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Weijie Wei∗, Osman Ülger∗, Fatemeh Karimi Nejadasl, Theo Gevers, Martin R. Oswald
University of Amsterdam, the Netherlands

Abstract

Open-vocabulary segmentation methods offer promising ca-
pabilities in detecting unseen object categories, but the cat-
egory must be aware and needs to be provided by a hu-
man, either via a text prompt or pre-labeled datasets, thus
limiting their scalability. We propose 3D-AVS, a method
for Auto-Vocabulary Segmentation of 3D point clouds for
which the vocabulary is unknown and auto-generated for
each input at runtime, thus eliminating the human in the
loop and typically providing a substantially larger vocabu-
lary for richer annotations. 3D-AVS first recognizes seman-
tic entities from image or point cloud data and then seg-
ments all points with the automatically generated vocabu-
lary. Our method incorporates both image-based and point-
based recognition, enhancing robustness under challenging
lighting conditions where geometric information from Li-
DAR is especially valuable. Our point-based recognition
features a Sparse Masked Attention Pooling (SMAP) mod-
ule to enrich the diversity of recognized objects. To ad-
dress the challenges of evaluating unknown vocabularies
and avoid annotation biases from label synonyms, hierar-
chies, or semantic overlaps, we introduce the annotation-
free Text-Point Semantic Similarity (TPSS) metric for as-
sessing generated vocabulary quality. Our evaluations on
nuScenes and ScanNet200 demonstrate 3D-AVS’s ability to
generate semantic classes with accurate point-wise segmen-
tations.

1. Introduction

Existing perception methods [3, 24, 27, 46, 59, 61] for au-
tonomous driving often rely on an inclusiveness assump-
tion that all potential categories of interest must exist in the
training dataset. Nevertheless, public datasets often anno-
tate instances with pre-defined categories, which can vary
from three (e.g. vehicle, cyclist and pedestrian) [31, 44] to
several dozen types [2, 4], and fail to annotate rare objects
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Figure 1. Pre-defined Vocabulary vs. Auto-Vocabulary. 3D-
AVS automatically generates a vocabulary for which it predicts
segmentation masks, offering greater semantic precision. Our pre-
dictions identify specific classes e.g. building and signboard (high-
lighted in red boxes), which are annotated with ambiguous terms
like manmade. Quantitatively, 3D-AVS recognizes 671 unique
categories on the validation set of nuScenes [4], significantly sur-
passing nuScenes’s original 16 categories. Left: Vocabulary for a
single scene, Right: Vocabulary for the entire dataset.

with correct semantic labels. Failing to recognize atypical
objects or road users poses a significant risk to the percep-
tion model’s adaptability to diverse real-life scenarios.

The development of Vision-Language Models (VLMs)
strengthens the connection between vision and language
modalities and promotes progress in multi-modal tasks,
such as zero-shot image classification [39], image search
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and retrieval [40], image captioning [34], video under-
standing [51], and open-vocabulary learning [49]. Open-
vocabulary learning methods often utilize pre-trained
VLMs to find the correspondence between visual entities
and a semantic vocabulary, thereby creating the potential
to detect any category of interest [49, 66]. However, these
methods rely on human-specified queries, and thus can not
dynamically recognize all semantic entities in a scene. Con-
versely, predefining everything is neither scalable nor prac-
tical in a dynamic world, as it is impossible to anticipate
all the categories the model may encounter in advance.
This shortcoming severely limits the real-life applicability
of existing methods, as newly encountered object categories
could still be unknown to the model or unaware to humans.

In this work, we propose 3D-AVS, a framework that au-
tomatically recognizes objects, generates a vocabulary for
them and segments LiDAR points. We evaluate our method
on the indoor and outdoor datasets [4, 14, 43] and introduce
a metric TPSS to assess the model performance based on se-
mantic consistency in CLIP [39] space. Figure 1 compares
the same segmenter, namely OpenScene [38] with differ-
ent vocabularies. 3D-AVS generates convincing semantic
classes as well as accurate point-wise segmentations. More-
over, when pre-defined categories are general and ambigu-
ous, e.g. man-made, 3D-AVS recognizes the semantically
more precise categories, e.g. building and signboard.

