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Abstract

Vision-language models (VLMs) like CLIP (Contrastive
Language-Image Pre-Training) have seen remarkable suc-
cess in visual recognition, highlighting the increasing need
to safeguard the intellectual property (IP) of well-trained
models. Effective IP protection extends beyond ensuring
authorized usage; it also necessitates restricting model de-
ployment to authorized data domains, particularly when the
model is fine-tuned for specific target domains. However,
current IP protection methods often rely solely on the vi-
sual backbone, which may lack sufficient semantic richness.
To bridge this gap, we introduce IP-CLIP, a lightweight IP
protection strategy tailored to CLIP, employing a prompt-
based learning approach. By leveraging the frozen visual
backbone of CLIP, we extract both image style and con-
tent information, incorporating them into the learning of
IP prompt. This strategy acts as a robust barrier, effectively
preventing the unauthorized transfer of features from au-
thorized domains to unauthorized ones. Additionally, we
propose a style-enhancement branch that constructs feature
banks for both authorized and unauthorized domains. This
branch integrates self-enhanced and cross-domain features,
further strengthening IP-CLIP’s capability to block features
from unauthorized domains. Finally, we present new three
metrics designed to better balance the performance degra-
dation of authorized and unauthorized domains. Compre-
hensive experiments in various scenarios demonstrate its
promising potential for application in IP protection tasks
for VLMs.

1. Introduction
Driven by the availability of large-scale data and power-
ful computing hardware, vision-language models (VLMs)
like CLIP have recently achieved remarkable generaliza-
tion across a wide range of downstream tasks [24, 35, 36],

*L. Wang and M. Wang contributed equally to this work.
†Corresponding author: H. Fu (hzfu@ieee.org) and D. Zhang

(dqzhang@nuaa.edu.cn).

Authorized Domain

Image Tokens

Authorized Domain Tokens

Unauthorized Domain Tokens

Unauthorized Domain

Output: 

Tiger, Bird

Output: 

Cat, Tree

Tiger Bird

Tiger Bird

Authorized 

Prompt

Unauthorized 

Prompt

IP-Prompt
CLIP-Based 

Model
Input Domain

Authorized User

Unauthorized User

Figure 1. Illustration of model IP protection with IP-CLIP. Do-
main and image tokens form the IP-Prompt, which a CLIP-based
model audits to verify data origin. This prevents unauthorized
transfers and degrades performance in unauthorized domains. No-
tably, IP-Prompt is a lightweight, plug-and-play module for CLIP-
based models.

leading to a surge in their commercial significance. How-
ever, developing a well-trained VLM is a resource-intensive
endeavor, requiring substantial investments in time, man-
power, and resources. This includes the design of special-
ized architectures [2, 10], access to vast amounts of high-
quality data [6, 18, 31], and the use of expensive compu-
tational resources [37]. As a result, protecting these mod-
els’ intellectual property (IP) has garnered significant atten-
tion [28–30, 32].

Previous research on IP protection has primarily concen-
trated on two aspects: ownership verification (i.e., verify-
ing who owns the model) [3, 20, 22, 25] and usage autho-
rization (i.e., authorizing who has the right to deploy the
model) [9, 23]. Some of these approaches incorporate deep
watermarks, embedding unique identifiers such as inputs,
parameters, gradients, architectures, or even outputs. Oth-
ers extract distinctive model characteristics, acting as “fin-
gerprints” [21] for deep models. While these techniques
provide a degree of protection, they can be easily bypassed
through fine-tuning or retraining. Moreover, authorized
users are often unrestricted in how they apply the model, al-
lowing them to effortlessly transfer high-performance mod-
els to similar tasks, which can lead to implicit IP infringe-
ment. This problem stems from the fact that VLM’s trained
visual backbones often generalize across domains, which
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can breed model stealing, leading to illegal misuse and im-
plicit intellectual property infringement. An intuitive solu-
tion is to refine the model’s generalization boundary to fo-
cus on domain-specific features and restrict their use to au-
thorized domains. NTL [28] achieves this by amplifying the
maximum mean discrepancy (MMD) between authorized
and unauthorized domains, thus narrowing the model’s gen-
eralization scope. In contrast, CUTI-domain [29] intro-
duces an intermediate domain that combines features from
both domains, preventing unauthorized transfers. Although
existing deep model IP protection methods can provide
commendable performance in specific scenarios, they face
two fundamental challenges. Firstly, they require train-
ing models from scratch or extensive fine-tuning, which
is particularly demanding for VLMs due to their resource-
intensive nature. To address this, some prompt tuning
methods techniques, such as CoOp [36] and MaPLe [16]
have shown superior performance on some specific down-
stream tasks. CoOp uses soft prompts to learn text prompts,
while MaPLe introduces visual language prompts to en-
hance synergy. Secondly, some methods [28, 29] attempt to
constrain model performance by generating supplementary
data. However, these methods often introduce additional
training steps, and the generated data typically lack ade-
quate constraints and control, complicating practical use.

