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Abstract

Reconstructing human-object interactions (HOI) from sin-
gle images is fundamental in computer vision. EXxisting
methods are primarily trained and tested on indoor scenes
due to the lack of 3D data, particularly constrained by
the object variety, making it challenging to generalize to
real-world scenes with a wide range of objects. The lim-
itations of previous 3D HOI datasets were primarily due
to the difficulty in acquiring 3D object assets. However,
with the development of 3D reconstruction from single im-
ages, recently it has become possible to reconstruct vari-
ous objects from 2D HOI images. We therefore propose
a pipeline for annotating fine-grained 3D humans, ob-
jects, and their interactions from single images. We anno-
tated 2.5k+ 3D HOI assets from existing 2D HOI datasets
and built the first open-vocabulary in-the-wild 3D HOI
dataset Open3DHOI, to serve as a future test set. More-
over, we design a novel Gaussian-HOI optimizer, which ef-
ficiently reconstructs the spatial interactions between hu-
mans and objects while learning the contact regions. Be-
sides the 3D HOI reconstruction, we also propose several
new tasks for 3D HOI understanding to pave the way for
future work. Data and code will be publicly available at
https://wenboran2002.github.io/3dhoi/.

1. Introduction

Human-Object Interaction (HOI) is an important area in
action understanding, with numerous datasets and meth-
ods proposed. In the 2D HOI domain, large-scale image
datasets such as HICO-DET [49] and HAKE [20] have been
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introduced. For 3D HOI, datasets like BEHAVE [2] and
InterCap [12] have also been proposed to study human in-
teractions with objects in 3D. Despite achieving promising
results in open-vocabulary and in-the-wild scenarios within
2D HOI, the 3D HOI field faces challenges in generalizing
existing methods to real-world images due to dataset limi-
tations and the lack of 3D open-world HOI data.

In 3D HOI, many datasets have been introduced.
Datasets such as BEHAVE [2], InterCap [12], ImHOI [52],
and PROX-S [53] provide multi-view RGBD sequences and
3D annotations in indoor scenes. Though datasets like
WildHOI and 3DIR [13, 47] are constructed from in-the-
wild images, they contain limited object categories and un-
real CAD objects. To better understand 3D HOIs and apply
them to the real world, we need to collect more realistic
and diverse data on interactions with objects. Thus, in this
work, we propose a novel 3D HOI annotation method for
real-world images of any objects and interactions.

In detail, we built our annotation pipeline on two bases:
1) Existing 2D HOI datasets provide rich 2D annotations,
including bounding boxes, and a wide variety of objects
and actions. This diversity creates the potential for recon-
structing 3D assets from 2D HOI images. 2) The devel-
opment of existing image-based 3D object/human recon-
struction techniques. We selected images with contact in-
teractions from existing 2D HOI datasets, e.g., HAKE [20]
and SWIG-HOI [40]. Next, we used InstantMesh [43] and
OSX [23] to reconstruct the objects and the human body re-
spectively and designed an algorithm for automatically re-
constructing rough 3D interactions. Furthermore, we devel-
oped two annotation tools: one for filtering the reconstruc-
tion quality and the other for annotating 3D spatial posi-
tions. We manually annotated over 2.5k+ images to create
an open-vocabulary, in-the-wild HOI dataset, as the test set
for future 3D HOI studies and designed tasks and metrics
to evaluate their performance. It consists of 370 3D human-
object pairs, 2,561 objects in 133 categories, and 3,671 in-
teractions in 120 categories.