Our contributions can be summarized as follows: 1) we
introduce auto-vocabulary segmentation for point clouds,
aiming to label all points using a rich and scene-specific
vocabulary. Unlike methods that rely on predefined vo-
cabularies, we address an unknown vocabulary setting by
dynamically generating vocabulary per input; 2) we pro-
pose 3D-AVS, a framework that automatically identifies ob-
jects, either through an image-free point-based captioner
or an off-the-shelf image-based captioner; 3) we propose a
point captioner for 3D-AVS-LiDAR that decodes text from
point-based CLIP features, achieving image independence
and enhanced object diversity through a sparse masked at-
tention pooling (SMAP) module; and 4) we introduce the
Text-Point Semantic Similarity score, a novel CLIP-based,
annotation-free metric that evaluates semantic consistency,
accounting for synonyms, hierarchies, and similarity in
unknown vocabularies, enabling scalable auto-vocabulary
evaluation without human input.

2. Related Work

Open-Vocabulary Segmentation (OVS). OVS aims to
perform segmentation based on a list of arbitrary text
queries. CLIP [39] achieves this in 2D by aligning vision
and language in a shared latent space. However, no compa-
rable large-scale point cloud dataset exists for similar train-

ing in 3D. Additionally, captions in point cloud datasets
are typically much sparser. Therefore, existing methods
usually freeze the text encoder and image encoder, and
align point features to vision-language feature space [8, 36,
38, 55, 64]. ULIP [55] distils vision-language knowledge
into a point encoder via contrastive learning on text-image-
point triplets. CLIP2Scene [8] adopts self-supervised learn-
ing, aligning point-text features using spatial-temporal cues.
OpenScene [38] supervises the point encoder with CLIP-
based image features through point-pixel projection. While
these OVS approaches show promising results, they require
user-defined categories as prompts. Conversely, our ap-
proach automatically generates categories that potentially
appear in the scene without any human in the loop.

Auto-Vocabulary Segmentation (AVS). AVS differs from
OVS in that it segments entities directly from perceptual
data rather than relying on a human-defined vocabulary as
input. Relevant target categories are directly inferred from
the image - usually without any additional training, finetun-
ing, data sourcing or annotation effort. Zero-Guidance Seg-
mentation (ZeroSeg) [42] achieve this by using clustered
DINO [5] embeddings to obtain binary object masks. These
masks were used to guide the attention of CLIP, resulting in
embeddings that are more accurately targeted to individual
segments, and a trained large language model was tasked
to output texts closest to said embeddings. While this re-
quired switching between three different latent representa-
tions, AutoSeg [70] proposed a more direct approach based
on BLIP [26] embeddings only. They introduced a proce-
dure in which multi-scale BLIP embeddings are enhanced
through clustering, alignment and denoising. The embed-
dings are then captioned using BLIP’s decoder and parsed
into a noun set used by an OVS model for segmentation.
CaSED [13] retrieves captions from an external database
and then integrates parsed texts with different segmenta-
tion methods. Despite these attempts in 2D domain, AVS
in 3D domain remains unexplored. Concurrently and inde-
pendently, Meng et al. [32] have proposed vocabulary-free
3D instance segmentation and a method PoVo for this task.
While PoVo first obtains 3D clusters and then matches the
generated semantic categories to the clusters, our work fo-
cuses more on target category generation and seamless in-
tegration with existing OVS methods.

Challenges of AVS evaluation. AVS presents additional
challenges linked to evaluation. Since generated categories
can be open-ended and outside of the fixed dataset vocabu-
lary, one needs to bridge the gap between the two to assess
the segmentation performance. ZeroSeg [42] exploits sub-
jective assessment. In AutoSeg [70], the LLM-based map-
per, LAVE, is introduced to address this challenge. How-
ever, the mapping targets are typically limited in size, caus-
ing the auto-generated categories - often more semantically
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rich and precise - to be discarded. To overcome these lim-
itations, we propose the TPSS metric, which enables the
evaluation of the generated categories while preserving their
open-ended nature.