To tackle these challenges, we introduce IP-CLIP, a
novel approach for IP protection in CLIP-based models. IP-
CLIP utilizes a lightweight prompt-tuning technique called
IP-Prompt (illustrated in Fig. 1) to distinguish between au-
thorized and unauthorized prompts without requiring full
fine-tuning of all pre-trained parameters. Our approach in-
volves learning new prompts consisting of two types of to-
kens: i) Authorized/unauthorized domain token: this to-
ken captures the multi-scale style information of autho-
rized/unauthorized domains from the CLIP visual encoder.
ii) Image token: to effectively learn the visual distribu-
tion in the semantic space and obtain cue distributions for
each class, we utilize multi-scale visual feature responses
from various layers of the CLIP visual encoder. The down-
stream CLIP-based model integrates these two tokens into
its decision-making process, allowing it to simultaneously
identify both the Authorization and category of the input
image. This enables accurate predictions for images from
the authorized domain while deliberately producing incor-
rect results for samples from unauthorized domains. No-
tably, IP-Prompt functions as a lightweight, plug-and-play
module that can be positioned at the front end of various
CLIP-based models to provide IP protection. Additionally,
we introduce a style enhancement branch with feature banks
for both authorized and unauthorized domains. This branch
integrates self-enhanced and cross-domain features into the
model, improving its ability to recognize authorized fea-
tures while excluding unauthorized ones. Finally, we design

three new metrics tailored to the IP protection scenario to
balance performance between authorized and unauthorized
domains. The main contributions of this paper are summa-
rized as follows:
• We propose the IP-CLIP framework, an innovative ap-

proach for IP protection of VLMs, with only minimal
parameter updates. This framework is designed to pre-
vent the unauthorized transfer of well-trained, large-scale
VLMs from authorized to unauthorized domains.

• We design a lightweight, plug-and-play IP-Prompt that
can be integrated into various CLIP-based models for ef-
fective IP protection of VLMs.

• Our approach includes a style enhancement branch
that generates diverse visual features and integrates self-
enhanced and cross-domain features into the model. This
enables the protected model to better identify authorized
features and exclude unauthorized ones.

• We introduce three new metrics for a comprehensive
evaluation of IP protection capabilities, addressing gaps
in current methods. Extensive experiments demonstrate
the effectiveness of IP-CLIP on various datasets and sce-
narios, providing strong evidence that our method offers
a robust solution for model IP protection.*

2. Related Work
2.1. Visual Language Models and Prompt Tuning
Large-scale visual language models (VLMs) integrate vi-
sual and textual inputs for a more comprehensive under-
standing, achieving strong performance in various computer
vision tasks [13, 14, 17]. Models like CLIP [24] and Vi-
sualBERT [19] rely on pre-trained language models (e.g.,
BERT [7], GPT [1]) for text encoding, while visual inputs
are processed via convnets or visual transformers. As these
models scale up, their computational demands increase,
making updates costly. To address this, parameter-efficient
tuning methods are essential.

Prompt tuning is one such approach, which focuses
on learning a small set of parameters while keeping the
larger model frozen [15]. CoOp [36] introduced the use
of soft prompts in VLMs, demonstrating that carefully
crafted text prompts can enhance image recognition per-
formance. By incorporating lightweight neural networks
to dynamically generate prompts for individual images,
CoCoOp [35] addresses the issue of prompt overfitting.
VPT [15] achieved strong results by using a small number
of visual prompts, and MaPLe [16] further combined textual
and visual prompts within CLIP to improve the alignment
between text and image representations. Although these pa-
rameter fine-tuning methods have demonstrated effective-
ness, they offer insufficient security. Lacking robust IP pro-
tection, the critical issue of safeguarding IP in large-scale

*https://github.com/LyWang12/IP-CLIP
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models has garnered growing attention and scrutiny.

2.2. Intellectual Property (IP) Protection
A comprehensive IP protection strategy should address
both ownership verification and applicability authoriza-
tion. Ownership verification identifies the rightful owner
of the model, typically using watermarks or fingerprinting.
Peng et al. [22] introduced a general adversarial perturba-
tion fingerprinting method, which uses contrastive learn-
ing to match fingerprints with similarity scores. Bai et
al. [3] proposed BadCLIP, which impacts image and text en-
coders using trigger-aware prompts, while. Ren et al. [25]
adopted a poison-only backdoor approach for embedding
watermarks and used hypothesis testing for remote verifica-
tion. However, these methods have been proven vulnerable
to certain removal and covering techniques.

Applicability authorization focuses on restricting the
model’s generalizability to specific domain. Wang et
al. [28] introduced non-transfer learning (NTL), which uses
an estimator with a feature kernel to highlight domain-
specific differences. Zeng et al. [33] extended NTL to natu-
ral language processing and auxiliary domain classifiers for
better domain separation. Hong et al. [11] further proposed
H-NTL, leveraging a causal model to disentangle content
and style as latent factors, thereby guiding the learning of
non-transferable representations based on intrinsic causal
relationships. Wang et al. [29] proposed an innovative com-
pact non-transferable isolation domain (CUTI-domain) to
isolate authorized and unauthorized domains, limiting per-
formance transfer. Existing IP protection methods can be
effective but often require extensive training or fine-tuning,
which is resource-intensive for VLMs. Additionally, meth-
ods relying on supplementary data often lack necessary con-
straints and controllability, complicating their practical use.

3. Method
3.1. Problem Definition
IP protection aims to confine model performance to the au-
thorized domain while reducing its recognition ability in the
unauthorized domain. Formally, we define the IP protection
task as follows [12]:

Definition 1 (IP protection): Let Da = {xai, yai}Na

i=1

denote the dataset for the authorized domain, and Du =
{xui, yui}Nu

i=1 represent the dataset for the unauthorized do-
main, where Na and Nu are the number of samples in the
authorized and unauthorized domains, respectively. Data
Xa and Xu from these domains are drawn from different
distributions but share the same label space Y . In the au-
thorized domain, the model aims to map data to labels:

F (Xa) → Y. (1)

The challenge of the IP protection task is to achieve non-
transferability to the unauthorized domain while minimally

affecting performance in the authorized domain:

F (Xu) ⊥ Y and F (Xa) ⊥ F (Xu), (2)

where ⊥ denotes statistical independence. Current IP pro-
tection methods usually rely solely on visual backbones [12,
28, 29], which may lack sufficient semantic richness. To
bridge this gap, we introduce IP-CLIP, a lightweight IP pro-
tection strategy tailored for vision-language models.