Given the new dataset, we also proposed a training-free
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Reconstruct 3D HOI From Open-World

Figure 1. We aim to reconstruct 3D HOIs from arbitrary open-
world images. We propose a pipeline for annotating fine-grained
reconstructions to build a dataset. Additionally, we introduce a
new optimizer suitable for reconstructing arbitrary objects.

algorithm for reconstructing 3D HOIs from monocular im-
ages. On one hand, previous training-free algorithms do
not require specific object categories or templates, but their
optimization performance is generally limited, and they
rely on manual annotations. On the other hand, previous
training-based methods perform well for specific object cat-
egories and scenes but struggle to generalize to open-world
environments. To this end, we leveraged the 3D Gaussian
Splatting model to propose a novel Gaussian-HOI optimizer
to improve the reconstruction quality. It utilizes Gaussian
rendering capabilities to ensure that the reconstructed 3D
assets are aligned with the image from the target view and
takes advantage of the opacity attribute of Gaussians to
identify contact regions, which makes the optimization of
3D interaction relationships more effective.

Overall, our contributions are: 1) We utilized SOTA
3D reconstruction tools to develop a 3D HOI annotation
method. 2) We built a new and extensive 3D HOI dataset
Open3DHOI consisting of 2.5k+ images with rich 2D and
3D annotations. 3) We designed a 3D HOI optimizer based
on 3D Gaussian Splatting to reconstruct the spatial interac-
tions between humans and objects from single images.

2. Related Works

2.1. HOI Benchmarks

The development of 2D HOI benchmarks [6, 8, 18-21, 29,
40, 54] has made our 3D HOI reconstruction approach pos-
sible. Datasets like HICO-DET [6] and HAKE [20] pro-
vide annotations for 80 object categories and 117 action
categories. Additionally, open-vocabulary datasets such as
SWIG-HOI [40] include annotations for over 1,000 object
categories.

In contrast, 3D HOI datasets contain significantly fewer

action and object categories, and most are recorded in fixed
indoor environments. BEHAVE [2], as the earliest one, in-
troduced a method for obtaining accurate 3D HOI annota-
tions from multi-view videos, providing interaction data for
20 common objects. InterCap [12] further built upon it by
offering more detailed hand interaction information. Re-
cently, several benchmarks [13, 47] for reconstructing 3D
HOIs from real-world images have been proposed. How-
ever, they have notable limitations. Their object categories
are focused on a few common types—such as balls, skate-
boards, and bicycles—and the number of instances is lim-
ited, with all objects derived from fixed 3D CAD models.

2.2. 3D Reconstruction

3D reconstruction has seen rapid advancements recently,
both in humans and objects. After SMPL [31], para-
metric human body modeling has rapidly evolved. Cur-
rently, the SMPL-X model [34], which includes detailed
hand and facial expression modeling, is widely used in the
field [5, 22, 23, 50]. We utilized a state-of-the-art one-stage
model [23] for our human body reconstruction. What’s
more, image-to-3D has emerged as a rapidly advancing area
in 3D vision recently. From SDS loss optimization meth-
ods [35, 37] that leverage 2D diffusion priors to Multi-view
Diffusion Models [26, 30, 33, 39] and Large Reconstruction
Models [9, 17, 43] based on large-scale data, the quality and
efficiency of 3D generation from a single image have seen
significant improvements. To generate our 3D HOI dataset,
we need to reconstruct a large volume of image data, re-
quiring a balance between the quality and efficiency of ex-
isting 3D generation methods. Ultimately, we selected In-
stantMesh [43] as our reconstruction model.

2.3. 3D HOI Reconstruction

Reconstructing 3D HOIs from a single image [18, 27]
is a challenging task and important for many applica-
tions [25, 28, 45]. It requires maintaining consistency be-
tween the spatial positions of the human and the object
within the image in the given camera view while ensur-
ing that the spatial interactions are realistic and coherent.
Kanazawa et al. [51] optimizes spatial interactions through
predefined contact pairs, while Wang ez al. [41] leverages
GPT-3’s prior knowledge to optimize spatial interactions.
Xie et al. [42] learned HOI spatial arrangement priors from
the BEHAVE dataset. Wang et al. [13] learned the prior dis-
tribution of the 2D human-object keypoint layout and view-
ports to tune the relative pose between the 3D human and
the object.