Captioning 2D and 3D Data. Captioning is the pro-
cess of generating a concise and meaningful description
from data modalities such as images, videos or point clouds.
Notable works in 2D combine image-based templates with
extracted attributes [23, 60], combine deep learning mod-
els like convolutional neural networks with RNN, LSTM
or transformer-based generators [47, 52, 62], or leverage
pre-trained vision-language embeddings such as CLIP or
BLIP [11, 26, 28, 34]. BLIP [26], known for its effec-
tive but somewhat generic captions, often focus only on the
2-3 most prominent entities in an image. BCC [70] ad-
dresses this limitation by enhancing BLIP tokens through
unsupervised semantic clustering in the latent space, en-
abling cluster-wise captioning and resulting in more com-
prehensive and detailed captions. More recently, xGen-MM
(BLIP-3) [56] was introduced, building on BLIP with two
improvements: an expanded and more diverse set of train-
ing data, and a scalable vision token sampler for flexible
input resolutions. While this task is broadly explored in the
2D domain, it is yet to be solved in the 3D domain. Existing
approaches focus on describing a single object, e.g. CAD
models [55, 57] and scanned shapes [16, 30, 54, 57, 68], or
dense contextual indoor scenarios [6, 9, 10, 18, 20, 48, 68],
but fail to caption sparse outdoor scenes due to sparsity
and lack of colour information. LidarCLIP [17] encodes
a sparse point cloud to a CLIP feature vector and then de-
codes it to a caption via ClipCap [35]. However, LidarCLIP
only provides a global caption per scene, leading to limited
coverage of semantic entities. Instead, our proposed point
captioner copes with flexible receptive fields and offers a
controllable number of captions with various granularity.

3. Method

3.1. Preliminaries

CLIP and CLIP-aligned encoder. CLIP [39] is believed
to properly align visual and text features due to its supe-
rior performance on vision-language tasks. It comprises a
text encoder htx and an image encoder him, both of which
map a data modality, e.g. text and image, to a vision-
language latent space, also known as the CLIP space. Many
work [12, 15, 25, 53, 63] increase the output resolution of
CLIP image encoder, yielding high-resolution features hhr

im,
while preserving alignment within the original CLIP space.
Furthermore, some 3D methods [17, 36, 38, 55] distill fea-
tures from him or its high-resolution variant hhr

im into 3D
backbones, yielding CLIP-aligned 3D encoder hpt. In this

paper, we leverage such aligned 3D encoders and bypass the
time-consuming training process whenever possible.

Problem Definition. Given a point cloud P = {pn}Nn=1 ∈
RN×3 with N points, the aim is to assign a semantic class
label l ∈ S to every point, where S indicates a vast semantic
space. Different to closed-set or open-vocabulary segmen-
tation for which the vocabulary is known either via a user-
specified prompt or by pre-defined labels from dataset, the
class set in auto-vocabulary segmentation is unknown and
automatically generated for each input scene.

3.2. 3D Auto-Vocabulary Segmentation

This section introduces 3D-AVS for which an overview of
its major components is shown in Fig. 2. Given a point
cloud and a set of corresponding images, 3D-AVS first uti-
lizes a point captioner and an image captioner to describe
points and images in detail. The generated captions are
parsed in the Caption2Tag module, resulting in a list of tags
indicating semantic entities. Eventually, each point is as-
signed a semantic tag, forming segmentation results. These
key components are elaborated in the following paragraphs.

Scene Captioning. A key step of our approach is the auto-
generation of a vocabulary for the given scene which is per-
formed by a scene captioner that is either based on input im-
ages or on the input point cloud. Image captioning is a well-
explored task with a variety of accessible multi-modality
large-language models (MLLMs) [26, 56, 65]. We adopt
xGen-MM [56] as the image captioner because of its archi-
tectural flexibility and enhanced semantic coverage, Given
a set of K images I ∈ RK×H×W×3 capturing a scene, and
an instruction prompt (details in supplementary material),
the image captioner generates a list of captions

D =
{
d
(k)
im ∈ Rwk | k = 1, . . . ,K

}
(1)

where wk is the number of words in the caption for the k-th
image. To ensure a diverse enough set of coherent captions,
we opt for beam search in the generation process. Imple-
mentation details are in the supplementary material. Fol-
lowing caption generation, each caption is parsed and vali-
dated with Caption2Tag, as described in the section below.