3.2. Overview of IP-CLIP
Fig. 2 (a) illustrates the details of our proposed IP-CLIP
framework. The primary objective is to constrain model
performance to the authorized domain by learning both im-
age and domain-specific tokens, thereby emphasizing the
unique features of the authorized domain while preventing
unauthorized generalization. To accomplish this, we feed
both the authorized domain data xa and the unauthorized
domain data xu into CLIP’s frozen visual encoder in paral-
lel, producing the output features fa

v and fu
v , respectively.

A learnable IP Projector is employed to capture multi-scale
features from different layers of the visual encoder, gener-
ating authorized / unauthorized domain tokens Ta / Tu and
image tokens [V1, V2, . . . , VL], which are concatenated as
input prompts for the frozen text encoder of CLIP, as de-
scribed in Sec. 3.3. The prediction result is obtained by
calculating the similarity between text feature ft and vi-
sual feature fv , and the label is denoted as y. The style
enhancement branch (Sec. 3.4), associated with the feature
banks, further improves the robustness of the features in dis-
tinguishing between authorized and unauthorized domains.
The frozen layers of our proposed IP-CLIP framework are
labeled with snowflakes, while the few trainable layers are
marked with sparks.

3.3. Our Proposed Prompt Learning
Instead of the static prompting technique, we aim to learn
prompts directly from the visual domain to efficiently en-
code visual distributions. Our IP protection approach
has two main objectives in prompt tuning: i) introduce
domain-specific tokens for authorized / unauthorized do-
mains, and ii) generate domain-independent image to-
kens for visual recognition tasks, as illustrated in Fig. 2
(c). Specifically, multi-scale features [f (1)

v , f
(2)
v , . . . , f

(M)
v ]

are extracted from the frozen visual encoder, where f
(m)
v

represents the response from the m-th layer of the en-
coder. To create domain-specific tokens for authorized
/ unauthorized domains, multi-scale style features (rep-
resented by first-order and second-order batch-wise fea-
ture statistics) are computed and combined, resulting in
[µ(1);σ(1); . . . ;µ(M);σ(M)], which are then processed by
the IP Projector to produce domain-specific tokens T . Ad-
ditionally, the multi-scale features [f (1)

v , f
(2)
v , . . . , f

(M)
v ] are
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Figure 2. (a) The architecture of IP-CLIP is based on a frozen CLIP backbone, where snowflakes denote frozen layers and sparks represent
trainable layers. During training, inputs from both the authorized domain xa and unauthorized domain xu are fed into the frozen CLIP
visual encoder in parallel to generate feature vectors fa

v and fu
v . The IP projector extracts domain tokens and image tokens from the visual

encoder, which are then used to construct prompts as inputs to the text encoder. The style enhancement branch takes the frozen feature bank
and fa

v as input, with sv representing the enhanced visual features. The prediction result is derived by calculating the similarity between
the visual feature sv/fv and the text feature ft. y and L represent the label and loss function, respectively. (b) The Inference process of
IP-CLIP. (c) Structure of Prompta and Promptu. (d) Construction of Feature bank Ba and Bu, where D and F represent the input
dataset and its corresponding visual feature set, respectively. During training, the feature banks remain frozen. (e) Structure of STAM.

passed through IP Projector to generate L image-specific
tokens [V1, V2, . . . , VL]. Finially, the prompt for the autho-
rized domain is denoted as:

Prompta = [Ta;V1, V2, . . . , VL; [CLS]], (3)

while for the unauthorized domain, it is denoted as:

Promptu = [Tu;V1, V2, . . . , VL; [CLS]], (4)

which are then input into the frozen text encoder to generate
text features fa

t and fu
t , respectively.

3.4. Style-Enhancement Branch
For the style enhancement branch, we construct feature
banks for both the authorized and unauthorized domains
and introduce a style augment module (STAM) to diversify
the features.

Constructing feature banks. Leveraging CLIP’s zero-
shot capabilities, we extract text and image features from
Da and Du, as in Fig. 2 (d). For the authorized domain, we
compute a confidence score (i.e., the maximum probabil-
ity) for each image based on CLIP’s predictions. Similarly,
in the unauthorized domain, we calculate confidence scores
and assign pseudo-labels based on the highest score. We

then select the visual features with the highest confidence
in each category from both domains to construct N -way K-
shot feature banks, where N is the number of categories and
K = 5 is the number of samples per category. Finally, the
centroid features for each category are calculated to form
the authorized domain feature bank (Ba) and the unautho-
rized domain feature bank (Bu), both expressed as RN×C ,
where C denotes the feature dimension. Note that the fea-
ture bank is built by iterating over the data only before train-
ing, after which it is frozen during the training process.

STyle Augment Module (STAM). STAM utilizes the
frozen feature banks to guide images in acquiring self-
enhanced and cross-domain features, as illustrated in Fig. 2
(e). First, the query Q is calculated from the input feature
fa
v , while the key Ka and value Va are derived from the au-

thorized domain bank. Similarly, Ku and Vu are calculated
from the unauthorized domain bank. We derive enhanced
sav and suv by utilizing a learnable attention layer combined
with a residual connection. This mechanism enables the
image feature to concentrate on the features from the autho-
rized or unauthorized domain banks. This process can be
formally expressed as:

sav = Conv(softmax
(
QKT

a√
dk

)
Va) + fa

v , (5)
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suv = Conv(softmax
(
QKT

u√
dk

)
Vu) + fu

v . (6)

Here,
√
dk denotes the scaling factor, while T represents

the transpose operation.