3. 3D HOI Annotation

In this section, we introduce our new pipeline for 3D HOI
annotation from single-view images.
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Figure 2. Coarse Reconstruction. We first obtain depth from the
images and generate point clouds. Given masks, we extract the
corresponding point clouds for the person (pink) and object (blue).
We obtain a rough reconstruction by matching the MESH vertices
of the person and the object with the depth point cloud.

3.1. Coarse Reconstruction Annotation

First, we used a state-of-the-art human pose estimation
method [23] to obtain the 3D representation of the human
body and employed image-to-3D technique [43] to generate
the 3D representation of the object.

Second, in-the-wild HOI images often involve signifi-
cant occlusions between humans and objects and between
different objects. To address the critical occlusion problem
in object 3D reconstruction, we employed occlusion com-
pletion [48] and used Stable Diffusion 1.5 [38] as the in-
painting tool to obtain complete object images.

Finally, we applied our projection algorithm to estimate
the rough spatial relationship, including the positions and
sizes of the human and object. We used monocular im-
age depth estimation [1] combined with human and object
masks, to generate depth point clouds for both the human
and the object. Then, we obtained a rough estimation of
their spatial positions and size by matching the sampled
point clouds from the human and object meshes with the
depth point clouds as shown in Fig. 2.

The rough reconstruction can facilitate the subsequent
manual annotation. Rough reconstruction usually has se-
rious mesh collision issues and inaccurate scales and po-
sitions.  Additionally, the object pose provided by In-
stantMesh [43] is also not accurate. Therefore, to obtain
more precise 3D human-object interaction information, we
manually performed further annotations.

3.2. Fine Reconstruction Annotation

We designed two annotation tools to facilitate manual an-
notating for obtaining more refined 3D HOI information.
Fig. 3 shows the whole process.

Filtering Tool filters the initial reconstructions and an-
notates contact regions. The filtering consists of:

1) Filtering the SMPL-X human reconstruction. We
project the reconstructed SMPL-X mesh onto the image to
assess whether the pose estimation of key interaction joints

is accurate. For joints not involved in the interaction, we
relax the criteria. For example, if a person is drinking water
and the target object is a cup, we focus on the accuracy of
the hand pose reconstruction, while only ensuring that the
lower body pose is reasonable.

2) Filtering the object reconstruction. Given the re-
constructed object mesh, we project it from six viewpoints.
Annotators evaluate the quality of the object mesh, retaining
images with high-quality reconstructions, especially paying
attention to the quality of the interaction area.

3) Manual optimization of the inpainting mask. The
inpainting masks obtained from occlusion completion fail
sometimes. Annotators can manually correct them using a
brush, ensuring higher accuracy. In Fig. 3, (a) shows that
the annotator manually drew a mask (green part) on the
poorly reconstructed couch. After re-inpainting and recon-
struction, it achieves a much better result. Considering that
some objects may only partially appear in the image, we
still allow for the completion of the object by manually edit-
ing the mask. Annotators can use a brush to fill in the parts
of the object that are outside the image. We further divided
the SMPL-X mesh into 34 human body regions, which are
used for contact area annotations. Annotating contact ar-
eas at a fine-grained, vertex level would be costly and diffi-
cult to ensure high-quality results. Therefore, we opted for
part-level contact annotations, which are sufficient for most
interaction scenarios. In Fig. 3, (a) shows the annotation of
the contact area, where the person is sitting on the couch,
and the thighs and bottom are annotated (blue part).