LiDAR point cloud captioning remains an underexplored
area in existing research despite the potential of such cap-
tions for applications. While images collected alongside
LiDAR point clouds can be used to generate a target vo-
cabulary, relying solely on images proves inadequate un-
der challenging conditions such as low light or adverse
weather, where visual data becomes unreliable. To ad-
dress this, we introduce a novel Point Captioner trained
via transfer learning, which provides captions directly from
color-independent LiDAR data. Our approach, detailed in
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Figure 2. Overview of 3D-AVS. A point cloud and corresponding images are fed to respective point captioner and image captioner to
generate captions. Then, Caption2Tag excludes irrelevant words in the captions. The remaining nouns are passed to a text encoder and
eventually assigned to points through a segmenter. The dashed lines indicate that the entire images branch is optional. The point captioner
is the only trainable component in 3D-AVS. Note that, the example point caption is generated based on observing the green points.

Sec. 3.3, takes a point cloud P as input and outputs cap-
tions dpt. Unlike image captioning, which requires exten-
sive contextual information and sophisticated vision mod-
els to produce detailed captions, the Point Captioner pro-
vides robust descriptions by relying solely on geometric
features. This color independence is particularly benefi-
cial in low-visibility environments, such as nighttime scenes
where image-based captioning often falls short. Combining
both modalities ultimately yields the best results, uniting
the diversity of image captions with the resilience of point-
based captions.

Text Parsing. Captions generated by the image and point
captioner are scene-specific sentences in natural language
which we then parse into individual object nouns for se-
mantic segmentation. To this end, we filter the sentence on
(compound) nouns (i.e. general entities) and proper nouns
(i.e. named entities) using spaCy [19] and transform them to
their singular form through lemmatization. Lastly, we ver-
ify each category against the WordNet dictionary, resulting
in a set of M scene-specific tags, denoted as L = {lm}Mm=1.

Segmentation. The proposed pipeline separates the vocab-
ulary generation and segmentation, enabling seamless in-
tegration with an open-vocabulary point segmenter. The
segmenter consists of three encoders, namely a text en-
coder htx : R1 → RC , a high-resolution image encoder
hhr

im : RH×W×3 → RH×W×C and a point encoder hpt :
RN×3 → RN×C , that are pre-aligned with the CLIP vision-
language latent space. Following the inference procedure of
CLIP [39], namely similarity-based label assignment, we
first compute the embeddings as follows:

Etx = {em}Mm=1 ← htx(L) (2)

Fim = {fk}Kk=1 ← him(I) (3)

Fpt = {fn}Nn=1 ← hpt(P) (4)

where Etx, Fim and Fpt indicate text embeddings, image
features, and point features. em ∈ R1×C , fk ∈ RH×W×C

and fn ∈ R1×C represent per-label, per-image and per-
point features. Then, the image features are lifted to 3D
and assign each point a pixel feature if the point is visible
in the images. In other words, given a point, we calculate
its 2D coordinates by point-to-pixel mapping Γ : R3 → R2

and then copy the corresponding pixel feature to the point,
denoted as f im

n ∈ R1×C . Eventually, each point is assigned
a semantic label as follows:

l̂n = argmax
m

(
max

(
SIM(fn, em)||SIM(f im

n , em
))

(5)

where l̂n denotes the predicted label for point pn, SIM(·, ·)
is a similarity metric, for which we employ dot product,
producing a tensor ∈ R1×M and || indicates concatenation
when image features are available. max(·) takes a tensor
∈ R2×M as input, performs a column-wise maximum oper-
ation, and outputs a tensor ∈ R1×M .

3.3. Point Captioner

Inspired by LidarClip [17], we develop the Point Captioner
that first encodes points to CLIP latent space and then de-
codes CLIP features to captions. However, LidarClip only
provides a global caption per point cloud, leading to lim-
ited coverage of semantic entities. Therefore, we propose a
sparse masked attention pooling (SMAP) that can increase
the receptive field and output a controllable number of fea-
ture vectors, making it possible to train the network with a
varying number of images. We detail the training stage, the
inference stage and the SMAP in the following paragraphs.