3.5. Training Strategy
Target-specified IP-CLIP. We begin by detailing the train-
ing process for our proposed IP-CLIP, assuming both the
authorized and unauthorized domains are known. To allow
the model to effectively differentiate between the authorized
domain token Ta and unauthorized domain token Tu, we
use mean squared error (MSE) loss to maximize their sepa-
ration, as described by:

Lm = LMSE(Ta, Tu). (7)

Next, we utilize contrastive loss function La / Lv to opti-
mize the image-text mapping between image feature fa

v /
fu
v and the text feature fa

t / fu
t , as shown in:

La =
exp(⟨fa

v , f
a
t (ya)⟩/τ)∑K

k=1 exp(⟨fa
v , f

a
t (k)⟩/τ)

, (8)

where τ denotes temperature parameter, K denotes the
number of classes and ⟨·, ·⟩ denotes the cosine similarity.

Similarly, the enhanced feature sav / suv is aligned with
the text representation fa

t / fu
t by Lai / Lui, which can be

expressed as:

Lai =
exp(⟨sav , fa

t (ya)⟩/τ)∑K
k=1 exp(⟨sav , fa

t (k)⟩/τ)
. (9)

For text representations, we use Kullback-Leibler (KL)
divergence loss to further separate the distances between the
authorized and unauthorized domains:

Lkl = KL(fa
t , f

u
t ). (10)

Additionally, we impose constraints on the similarity
distribution of the unauthorized domain’s text features, en-
suring they maintain low entropy through:

Len = Lentropy(f
u
t ). (11)

Finally, our overall loss function can be expressed as:

L = La−Lu+Lai−Lui−Lkl−λ1 ·Lm+λ2 ·Len. (12)

Where λ1 and λ2 are weight factors. The overall training
strategy is shown in Supplementary Algorithm 1.

Target-free IP-CLIP. In a restricted setting where only
authorized domain data is accessible, our IP protection fo-
cuses on reducing recognition performance for potential
out-of-domain (OOD) data with similar content but differ-
ent styles. Unlike Wang [29]’s use of GANs for OOD data

synthesis, we intervene on the style factor to achieve this.
Our method enhances style [5] without changing the content
(as in Supplementary Tab. 1). We treat all style-augmented
images as unauthorized and train the model similarly to
target-specific IP-CLIP. The full algorithm is detailed in
Supplementary Algorithm 2.

Inference. During testing, as shown in Fig. 2 (b), the
sample is input into visual encoder, and the trained IP Pro-
jector generates the corresponding prompt, which is then
fed into text encoder. Finally, the cosine similarity between
fv and ft is computed to produce the prediction p:

p = argmax
i

⟨ft, fv,i⟩, (13)

where i denote the index of class.

4. Experiment
4.1. Implementation Details
We evaluated our method on three popular domain adapta-
tion / generalization benchmarks, which feature more cat-
egories, larger numbers, and more complex content com-
pared to the existing works [28–30]:
1. Office-31 [26] comprises images from three distinct do-

mains—Amazon, Dslr, and Webcam—spanning 31 cat-
egories and containing over 4,000 samples.

2. Office-Home-65 [27] consists of over 15,000 images
distributed across four domains—Art, Clipart, Product,
and Real-World—organized into 65 distinct categories.

3. Mini-DomainNet [34] contains over 140,000 images
across domains including Clipart, Painting, Real, and
Sketch, with 126 categories.

The substantial differences in image style and quality across
domains in these datasets make them ideal for evaluating
the effectiveness of model IP protection algorithms in cross-
domain image recognition tasks.

Our comprehensive experiments are implemented on the
PyTorch platform and an NVIDIA GeForce RTX 3090 GPU
with 24GB of memory. The Adam optimizer, with an ini-
tial learning rate of e−5, is employed for model optimiza-
tion. We utilize the pre-trained CLIP backbone architecture.
Consistent with standard evaluation protocols, accuracy (%)
is used as the primary performance metric for each task.

4.2. Result of Target-Specified IP-CLIP
In the target-specified scenario, we randomly select two do-
mains from each dataset: one as the authorized domain and
the other as the unauthorized domain, thereby forming a IP
protection task. We first compute ASL

a /ASL
u , the perfor-

mance of supervised learning CLIP with prompt fine-tuning
(SL-CLIP) trained on the authorized domain and tested on
the authorized / unauthorized domain, and AIP

a /AIP
u , the

performance of IP-CLIP on the same domain. This process
is denoted as: ASL ⇒ AIP , with results shown in Tab. 1.
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Authorized/Unauthorized Amazon Dslr Webcam Wua ↑ Du ↑ Da ↓
Amazon 79.4 ⇒ 79.4 87.5 ⇒ 7.5 88.8 ⇒ 8.8 63.52 80.00 0.00

Dslr 83.8 ⇒ 3.8 95.7 ⇒ 95.7 98.8 ⇒ 6.3 82.54 86.25 0.00
Webcam 80.0 ⇒ 3.8 92.5 ⇒ 2.5 94.4 ⇒ 94.4 78.45 83.10 0.00

Mean / 74.84 83.12 0.00

Table 1. The accuracy (%) of target-specified IP-CLIP on the
Office-31 [26]. The vertical/horizontal axis denotes the autho-
rized/unauthorized domain. In each task, the left of ’⇒’ shows
the test accuracy of supervised learning CLIP on the unauthorized
domain, while the right presents the accuracy of IP-CLIP. Wua

represents the weighted drop, while Du and Da denote the drop
rates for the unauthorized and authorized domains, respectively.