3D Interaction Tool is designed for annotating the spa-
tial interaction between humans and objects. We adopted a
coarse-to-fine approach. Initially, we developed a 3D HOI
annotation tool via Blender, where volunteers can adjust the
objects’ positions, rotations, and scales using a mouse. In
Blender, the annotations cannot be compared pixel-by-pixel
with the images, and the focus is more on the 3D interaction
quality. Thus, we further performed detailed annotations
for cases where there is a significant discrepancy when pro-
jected on the images. We built a website annotation tool
based on ImageNet3D [32]. In this refine-annotation tool,
volunteers can finetune the annotations by clicking buttons
to translate, rotate, and scale the objects based on the pro-
jection of the object on the image. To ensure the accuracy
of the 3D interactions, we provide multiple viewpoints pro-
jections of humans and objects, allowing them to more ac-
curately evaluate and adjust the annotations.

3.3. Open3DHOI Dataset Construction

We selected 12k+ images from HAKE-Large and 3k+ im-
ages from SWIG-HOI, totaling 15k+ images as the database
for our 3D reconstruction. We also collected some images
from the website. After manual annotation and filtering, we
obtained 2.5k+ images to form our dataset Open3DHOL.
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Figure 3. Annotation Pipeline. (a) Filtering. Given the reconstructed human and object meshes, annotators assess the quality. If the human
reconstruction is eligible, the contact area is further annotated. If the object reconstruction fails, the mask is redrawn manually and the
reconstruction is performed again. (b) Given the 3D human interaction through coarse reconstruction, we adjust the object position in
Blender. For example, the rough annotation of the couch and the human body shows a mesh collision. We move the object to make sure the
person is correctly seated on the couch. (c) We use a fine annotation tool to further align the annotated human and object with the image.
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Figure 4. Object category distribution in Open3DHOI. It encom-
passes a wide range of object categories.

To our best knowledge, this is the first in-the-wild, open-
vocabulary 3D HOI dataset based on real-world images.

Datasets Objects Action  Human  Object Pose Contact 2D HOI
BEHAVE [2] 10 N/A  SMPL+H v X
InterCAP [12] 10 N/A  SMPL-X v v X
WildHOI [13] 8 N/A  SMPL v X X
3DIR [47] 21 17 SMPL+H X v v
PROX-S [53] 40 17 SMPL-X v v X
Ours 133 120  SMPL-X v v v

Table 1. Dataset comparison between previous datasets and ours.

The 2D annotations include bounding boxes, HOI
triplets, object labels, and masks obtained using SAM [16].
The 3D annotations consist of object meshes, SMPL-X pa-
rameters for humans, the 6D poses of both objects and hu-
mans in space, as well as human contact regions. Our
dataset includes 133 object categories and more than 120 in-
teractions, significantly surpassing the current benchmarks
in terms of semantic diversity. We referred to WordNet’s
classification of object categories and divided our object
categories into several major categories, as shown in Fig. 4.
It can be seen that our data includes a wide range of object

categories, many of which were rarely attempted in previ-
ous 3D HOI datasets, such as food and animals.

We compared the differences between existing 3D HOI
datasets and our dataset in Tab. 1. It can be seen that the
object and action categories in the current benchmarks are
much fewer than those in our dataset. At the same time, we
also provide more detailed 2D and 3D annotations.

4. Method

4.1. 3D Gaussian Splatting

3D Gaussian Splatting [15] is advanced for rendering and
reconstructing scenes by representing objects continuously,
in a volumetric manner. Instead of relying on traditional
mesh-based models, it leverages a collection of Gaussian
kernels, each defined by its mean, covariance, and inten-
sity, to describe the spatial distribution of objects in 3D.
These Gaussian splats, which are soft, overlapping volumet-
ric primitives, enable high-quality rendering while main-
taining flexibility in representation. For a given pixel z, the
depth of each overlapping 3D Gaussian is computed using
the viewing transformation W, resulting in a depth-sorted
list of Gaussians N. The final color of the pixel is then de-
termined using alpha compositing, expressed as:

[N n—1

0 =X [L(1-a5). (1)

Jj=1
where ¢,, denotes the color associated with the n —th Gaus-
sian. The effective opacity a; is got by multiplying the
learned opacity o, by a Gaussian weighting function:

1
ay, = Qm €XPp (—2 (@ — ) =7 (2 — u%)) )
Here, 2’ is the pixel’s projected coordinate and p!, is
the projected center of the m — th Gaussian. Recent
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works [11, 24] have applied 3D Gaussian Splatting to high-
quality human reconstruction, which not only ensures ren-
dering quality but also significantly improves reconstruc-
tion speed. For example, in GauGAN-based approaches
like Gauhuman [11], SMPL’s vertices are used as the ini-
tial point clouds for 3D Gaussian splatting. This method si-
multaneously learns the SMPL pose and Linear Blend Skin-
ning (LBS) parameters to optimize the human Gaussians,
ultimately achieving high-quality reconstruction results. It
successfully demonstrates the effectiveness of 3D Gaus-
sian splatting for optimizing human reconstruction based
on SMPL representations. Also, work like GS-pose [4] and
6D-GS [3] leverage 3D Gaussian splatting to optimize the
6D pose of objects. We reasonably infer that this approach
can also be effectively applied to reconstruct human-object
interactions from a single viewpoint, potentially replacing
traditional silhouette-based optimizers [51].

4.2. HOI-Gaussian Optimizer

We developed the HOI-Gaussian optimizer specifically for
3D HOI reconstruction based on Gauhuman as shown in
Fig. 5. We chose 3D Gaussian over other silhouette-based
optimization methods as we believe it offers the following
advantages:

1) Methods like Gauhuman have demonstrated that 3D
Gaussian can be used to adjust human body parameters.
Our HOI-Gaussian optimizer can simultaneously optimize
object and human poses beyond traditional methods.

2) 3D Gaussian uses depth from point clouds better to
align with the image, reducing cases where large pose dis-
crepancies occur despite small silhouette losses.

3) We hope to use the features rendered from the
3D Gaussian point clouds to obtain potential contacts,
thus reducing reliance on prior, such as manually anno-
tated human-object parts pairs introduced by methods like
PHOSA.

We used the vertices from the SMPL-X model to ini-
tialize the human 3D Gaussians g, and the vertices from
the object mesh to initialize the object 3D Gaussians g,.
During optimizing, we follow GauHuman’s pose refinement
and LBS offset to learn the parameters of the human model,
while introducing a learnable parameter W; to optimize
the object’s 6D pose. Our final interaction 3D Gaussian g,;
is derived from gy, and g, through

phoi —_ ph EBPO, Ehoi — Eh ey EO,
ph _ thh' + th, po — Rosopo/ + to7 (3)
yh hah’RhT 0 — poye’ poT

where p represents the 3D position and X represents the
covariance matrix. R" and t" are the rotation matrix
and translation vector obtained from the SMPL-X model
through pose and LBS parameters. R°, s°, and t° repre-

sent the object’s rotation matrix, scale factor, and translation
vector, respectively, and all three variables are learnable.

4.3. Contact in Gaussian Model

The rendering capability of Gaussians ensures that the re-
constructed human-object interactions are consistent with
the images, while the depth information and rendering char-
acteristics of Gaussians enable us to obtain potential contact
areas. Given that in monocular images it is difficult to di-
rectly determine the contact area between the human and
the object, however, we can identify areas where there is
no interaction easily, i.e., regions in the image where the
human and object do not occlude each other. This allows
us to infer potential contact areas between the human and
object.

In the optimization of ¢"°?, the Gaussian points where
g" and ¢° occlude each other tend to have lower opacity c.
In Eq. 1, the color of a pixel is influenced by the opacity of
the Gaussian points. If the opacity is very low, the contribu-
tion of that Gaussian point to the pixel’s color becomes less.
While optimizing ¢"°?, we also simultaneously optimize g"
and ¢g°. Given the original 2D image g¢ and human image
gt" (Fig. 6), the occluded areas between the human and the
object appear as background in gt", so does the object im-
age gt°. Thus, the opacity of the Gaussian points projected
in these areas will tend to decrease in rendering.