Training. The training of the Point Captioner is essentially
a 2D-to-3D distillation that transfers knowledge from the
2D vision foundation model to the 3D backbone. We utilize
the CLIP image encoder [39] hclip

im : RH×W×3 → R1×1×C

and a CLIP-aligned point encoder hpt : RN×3 → RN×C

to encode images and points. However, hclip
im (·) outputs a

global feature vector that does not match the per-point fea-
tures obtained from hpt(·). Therefore, we add SMAP to pool
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Figure 3. Point Captioner Overview. The image encoder and point encoder are pre-aligned in the CLIP latent space. During training
(left), Sparse Masked Attention Pooling (SMAP) aggregates features from points visible in the image (highlighted in red) and is supervised
using CLIP image features. During inference (right), neither the image nor camera intrinsic parameters are available. To address this, a
group of masks are generated based solely on geometric information. The SMAP output is then decoded into a group of captions. For
simplicity, only one image (left) and one sector (right) are shown.

point-wise features. As shown in Fig. 3 (left), during train-
ing, a point cloud and a point-to-pixel mapping function
(visualized as an image) are fed to the image-based mask
generation. The output is a point-wise binary mask, where
true indicates the point is visible in the image. We visualize
the point mask by projecting the point to the image. The
mask and the point features obtained from hpt(·) are input
to SMAP. SMAP integrates features of points that are visi-
ble in the image and is supervised by the output feature of
hclip

im (·). Note that only one image is visualized in Fig. 3 for
clarity but all images corresponding to the point cloud are
processed in parallel during training.

Inference. Our goal is to generate diverse captions that
comprehensively cover all semantic categories without re-
quiring the intrinsic parameters of cameras. To achieve
this, we propose a geometry-based mask generation strat-
egy that efficiently partitions the point cloud into multiple
regions, followed by individual captions for each region.
Given the differences in point cloud distributions, we adopt
cylindrical sector-based partitioning for outdoor scenes and
square pillar-based partitioning for indoor scenes. In the
remainder of this paragraph, we illustrate our approach us-
ing outdoor point clouds as an example, while details on
indoor partitioning are provided in the supplementary ma-
terials. The point cloud is first transformed from a Cartesian
coordinate system {pn = (xn, yn, zn)}Nn=1 to a polar coor-
dinate system {pn = (ρn, φn, zn)}Nn=1 and then split into
T sectors according to its polar angle φ. The binary masks
B = {btn} ∈ RN×T are obtained as follows:

btn =

{
true, if t

T 2π ≤ φ < t+1
T 2π

false, otherwise.
(6)

where t ∈ {0, 1, . . . , T − 1}. This way, SMAP generates
mask-wise features that are further decoded into captions in
the caption module. The merit of this method is that the
number of captions is controllable by changing T .
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Figure 4. Sparse Masked Attention Pooling (SMAP). Given the
coordinates and features of all points, a relative positional encod-
ing (PE) is applied, followed by a residual connection. Masks are
applied to the points, creating groups of point subsets. Global Av-
erage Pooling (GAP) on each subset produces a mean feature as a
query. Finally, multi-head attention (MHA) is applied within each
group to generate one feature per subset.

Sparse Masked Attention Pooling (SMAP). SMAP takes
as input 1) an entire point cloud with its per-point coordi-
nates C ∈ RN×3 and features F = Fpt ∈ RN×C , and 2) J
binary point-wise masks B ∈ RJ×N , where J = K during
training and J = T during inference. SMAP first conducts
a relative positional encoding and then applies the masks to
the encoded point features:

F ′ = B ∗
(
F + PE(C,F)

)
(7)

where PE indicates a relative positional encoding as in [50]
and ∗ denotes matrix multiplication. The masks essentially
divide a point cloud into several subsets, allowing replace-
ment. Therefore, the feature F ′ = {f ′

j}Jj=1 ∈ RNj×C has a
variable length per mask. After multiplication, features F ′

go through two paths: 1) zero-padded to the same length
and then delivered to multi-head attention (MHA) as key
K and value V , and 2) passed to a global average pooling
and then input to MHA as query Q. Eventually, we obtain
pooled features F ′′ ∈ RJ×C .
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4. Evaluation

Auto-vocabulary segmentation introduces a novel setting
without a standardized benchmark, making it challenging
to compare methods directly. In this section, we introduce
the challenges of evaluation this novel task and propose two
strategy to evaluate segmentation accuracy and the semantic
consistency between points and text labels.