Given CLIP’s strong feature extraction capabilities, it tends
to generalize well, resulting in higher ASL. However, our
goal is to restrict the model to the authorized domain, lead-
ing to a lower AIP . Additionally, the previous method only
assessed the drop rates Da = ASL

a −AIP
a for the authorized

and Du = µ(ASL
u − AIP

u ) for the unauthorized domains,
which is insufficient. An effective IP protection model must
balance maintaining high performance in the authorized do-
main with degrading performance in the unauthorized do-
main. To address this, we define a new weighted metric,
Wua, as follows:

Wua = AIP
a · [Du −Da]. (14)

Tab. 2 present the performance comparison between
the proposed IP-CLIP and SOTA methods on the Office-
31 [26]. The results for CUTI [29] and NTL [28] were ob-
tained by reproducing their original implementations. For a
fair comparison, we adapted these methods into CLIP-based
versions, referred to as CUTI† and NTL†, respectively.
The results indicate that the CLIP-based model exhibits
stronger protection capabilities compared to the CNN-based
model, achieving an average Wua of 74.84% for IP-CLIP,
72.48% for CUTI†, 54.98% for NTL†, 70.09% for CUTI,
and 62.11% for NTL. IP-CLIP achieves the highest scores
across nearly all metrics. Although CUTI slightly outper-
forms IP-CLIP in Du in the ”webcam” domain, its Da is
2.5%, significantly above IP-CLIP’s 0.0%. The goal of the
IP protection task is to reduce performance in the unautho-
rized domain while preserving accuracy in the authorized
domain. Thus, relying solely on Du or Da is insufficient
for comprehensive evaluation, making a combined metric
like Wua essential for a balanced assessment.

Additionally, we evaluated the proposed IP-CLIP on
Office-Home-65 [27] and Mini-DomainNet [34] to further
verify its effectiveness and versatility. The experimental re-
sults are summarized in Tab. 2, with further details avail-
able in Supplementary Tab. 2-16. Across these datasets,
the CLIP-based IP protection scheme consistently outper-
forms its CNN counterpart, with IP-CLIP demonstrating the
strongest protection capabilities. Fig. 3 presents several vi-
sualization examples.

4.3. Result of Ownership Verification
To further verify model ownership, erroneous results are de-
liberately triggered. Specifically, a conventional backdoor
watermark is applied to each authorized domain [29], with
the processed data used as the corresponding unauthorized
domain. For ease of observation and analysis, we com-
puted the accuracy of the supervised convolutional neural
network (SL-CNN) related to CNN-based NTL/CUTI, as
well as the supervised CLIP (SL-CLIP) according to CLIP-
based NTL†/CUTI†/IP-CLIP. After computing Aa and Au,
a new weighted metric is introduced based on these values:

Oua = ASL
u · [AMethod

a −AMethod
u ]. (15)

As presented in Tab. 3, the difference in accuracy be-
tween SL-CNN/SL-CLIP with a watermark (ASL

a ) and
without a watermark (ASL

u ) is minimal, indicating low sen-
sitivity to the watermark. In contrast, IP-CLIP shows a
significant reduction in accuracy on unauthorized domains
with embedded watermarks (AIP

u ). This disparity in perfor-
mance serves as an effective measure for verifying model
ownership. Furthermore, the performance comparison be-
tween IP-CLIP and other state-of-the-art methods reveals
that, compared to CNN-based models, CLIP-based models
show stronger model protection capabilities. Notably, Oua

of IP-CLIP is 71.3%, outperforming CUTI† and NTL† by
approximately 5.6% and 18.7%, respectively, with statisti-
cally significant differences (p < 0.05 [4, 8]).

4.4. Result of Target-Free IP-CLIP
In a more rigorous setting, i.e., the target-free scenario, we
generate unauthorized domains for each authorized domain,
as described in Sec. 3.5. Specifically, to assess the perfor-
mance of target-free IP-CLIP on the Office-31 [26] dataset,
we conduct three transfer tasks. For each task, one domain
is selected as the authorized domain, with unauthorized do-
mains generated accordingly, while the remaining unknown
domains are used for testing. The experimental results are
presented in Tab. 4 and Tab. 5.

Similarly, we constructed tasks using more datasets and
compared the results with the SOTA method, as shown
in Tab. 5 (with additional details provided in Supplemen-
tary Tab. 17-31). After analyzing the results, we found that
IP-CLIP consistently achieved the highest Wua across all
three datasets. This demonstrates its ability to effectively re-
duce recognition accuracy for unauthorized domains while
maintaining strong recognition performance for authorized
domains, even in tasks of varying complexity, thus proving
its effectiveness in the restricted model IP protection task.