Additionally, even in regions without overlap in 2D, oc-
clusion relations exist in 3D depth. Relative to the cam-
era, we consider points in the back to be potential contact
areas. Without constraints, both front and back points rel-
ative to the camera would participate in rendering. Thus,
we set a very low opacity for points facing back from the
camera by calculating normals in advance when initializ-
ing Gaussians. This approach is based on the assumption
that the human pose will not undergo significant changes in
optimization, effectively resolving the issue. Setting a low
initial opacity allows points closer to the camera to be prior-
itized in rendering. As the Gaussian point scale increases,
it naturally occludes points further back, preventing them
from contributing to the rendering. In Fig. 6 (a) and (b),
the blue area represents regions with high opacity, while the
red area starts with relatively high opacity. As the optimiza-
tion progresses, occluded parts of the human leg turn blue,
designating them as potential contact regions. Meanwhile,
the opacity of points behind the camera remains relatively
stable.

Additionally, in the optimization, we will have a rela-
tively stable positional relationship between the human and
the object before we use the contact region to further opti-
mize. By setting a distance threshold between human and
object, we can further narrow down the potential contact
area, shown in Fig. 6 (c). Therefore, we introduce a new
attribute ¢ into gh, which represents the contact interaction
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Figure 5. Our pipeline. The optimizer first converts the human and object into 3D Gaussian points, then calculates a rendering loss by
comparing the Gaussian-rendered image with the ground truth image. This loss is backpropagated to update the object’s pose parameters
and the human’s LBS parameters. We also calculate an HOI loss, which includes collision, depth, and contact losses, the red overlapping
areas between the human and object in the image represent collision regions and the dashed lines represent the ground truth depth and the
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depth during the optimization process. Finally, we refine the result by optimizing the contact regions.
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Figure 6. Contact reglon. (a) Opac1ty initialization usmg human
normals. (b) The distribution of human body point cloud opacity
scores is visualized to identify the blue region as a potential inter-
action area. (c) Based on the approximate distance between the
human body and the object, the optimized contact region is further
identified, shown in light blue.

score of a Gaussian point. The calculation of c is given by
o) +wg-de(" p?)", @)

where Norm means the normalization of the vector to a
range between 0 and 1, and d¢ means the Chamfer distance.

¢ =wq - Norm(

4.4. Loss Function

Our loss function is divided into two parts: Gaussian ren-
dering loss which is used to optimize the 2D alignment, and
HOI loss which is used to optimize the spatial interaction
between the human and the object.

Rendering Loss. We adopt the training loss used in
3D Gaussian Splatting, including the L1 loss between the
rendered image and GT image, the L2 loss between the
rendered mask and GT mask, as well as SSIM (Structural
SIMilarity index) loss and LPIPS (Learned Perceptual Im-
age Patch Similarity) loss. To ensure the rendering quality
of both the human and the object individually, as well as
their combined rendering, we perform separate rendering
and loss calculations for ¢"°%, ¢, and ¢°:

L, = wpll +wo L2 + whoi L1 (5)

Colli:0.000

b4 Colli:0.261 Cont:0.253 %

Cont:0.000
i%(
)

Figure 7. Visualization of our C'o> Metric. For example, the Colli
score focuses on the collision between the bird and the person,
while the Cont score calculates the mean Chamfer Distance be-
tween the annotated contact part (left hand) and the bird.

Colli:0.006
Cont:0.008

HOI Loss. We use the HOI loss to constrain the spa-
tial interaction between the human and the object, ensur-
ing its plausibility. First, we calculate the Chamfer dis-
tance between the human contact area, obtained through
the Gaussian rendering process, and the object as a contact
loss. At the same time, to ensure that the human and object
meshes do not intersect, we follow [14] to add a collision
loss L.o;;- We also follow [51] by adopting an Ordinal
Depth loss Lgep:n to constrain the depth relationships. Our
final HOI loss and the total training loss are:

£h0i = Econt + ‘Ccolli + £depth7

6
»C:wr'»cr+whoi'£hoi~ .