4.1. Challenges

In open-vocabulary segmentation, which is a similar but
simpler task, evaluation can be performed on conventional
segmentation datasets by using the categories present in the
annotations as pre-defined queries. However, this inher-
ently means the model has prior knowledge of the classes
it is expected to predict. In auto-vocabulary segmentation,
however, no such information is available beforehand, pre-
senting a unique challenge for evaluation. Moreover, natu-
ral language introduces ambiguities [58, 70], creating com-
plex relationships between classes, such as synonymy, hy-
ponymy and hypernymy. For instance, road could be la-
beled as drivable surface, street, or roadway, while a tire
might be classified independently or as part of a wheel or
vehicle. This makes it challenging to determine whether
an instance is appropriately tagged with a precise semantic
label. Given these nuances, evaluating the quality of gen-
erated labels and segmentation accuracy becomes complex,
as the model must align with the varying language used in
annotations, even when sometimes only general categories
are provided in the ground truth.

To address these challenges, we propose two solutions.
Firstly, we introduce a novel, objective and annotation-
independent metric in Sec. 4.2 that assesses how accurately
a label - either auto-generated or selected from a fixed vo-
cabulary -fits a given 3D point. This metric allows for flex-
ible, any-to-any class evaluation. Secondly, we leverage an
LLM-based mapping approach to align auto-generated vo-
cabulary classes with the ground-truth classes, enabling us
to effectively evaluate both the quality of the segmentation
mask and the relevance of the predicted labels (Sec. 4.3).

4.2. Text-Point Semantic Similarity Metric

We introduce the Text-Point Semantic Similarity (TPSS)
metric, a measure independent of dataset annotations and
subjective assessment. TPSS draws inspiration from infer-
ence with CLIP [39], where the best label out of a set of
target classes {m0, ...,mM} is assigned to an image:

l̂ = argmax
m

(
SIM(f im, em)

)
(8)

where l̂ represents the predicted label, f im is the image fea-
ture, and em denotes the text embeddings for class m. This

equation identifies the label with the closest text embed-
ding to the provided image feature in latent space, indicat-
ing the highest semantic alignment within CLIP’s language
space. TPSS metric employs a similar approach, compar-
ing pairs of individual point features with text features in
this aligned space. This enables evaluation of how well
any label corresponds to a specific point based on semantic
similarity, making TPSS ideal for assessing both dynamic
and fixed vocabularies. For further illustration, consider a
scenario where a LiDAR point belongs to an object out-
side the nuScenes official classes, such as a “trash bin”, and
is thus annotated as “background”. If our method predicts
“garbage can” for this point, it should not be penalized for
not predicting “background”, as the original prediction is
semantically closer to “trash bin”. TPSS accounts for such
cases, evaluating the predicted label based on the object’s
visual appearance rather than annotation setting or potential
bias. Formally, let P = {pn}Nn=1 be a point cloud with N
points and L = {lm}Mm=1 be a set of M unique semantic
labels generated for this point cloud. The text embeddings
E and the point features F are obtained as follows:

E = {em}Mm=1 ← gtx(L) (9)

F = {fn}Nn=1 ← gpt(P) (10)

where gtx(·) and gpt(·) are the frozen CLIP text encoder [39]
and a CLIP-aligned point encoder, respectively. The TPSS
score is calculated as follows:

Sn = max
m

(
SIM(fn, em)

)
(11)

TPSS(P,L, gtx, gpt) = mean
n

(Sn) (12)

where Sn is a point-wise similarity score for the point n.
TPSS(P,L, gpt, gtx) measures the text-point semantic sim-
ilarity between the point cloud P and the label set L. TPSS
is encoder-agnostic as long as gpt and gtx are aligned. How-
ever, to reliably quantify which label set aligns better with a
given point cloud, the point encoder and text encoder must
remain unchanged across comparisons.