4.5. Result of Applicability Authorization
In the applicability authorization scenario, we assess the
model’s effectiveness by limiting its generalization ability
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Datasets Authorized
Domain

Wua ↑ Du ↑ Da ↓
NTL [28] CUTI [29] NTL† [28] CUTI† [29] IP-CLIP NTL [28] CUTI [29] NTL† [28] CUTI† [29] IP-CLIP NTL [28] CUTI [29] NTL† [28] CUTI† [29] IP-CLIP

Office-31
[26]

Amazon 41.37 60.94 56.34 62.06 63.52 55.50 74.40 75.80 79.35 80.00 3.10 0.80 1.80 0.60 0.00
Dslr 70.94 75.33 76.09 80.13 82.54 74.20 81.90 77.35 85.05 86.25 1.55 0.80 1.30 0.70 0.00

Webcam 74.02 74.02 32.50 75.24 78.45 75.80 38.70 75.80 84.38 83.10 0.00 0.00 3.10 2.50 0.00
Mean 62.11 70.09 54.98 72.48 74.84∗ 68.50 76.32 65.00 82.93 83.12 1.55 0.53 2.07 1.27 0.00∗

Office-
Home-65

[27]

Art 27.53 35.62 13.44 41.58 52.00 37.27 47.16 15.83 53.40 61.33 0.80 0.30 0.10 3.00 0.30
Clipart 43.23 45.67 48.83 53.37 56.45 54.31 57.35 65.67 72.40 75.47 0.20 0.20 0.30 0.63 0.10
Product 41.31 41.78 39.90 56.82 58.71 45.01 45.82 43.00 61.83 63.77 0.30 0.50 0.00 0.37 0.30

RealWorld 22.93 35.87 28.87 49.41 53.25 30.37 42.95 34.67 57.33 59.33 2.40 0.30 1.90 1.50 0.10
Mean 33.75 39.73 32.76 50.29 55.10∗ 41.74 48.32 39.79 61.24 64.98∗ 0.43 0.33 0.57 1.38 0.20

Mini-
DomainNet

[34]

Clipart 25.63 30.29 38.62 50.26 51.47 36.60 40.87 46.30 59.40 61.00 2.10 0.80 0.60 0.20 0.30
Painting 19.53 19.88 41.66 46.88 53.85 32.37 33.23 53.80 66.90 67.07 0.50 0.70 1.60 5.30 0.50

Real 29.26 31.52 52.29 54.77 58.82 35.87 38.40 59.03 62.30 65.27 1.20 1.10 0.80 1.10 0.20
Sketch 29.37 30.18 33.78 51.09 54.59 45.77 46.90 42.77 64.57 68.57 1.00 0.96 0.60 0.70 0.50
Mean 25.95 27.97 41.59 50.75 54.68∗ 37.65 39.85 50.48 63.29 65.48∗ 1.27 0.87 1.00 2.20 0.33∗

Table 2. Wua, Du, and Da of target-specified IP-CLIP, CUTI†, NTL†, CUTI and NTL. Wua represents the proposed weighted drop, while
Du and Da denote the drop rates for the unauthorized and authorized domains, respectively. The best performance is indicated by the
numbers in bold. Statistical significance (p-value < 0.05 [4, 8]) is denoted with: ∗(IP-CLIP vs. others).

Datasets
Authorized

with / without
Patch

CNN-Based Models CLIP-Based Modesl
SL-CNN NTL [28] CUTI [29] SL-CLIP [24] NTL† [28] CUTI† [29] IP-CLIP
Au/Aa Au/Aa Oua ↑ Au/Aa Oua ↑ Au/Aa Au/Aa Oua ↑ Au/Aa Oua ↑ Au/Aa Oua ↑

Office-31
[26]

Amazon 59.4 / 78.1 3.1 / 67.2 38.1 1.6 / 78.1 45.4 80.0 / 81.3 15.0 / 77.5 50.0 3.8 / 80.0 61.0 3.8 / 81.3 62.0
Dslr 50.0 / 98.4 0.0 / 92.2 46.1 4.7 / 93.8 44.6 97.5 / 98.8 5.0 / 95.0 87.8 2.5 / 95.0 90.2 3.8 / 97.5 91.4

Webcam 62.5 / 95.3 1.6 / 93.8 57.6 4.7 / 92.2 54.7 95.0 / 97.5 2.5 / 93.8 86.7 7.5 / 95.0 83.1 1.3 / 96.3 90.3

Office-
Home-65

[27]

Art 54.7 / 76.8 1.6 / 45.6 24.1 1.6 / 76.0 40.7 83.5 / 85.5 16.5 / 87.3 59.1 6.0 / 87.0 67.6 5.0 / 87.5 68.9
Clipart 70.8 / 78.1 1.6 / 54.9 37.7 3.1 / 69.0 46.7 73.8 / 74.3 5.5 / 73.5 50.2 17.0 / 73.3 41.5 5.5 / 73.5 50.2
Product 65.9 / 92.2 2.3 / 69.8 44.5 2.6 / 91.1 58.3 90.5 / 94.0 60.5 / 92.5 29.0 31.0 / 93.0 56.1 2.0 / 92.8 82.2

RealWorld 61.2 / 82.6 1.8 / 77.3 46.2 0.3 / 83.6 51.0 87.5 / 88.5 17.5 / 87.8 61.5 5.0 / 86.3 71.1 6.5 / 92.0 74.8

Mini-
DomainNet

[34]

Clipart 50.3 / 65.5 0.8 / 37.8 18.6 1.6 / 67.8 33.3 84.0 / 85.1 57.1 / 86.4 24.6 13.7 / 85.2 60.1 5.6 / 85.4 67.0
Painting 39.6 / 57.6 0.8 / 46.1 17.9 1.0 / 56.9 22.1 79.5 / 81.9 31.1 / 80.0 38.9 4.1 / 78.8 59.4 4.1 / 81.1 61.2

Real 50.2 / 82.6 0.0 / 40.3 20.2 0.5 / 83.2 41.5 88.9 / 89.4 26.2 / 91.9 58.4 11.4 / 92.1 71.7 5.9 / 89.7 74.5
Sketch 57.6 / 63.5 0.3 / 57.4 32.9 0.7 / 61.3 34.9 81.0 / 81.0 39.7 / 79.7 32.4 4.8 / 79.7 60.7 2.5 / 79.1 62.0

Mean / / 34.9 / 43.0 / / 52.6 / 65.7 / 71.3∗

Table 3. The results of ownership verification by SL-CNN [29], NTL [28], CUTI [29], NTL†, CUTI†, and IP-CLIP. Oua represents the
proposed weighted drop, while Au and Aa denote the accuarcy for the domain with and without patch, respectively. The best performance
is indicated by the numbers in bold. Statistical significance (p-value < 0.05 [4, 8]) is denoted with: ∗(IP-CLIP vs. others).