5. Experiments

5.1. Implementation Details

Experiments are conducted on our Open3DHOI test set and
our method doesn’t need training as an optimizer. Object
meshes with the pose before manual annotation are given.
We adopt a staged optimization, optimizing each image for
160 iterations. For the first 100 iterations, only the render-
ing loss is adopted, and HOI loss is added in the subse-
quent iterations. Due to our dataset being open-vocabulary,
it would be unfair to compare methods trained for specific
objects on our dataset, so we use the same training-free
method PHOSA [51] as our baseline.
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Methods Scale| Translation (cm)] Rotation] Cf Distance(cm)

PHOSA[51] 0.39 71.79 0.95 49.1
Ours w/o HOI Loss ~ 0.25 38.66 0.45 16.9
Ours 0.16 38.44 0.41 19.3

Table 2. Comparison on object pose metrics.

Methods Co%| Collision] Contact]
PHOSA [51] 0.431 0.105 0.326
Coarse Recon 0.248 0.083 0.165
Ours Gs only 0.287 0.136 0.151
Gs& depth 0.216 0.080 0.136
Gs& colli 0.189 0.046 0.143
Gs & depth & colli 0.188 0.045 0.143
Gs & depth & colli &cont  0.181 0.053 0.128

Table 3. Comparison on collision and contact metrics.

score Action Object
’ obj w/oobj action w/o action
Top-1 0.47 0.20 0.32 0.31

Table 4. Top-1 Accuracy under different prompts.

To ensure fairness, both our method and PHOSA initial-
ize human body parameters using the parameters from our
dataset.

5.2. Metrics

To more accurately evaluate the reconstruction quality, we
used two metrics. First, we compared the reconstructions
with the object pose in our annotated data, evaluating the
differences in scale, translation, rotation, and Chamfer Dis-
tance in Tab. 2. The scale measures the difference between
the predicted and GT objects’ sizes. The translation is the
distance between the predicted and GT objects in cm. Rota-
tion is the norm of the predicted rotation matrix and the eye
matrix. We designed an alternative metric that better eval-
uates 3D interaction quality. It combines the extent of col-
lision between the human and the object with the Chamfer
distance between the human and the object within our anno-
tated contact regions. We call this metric as 002 (Collision-

Contact) score:
P

C? = Sig(Colli(h, 0)) + Sig(Z(Cont(i) /Size)), (7)

7

where Sig is sigmoid function, Colli(h, o) is the collision
between human mesh and object mesh. Cont calculates the
Chamfer distance between each human body part and the
object. Size is the object mesh size.

5.3. Analysis

Gaussian Advantages. The results show that our method
significantly outperforms PHOSA. Our method achieves
a higher score in Rotation compared to PHOSA because
PHOSA optimizes object pose solely through silhouette
loss. In contrast, the 3D Gaussian approach can utilize
color matching and richer features, reducing cases where
there is minimal silhouette difference but significant dispar-
ity from the image. Additionally, our method with contact

What is the action between the
person and the pumpkin?

The person is hugging the
pumpkin.

What is the SMPL pose of the
person riding motorcycle at
[49, 121, 520, 471]

1 ,||3|, The SMPL pose of the

person is <POSE>

Figure 8. Visualization of HOI Understanding and HOI Pose Chat.

optimization improved the C'o? score, particularly the Con-
tact score. This indicates that the contact regions derived
from Gaussian depth information effectively enhanced 3D
human-object interaction quality.