4.3. Mapping Auto-Vocabulary to Fixed Vocabulary

While TPSS effectively measures semantic similarity
within the embedding space, evaluating the quality of the re-
sulting segmentations is crucial for meaningful assessment.
This requires establishing a correspondence between open-
ended classes and the ground truth classes. To achieve this,
we employ an evaluation scheme that leverages an LLM-
based mapper, inspired by the LLM-based Auto-Vocabulary
Evaluator (LAVE) [70]. LAVE maps each unique auto-
vocabulary category to a fixed ground truth class in the
dataset. After segmenting the LiDAR point cloud using
auto-vocabulary categories, each classification is updated
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Table 1. TPSS on the validation sets of nuScenes [4] and Scan-
Net [14]. Two datasets are created with 16 and 20 official cate-
gories, respectively. OpenScene [38] extends the nuScenes label
set by manually defining 43 sub-categories. 3D-AVS outperforms
these human-defined categories on both datasets, demonstrating its
ability to generate a semantically more precise label set.

Label Set Human-involved nuScenes [4] ScanNet [14]

Official label set ✓ 7.39 3.44
Extended label set [38] ✓ 8.70 -

3D-AVS-Image ✗ 8.78 3.49
3D-AVS-LiDAR ✗ 8.80 3.71
3D-AVS ✗ 9.65 3.78
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Figure 5. TPSS on nuScenes subsets with different light con-
ditions. LiDAR-only 3D-AVS performs better during night and
rainy scenes, suggesting its robustness across difficult conditions.

according to this mapping. For example, points labeled
as sedan are reclassified under the car category. This
mapping enables evaluation of segmentation quality using
the widely accepted mean Intersection-over-Union (mIoU)
metric based on fixed-vocabulary categories, facilitating
comparison with prior methods. Our evaluation framework
extends LAVE by integrating mappings with GPT-4o and
SBERT [41]. While we provide detailed results of all meth-
ods in the supplementary material, GPT-4o is used through-
out the main experiments due to its superior mapping accu-
racy compared to both LAVE and SBERT.

5. Experiments

5.1. Experimental Setup

Our method is evaluated on nuScenes [4], ScanNet [14]
and ScanNet200 [43] datasets. nuScenes dataset [4] is a
comprehensive real-world dataset for autonomous driving
research, capturing diverse urban driving scenarios from
Boston and Singapore. To increase the spatial density, we
aggregate LiDAR points over a 0.5-second interval, focus-
ing on the dataset’s LiDAR segmentation benchmark with
16 manually annotated categories. Given the homogeneity
often found in autonomous driving scenarios, we also assess
3D-AVS on the ScanNet [14] and ScanNet200 [43]. Scan-

Table 2. IoU comparison on nuScenes (NUS) [4], ScanNet
(SN) [14] and ScanNet200 (SN200) [43]. We employ LAVE [70]
to map auto-classes from an Unknown Vocabulary (UV) to the of-
ficial categories.

Method Unknown
Vocabulary Label Set NUS

[4]
SN
[14]

SN200
[43]

CLIP2Scene [8] ✗

Official

20.8 25.1 -
ConceptFusion [21] ✗ - 33.3 8.8
OpenMask3D [45] ✗ - 34.0 10.3
HICL [22] ✗ 26.8 33.5 -
AdaCo [69] ✗ 31.2 - -
CNS [7] ✗ 33.5 26.8 -
OpenScene [38] ✗ 30.1 47.0 11.7
Diff2Scene [67] ✗ - 48.6 14.2
3D-AVS (Ours) ✓ I+L 36.2 40.5 14.6

Net dataset is an indoor dataset with 20 annotated classes.
ScanNet200 updates the annotations of ScanNet with more
and finer-grained categories, i.e. 200 categories, while keep-
ing the input point clouds unchanged. Due to space con-
straints, we refer to implementation details in the supple-
mentary material, such as details on image captioner, seg-
menter and SMAP.