Authorized/Test Amazon Dslr Webcam Wua ↑ Du ↑ Da ↓
Amazon 79.4 ⇒ 79.0 87.5 ⇒ 9.8 88.8 ⇒ 38.3 50.32 64.10 0.40

Dslr 83.8 ⇒ 23.3 95.7 ⇒ 95.3 98.8 ⇒ 64.3 44.89 47.50 0.40
Webcam 80.0 ⇒ 17.8 92.5 ⇒ 10.0 94.4 ⇒ 92.5 65.17 72.35 1.90

Mean / 53.46 61.32 0.90

Table 4. The accuracy (%) of target-free IP-CLIP on the Office-
31 [26]. The vertical/horizontal axis denotes the authorized/test
domain.

to the authorized domain. Specifically, following the ap-
proach outlined in Sec. 4.3, we designate one domain as the
original domain, to which we apply a specific watermark,
resulting in the processed data being classified as the autho-
rized domain. The unauthorized domain set is then formed
by mixing the original domain, the domain generated from
the original domain, and the generated domain with the wa-
termark. During testing, the original domain and other un-
known domains are used as the test set.

Tab. 6 and Tab. 7 present the experimental results of IP-

CLIP and SOTA methods on the Office-31 [26], while re-
sults from additional datasets are shown in Tab. 6 (see Sup-
plementary Tab. 32-46 for further details). An interesting
pattern emerges from the Tab. 7: in some domains, the Au

of NTL and CUTI outperform that of IP-CLIP, while their
Aa is lower than that of IP-CLIP, and even in extreme cases
is only one-third; Conversely, in certain cases, the Aa per-
formance of NTL, CUTI, and IP-CLIP is comparable, but
their Au performance is worse. This demonstrates that re-
lying on a single indicator (i.e., Au and Aa) to assess IP
protection is inadequate, highlighting the need for a com-
prehensive weighted metric Dua = Aa · [Aa − Au]. As
expected, IP-CLIP consistently achieves the highest Dua

across various domains, confirming that its generalization
is effectively constrained to the authorized domain.

5. Conclusion
Protecting the intellectual property (IP) of visual language
models (VLMs) like CLIP is a significant challenge in ar-
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Datasets Authorized
Domain

Wua ↑ Du ↑ Da ↓
NTL [28] CUTI [29] NTL† [28] CUTI† [29] IP-CLIP NTL [28] CUTI [29] NTL† [28] CUTI† [29] IP-CLIP NTL [28] CUTI [29] NTL† [28] CUTI† [29] IP-CLIP

Office-31
[26]

Amazon 0.56 4.69 11.90 25.60 50.32 7.80 13.30 17.25 36.65 64.10 7.05 7.05 1.90 3.10 0.40
Dslr 6.88 6.83 36.72 38.83 44.89 9.40 9.35 43.90 43.30 47.50 2.30 2.30 3.90 1.90 0.40

Webcam 2.90 2.95 45.80 30.95 65.17 8.60 5.45 50.95 33.60 72.35 5.45 2.35 1.60 0.60 1.90
Mean 3.45 4.82 31.47 31.80 53.46∗ 8.60 9.37 37.37 37.85 61.32∗ 4.93 3.90 2.47 1.87 0.90

Office-
Home-65

[27]

Art 0.10 -0.19 -0.71 -0.65 4.82 1.93 6.53 2.83 3.40 12.07 1.80 6.80 3.70 4.20 6.00
Clipart 0.75 1.36 0.30 5.19 14.88 1.34 8.24 0.90 8.23 19.83 0.40 6.40 0.50 1.20 0.00
Product 3.13 4.21 14.08 12.57 23.67 6.08 13.08 19.03 18.50 30.40 2.60 8.10 3.30 4.30 3.80

RealWorld 2.39 3.72 13.07 3.82 20.41 2.83 8.83 17.67 5.50 22.93 0.00 4.20 2.70 1.20 0.20
Mean 1.59 2.28 6.68 5.23 15.95∗ 3.05 9.17 10.11 8.91 21.31∗ 1.20 6.38 2.55 2.73 2.50

Mini-
DomainNet

[34]

Clipart -3.25 -1.85 -0.89 2.24 2.95 11.80 5.30 3.50 7.07 7.63 17.30 8.00 4.60 4.30 4.00
Painting -0.52 0.27 0.39 0.21 0.97 7.53 3.87 4.40 3.57 3.93 8.50 3.40 3.90 3.30 2.70

Real 2.60 2.05 4.46 5.86 13.77 5.73 6.00 9.37 8.93 18.13 2.60 3.50 4.20 2.30 2.50
Sketch 2.44 -1.63 3.07 1.29 3.74 14.53 6.70 7.37 5.17 8.23 10.20 9.56 3.40 3.50 3.40
Mean 0.32 -0.29 1.76 2.40 5.36∗ 9.90 5.47 6.16 6.18 9.48 9.47 4.97 4.23 3.30 3.07∗

Table 5. Wua, Du, and Da of target-free IP-CLIP, CUTI†, NTL†, CUTI and NTL. Wua represents the proposed weighted drop, while Du

and Da denote the drop rates for the unauthorized and authorized domains, respectively. The best performance is indicated by the numbers
in bold. Statistical significance (p-value < 0.05 [4, 8]) is denoted with: ∗(IP-CLIP vs. others).