Ablation Study. Coarse Recon in Tab. 3 is the coarse
reconstruction using depth and projection in 3.1. The C'o>
score using only Gaussian optimization is lower than that of
Coarse Recon. Since Gaussian optimization alone does not
greatly enhance spatial interaction information, it mainly
refines object pose according to the image. However, af-
ter adding depth, collision, and contact losses, the 3D score
improves significantly, demonstrating that HOI losses are
highly effective in optimizing interactions. After adding
the contact loss, the collision score slightly decreased, but
the contact score improved significantly. Because optimiz-
ing the contact area sometimes increases collision in certain
images, as objects are moved closer to the intended contact
regions. C'o? metric is to better balance this trade-off.

6. More Tasks

Our dataset, with its extensive 2D and 3D annotations, can
be utilized for various other tasks. In this section, we pro-
pose two more tasks as shown in Fig. 8.

6.1. 3D HOI Understanding

Understanding 3D assets has been a long-standing area of
interest, and recently some large models [10, 36, 44] have
achieved impressive results in 3D object comprehension.
We tested the current state-of-the-art point clouds under-
standing model PointLLM [44] on our 3D HOI data to eval-
uate its capability in action understanding. We provide the
model with the point clouds of annotated human and object
and ask it to answer the interaction verb between the human
and the object. We then compared the output action with GT
action annotation. We ask the LLM “What is the action be-
tween the person and the [object]?”” and “What is the person
[Interacting] with?”, where [object] and [Interacting] can be
replaced with specific verbs and object or not.

We used the Top-1 score as a metric, the results in Tab. 4
indicate that PointLLM demonstrates a certain level of un-
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Figure 9. Visualized results comparison between GT, PHOSA, and Ours.

derstanding of human interaction point clouds, though it re-
mains limited. Given object name significantly improves
action answering performance because PointLLM will esti-
mate the action according to the object category with com-
mon sense, but given action name will not improve object
answering score, which indicates that PointLLM has lim-
ited ability to understand the interaction in the point cloud.

6.2. HOI Pose Chat

Recently, large models have focused on integrating seman-
tics with 3D data. ChatPose [7] uses a framework with
LLMs to understand and infer 3D human poses from images
or textual descriptions. F-HOI [46] leverages large models
to unify various HOI tasks. Since our dataset provides 2D
annotations of HOI semantics, we tested the open-sourced
large model ChatPose. To evaluate its HOI reasoning and
pose generation, we selected cases from the dataset with
more than one person, provided the model with the target
object’s location, and asked it to output the SMPL pose of
the person interacting with that object. We then compared
this generated SMPL pose with the GT SMPL pose from
our dataset. We ask Chatpose “What is the SMPL pose of
the person [Interacting] [object] at [Location]?”.

The results in Tab. 5 indicate that ChatPose’s ability to
accurately locate the target human body and obtain the cor-
rect pose still needs improvement. In the future, we hope
our dataset can help drive the development of more power-
ful models capable of better understanding images and si-
multaneously obtaining both human and object poses.

Prompt MPJPE| MPVPE |
Action 103.6 131.2
w/o Action 105.2 133.5
Action + Object 103.4 130.9

Table 5. ChatPose performance results under different prompts.

7. Discussion

We propose a real-world 3D HOI annotation pipeline that
provides a paradigm for obtaining rich 3D human-object
interaction data from unlimited 2D images. Our proposed
annotation process relies on the ability of 3D human and
object reconstruction tools. In the future, with more ad-
vanced 3D-AIGC tools, the annotation efficiency will be
largely improved. Moreover, our LLM-based 3d testing
tasks proved that existing 3D general models are poor at 3D
HOI understanding. As understanding 3D HOI is an impor-
tant task, it requires more fine-annotated data to drive more
general and capable models in the future.

8. Conclusion

In this work, we propose a method for annotating 3D
HOIs from open-world single-view images and create
Open3DHOIL. The rich annotations in our dataset can sup-
port various 3D action tasks. For 3D HOI reconstruction,
we introduce a 3D Gaussian optimizer that surpasses base-
lines. Results of current methods reveal that they are not
yet capable of understanding 3D HOIs well. We believe
Open3DHOI will pave the way for future 3D HOI learning.
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