34] Sketch 7.72 7.00 38.66 48.18 48.27 | 5847 57.24 16.55 9.45 8.20 69.57 67.60 71.00 74.30 73.70
Mean 12.06 12.46 36.39 32.25 48.39 | 57.96 55.34 24.04 30.77 1122 73.85 71.83 73.65 74.15 75.33

Table 6. Dyq, Ay, and A, of authorization application IP-CLIP, CUTI', NTLT, CUTI and NTL on the Office-31 [26]. D., represents
the proposed weighted drop, while A,, and A, denote the accuracy for the unauthorized and authorized domains, respectively. The best
performance is indicated by the numbers in bold. Statistical significance (p-value < 0.05 [4, 8]) is denoted with: *(IP-CLIP vs. others).

Authorized/Test | Amazon Dslr  Webcam | Dyo T Ayl  Ag 1
Amazon 4.5 33 2.8 37.46 3.53  63.00
Dslr 27.3 1.5 0.5 82.42 9.77 95.80
Webcam 31.0 4.3 11.3 56.45 1553 83.30
Mean ‘ / ‘ 58.78 9.61 80.70

Table 7. Dyq, Au, and A, of authorization application IP-CLIP
on the Office-31 [26]. The vertical/horizontal axis denotes the au-
thorized/test domain. D, represents the proposed weighted drop,
while A, and A,, denote the accuarcy of the unauthorized and test
domains, respectively.

tificial intelligence. To address this, we propose IP-CLIP,
a lightweight, prompt-based strategy that extracts image
style and content for domain verification while preventing
unauthorized feature transfers. Extensive experiments on
cross-domain datasets demonstrate the effectiveness of our
lightweight and easy-to-deploy IP-CLIP. Though designed
for classification tasks, IP-CLIP can be extended to applica-
tions such as detection and image description. Future work
will focus on enhancing generalization and adapting IP pro-
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Figure 3. Several visualization examples of CLIP and IP-CLIP
prediction results. Correct predictions are highlighted in green,
while incorrect predictions are shown in red.
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tection strategies to diverse model architectures. We believe
our work will advance research in model IP protection and
underscore its practical importance.
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