Dataset Authorized
Domain

Dua ↑ Au ↓ Aa ↑
NTL [28] CUTI [29] NTL† [28] CUTI† [29] IP-CLIP NTL [28] CUTI [29] NTL† [28] CUTI† [29] IP-CLIP NTL [28] CUTI [29] NTL† [28] CUTI† [29] IP-CLIP

Office-31
[26]

Amazon 1.63 27.95 15.67 29.26 37.46 5.21 0.52 37.43 20.83 3.53 15.63 53.13 62.50 65.50 63.00
Dslr 9.23 72.92 39.25 54.47 82.42 4.69 4.17 50.50 36.53 9.77 32.81 87.50 92.80 94.30 95.80

Webcam 11.82 40.01 54.59 40.56 56.45 0.00 37.00 21.30 30.60 15.53 34.38 84.40 85.30 80.80 83.30
Mean 7.56 46.96 36.50 41.43 58.78∗ 3.30 13.90 36.41 29.32 9.61∗ 27.60 75.01 80.20 80.20 80.70

Office-
Home-65

[27]

Art 8.75 35.25 49.47 54.95 60.12 63.93 1.04 20.45 10.38 3.88 75.52 59.90 81.30 79.50 79.50
Clipart 4.98 14.78 9.74 16.86 26.52 50.39 0.72 27.70 20.88 10.48 58.85 38.80 48.00 52.80 57.00
Product 17.49 33.27 44.44 39.53 57.74 58.40 0.78 27.48 35.38 8.40 80.21 58.07 81.80 83.00 80.30

RealWorld 15.83 3.15 51.50 62.87 71.17 64.97 31.32 19.20 7.83 5.20 83.85 39.32 82.00 83.30 87.00
Mean 11.76 21.61 38.79 43.55 53.89∗ 59.42 8.46 23.71 18.61 6.99∗ 74.61 49.02 73.28 74.65 75.95∗

Mini-
DomainNet

[34]

Clipart 11.96 13.75 38.45 22.77 50.88 58.06 60.53 17.54 44.08 7.35 74.18 78.13 71.40 74.60 75.10
Painting 7.47 6.47 32.78 24.48 40.33 58.26 45.15 24.18 34.73 10.93 69.08 56.58 70.60 69.80 69.20

Real 21.08 22.62 35.66 33.56 54.06 57.03 58.43 37.90 34.83 18.40 82.57 85.03 81.60 77.90 83.30
Sketch 7.72 7.00 38.66 48.18 48.27 58.47 57.24 16.55 9.45 8.20 69.57 67.60 71.00 74.30 73.70
Mean 12.06 12.46 36.39 32.25 48.39 57.96 55.34 24.04 30.77 11.22 73.85 71.83 73.65 74.15 75.33

Table 6. Dua, Au, and Aa of authorization application IP-CLIP, CUTI†, NTL†, CUTI and NTL on the Office-31 [26]. Dua represents
the proposed weighted drop, while Au and Aa denote the accuracy for the unauthorized and authorized domains, respectively. The best
performance is indicated by the numbers in bold. Statistical significance (p-value < 0.05 [4, 8]) is denoted with: ∗(IP-CLIP vs. others).

Authorized/Test Amazon Dslr Webcam Dua ↑ Au ↓ Aa ↑
Amazon 4.5 3.3 2.8 37.46 3.53 63.00

Dslr 27.3 1.5 0.5 82.42 9.77 95.80
Webcam 31.0 4.3 11.3 56.45 15.53 83.30

Mean / 58.78 9.61 80.70

Table 7. Dua, Au, and Aa of authorization application IP-CLIP
on the Office-31 [26]. The vertical/horizontal axis denotes the au-
thorized/test domain. Dua represents the proposed weighted drop,
while Au and Au denote the accuarcy of the unauthorized and test
domains, respectively.

tificial intelligence. To address this, we propose IP-CLIP,
a lightweight, prompt-based strategy that extracts image
style and content for domain verification while preventing
unauthorized feature transfers. Extensive experiments on
cross-domain datasets demonstrate the effectiveness of our
lightweight and easy-to-deploy IP-CLIP. Though designed
for classification tasks, IP-CLIP can be extended to applica-
tions such as detection and image description. Future work
will focus on enhancing generalization and adapting IP pro-

Label:

CLIP:

IP−CLIP:

Image of

Authorized

Domain:

Computer Candles BottleAlarm ClockExit SignFlipflops Desk Lamp

Computer Candles BottleAlarm ClockExit SignFlipflops Desk Lamp

Computer Candles BottleAlarm ClockExit SignFlipflops Desk Lamp

CLIP:

IP−CLIP:

Image of

Unauthorized

Domain:

Computer Candles BottleAlarm ClockNotebookFlipflops Lamp Shade

Clipboards Flowers Push PinWebcamRefrigeratorBottle Screwdriver

Figure 3. Several visualization examples of CLIP and IP-CLIP
prediction results. Correct predictions are highlighted in green,
while incorrect predictions are shown in red.

tection strategies to diverse model architectures. We believe
our work will advance research in model IP protection and
underscore its practical importance.
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