5.2. Label Set Comparison

We compare the generated label set with the fixed, human-
defined vocabulary classes in Tab. 1. OpenScene [38] man-
ually create a more fine-grained vocabulary of 43 categories
for the nuScenes [4] (originally 16 categories) dataset,
boosting the TPSS performance on the dataset from 7.39
to 8.70. Although the performance gain is impressive, Ta-
ble 1 demonstrates that 3D-AVS-generated labels are more
semantically consistent with point clouds than manually de-
fined labels, as 3D-AVS outperforms the predefined cate-
gories on both nuScenes [4] and ScanNet [14] datasets. Ad-
ditionally, Table 1 demonstrates that combining text gener-
ation from both camera and LiDAR inputs, as done in 3D-
AVS, improves text-point semantic similarity. This advan-
tage stems from 3D-AVS’ ability to adapt to scenes where
one modality struggles. For instance, the image captioner
often faces challenges in night scenes due to limited color
information, while the point captioner continues to accu-
rately describe relevant objects. This is further reflected in
Fig. 5, which shows that the point captioner proves espe-
cially useful in visually challenging scenes where the Image
Captioner falls short.

5.3. Segmentation Comparison

For quantitative comparison, we employ LAVE [70] to map
all generated novel categories back to predefined categories.
Next, we calculate segmentation metrics, namely mean
IoU (mIoU), on the validation sets of nuScenes [4], Scan-
Net [14], and ScanNet200 [43]. Note that 3D-AVS does not
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(a) Reference images.

(b) Pre-defined vocabulary. (c) 3D-AVS (Ours)
Figure 6. Qualitative comparison between inputting pre-defined vocabulary and 3D-AVS-generated vocabulary to OpenScene [38]
segmentor. The (a) six-view images are presented for a better scene understanding. While general and ambiguous pre-defined vocabulary
leads to large-area error (b). 3D-AVS segments regions with precise class names, e.g. plant (blue box), gate (green box), road, sidewalk,
staircase, building and glass door (bottom-up in red box). These points are annotated as vegetation, drivable surface, sidewalk and
manmade in the original dataset (not presented here) but are misclassified as sidewalk and barrier in (b).

have any access to the predefined categories during testing,
which makes the segmentation task much harder.

Ourdoor dataset. Table 2 shows 3D-AVS generates bet-
ter segmentation results on nuScenes, confirming the effec-
tiveness of 3D-AVS’ open-ended recognition capabilities.
The segmentation performance mainly benefits from auto-
matically generated categories for the ambiguous nuScenes
categories, such as driveable surface, terrain, and man-
made, achieving mIoU of 68.2, 41.4, and 55.4, respec-
tively—substantially outperforming OpenScene [38] (see
details in supplementary material). Such an increase is ex-
pected, as 3D-AVS is able to generate much more specific
namings for these overly general categories which can eas-
ily introduce noise. Figure 6 highlights some of these gen-
erated categories, such as man-made being correctly recog-
nized as staircase, building and glass door.

Indoor datasets. Table 2 shows that 3D-AVS achieves a
lower mIoU on ScanNet [14] compared to using a fixed
vocabulary. This is likely due to the extensive range and
variety of objects, where the generated labels must be
mapped to a small and coarse-grained set of 20 dataset cat-
egories. The state-of-the-art (SOTA) performance on Scan-
Net200 [43] further supports this argument. Notably, the
predictions of 3D-AVS remain identical on ScanNet and
ScanNet200, as the input data are the same; the only dif-
ference lies in the evaluation vocabulary—mapping to 20
coarse categories in ScanNet versus 200 fine-grained cat-

egories in ScanNet200. This shift in evaluation granular-
ity introduces a more challenging task while allowing for
a more faithful and detailed assessment of segmentation
performance. 3D-AVS achieves state-of-the-art results on
ScanNet200, underscoring its effectiveness in open-ended
3D segmentation tasks.

5.4. Ablation Study

Ablation studies are conducted on the image captioner,
point captioner and LAVE mapping to validate our design
choices and hyperparameters. The corresponding results are
provided in the supplementary material.

6. Conclusion

In this work, we presented 3D-AVS, the first method for
auto-vocabulary LiDAR point segmentation, eliminating
the need for human-defined target classes. In suboptimal
image captioning conditions, our point captioner can cap-
ture missing semantics based on geometric information. To
assess the quality of the generated vocabularies in relation
to segmentations, we further proposed the TPSS metric.
Our experiments show that our model’s segmentations are
semantically more aligned with the data than its annotations
and achieves competitive masking accuracy. We believe
3D-AVS advances scalable open-ended learning for LiDAR
point segmentation without human in the loop.
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