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Abstract

Dense video captioning aims to localize and caption all
events in arbitrary untrimmed videos. Although previous
methods have achieved appealing results, they still face the
issue of temporal bias, i.e, models tend to focus more on
events with certain temporal characteristics. Specifically, 1)
the temporal distribution of events in training datasets is un-
even. Models trained on these datasets will pay less atten-
tion to out-of-distribution events. 2) long-duration events
have more frame features than short ones and will attract
more attention. To address this, we argue that events, with
varying temporal characteristics, should be treated equally
when it comes to dense video captioning. Intuitively, dif-
ferent events tend to have distinct visual differences due to
varied camera views, backgrounds, or subjects. Inspired by
that, we intend to utilize visual features to have an approx-
imate perception of possible events and pay equal attention
to them. In this paper, we introduce a simple but effective
framework, called Event-Equalized Dense Video Caption-
ing (E2DVC) to overcome the temporal bias and treat all
possible events equally. Experimental results on ActivityNet
Captions and YouCook2 dataset validate the effectiveness
of the proposed methods and show State-of-the-art (SOTA)
performance on dense video captioning.

1. Introduction

In recent years, an increasing number of works have begun
to focus on video understanding[21, 22, 28, 38, 44, 50, 57]
where video captioning is a challenging branch. Conven-
tional video captioning [5, 12, 33, 34, 42] aims to generate a
natural sentence to describe the main event of a short video
clip. However, they face considerable challenges when ap-
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Figure 1. Temporal distribution of ground truth and predicted
events on ActivityNet Captions training set. The prediction is from
PDVC [48]. (a) The distribution of all events in time dimensions.
Horizontal and vertical axes represent the normalized center time
position and duration respectively. It’s obvious that events are dis-
tributed unevenly in these two temporal dimensions. (b) The pro-
portion of the number of events in different duration intervals. It’s
clear that the predicted short-duration events are much fewer than
the ground truth.

plied to realistic videos which are usually long, untrimmed,
and contain a variety of events. To address the challenge,
dense video captioning (DVC) [19] is proposed to automat-
ically localize and caption all events in an untrimmed video.

Existing DVC methods [6, 17, 18, 30, 60] follow a com-
mon pipeline to first extract image features from down-
sampled video frames with pre-trained image encoder [15,
35, 39, 46] and then delicately design a framework to ex-
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ploit event representations from them. Although state-of-
the-art (SOTA) performance has been achieved, existing
methods still face the issue of temporal bias, which means
that models will pay more attention to events with cer-
tain temporal characteristics while overlooking some other
ones. The temporal bias can be divided into two categories
based on its causes: 1) Data distribution bias. As shown in
Figure 1(a), the predicted events are scattered in the time
axes. Events are completely ignored or mis-localized for
most timestamps. This is because the models tend to learn
from the dataset which part of the video to focus on and
the ground truth events are unevenly distributed in this di-
mension. 2) Event duration bias. This bias results from
the duration variation between events. Since short-duration
events have fewer frames, their features are easy to be over-
whelmed by others. Figure 1(b) shows the proportion of
events in different duration intervals. It’s obvious that the
predicted short-duration events are much fewer than the
ground truth. This means that most short-duration events
are totally ignored or localized with large deviations.

To address the issues above, we argue that every event,
regardless of its temporal characteristics, should share equal
importance when it comes to dense video captioning. To
achieve this goal, we need to reduce the influence of tem-
poral information and ensure that attention is evenly dis-
tributed across all events. However, the challenge lies in
how to perceive possible events in a video without rely-
ing on temporal information. Intuitively, different events
have large visual differences considering their varied cam-
era views, backgrounds, or subjects [19]. Inspired by this,
we intend to utilize the differences in pure visual features to
gain an initial perception of segments where events may ex-
ist. Equal Attention will be allocated to all these segments.

In this paper, we propose a novel Event-Equalized Dense
Video Captioning framework (E2DVC) to overcome the
temporal bias and treat each potential event equally. First, a
non-trainable Event Perception module (EPM) is devised to
utilize agglomerative hierarchical clustering algorithm [7]
on visual features to generate video frame clusters. These
clusters are segments with potential events. A refinement
mechanism is designed to split frames that are discontin-
uous in time and discard isolated frames. These refined
clusters are regarded as pseudo-events. Since the clustering
process is non-trainable, the result will not be affected by
the uneven data distribution. Additionally, since agglomera-
tive hierarchical clustering is a non-uniform method, frames
from short-duration events can also be equally clustered into
the same category as the long ones.

With the pseudo-events, equal attention is required
among them. To achieve this, a Pseudo-event Initializa-
tion module (PEI) is introduced. Concretely, we calcu-
late the temporal locations of these pseudo-events (center
timestamps) and use a temporal encoder to encode them

8418

as pseudo-event queries. These queries serve as the initial
guess of the event’s locations to help the model allocate its
attention. A novel Event-Enhanced Encoder (EEE) is also
proposed to explore frame-frame and frame-event relation-
ships during the encoding process.

Our E2DVC can determine and localize events with
higher precision which further improves the dense video
captioning performance. The main contributions of our
work can be summarized as:

* We identify the issue of temporal bias and propose an
Event-Equalized Dense Video Captioning framework to
treat all events equally.

We propose a non-trainable Event Perception module,
a Pseudo-Event Initialization module, and an Event-
Enhanced Encoder to ensure all events are noticed. Our
components could perceive the input video with pure vi-
sual features and allocate equal attention to events with
large temporal variations.

Comprehensive experiments have been conducted on
the ActivityNet Captions [19] and the YouCook2 [58]
datasets to verify the effectiveness of our model in the
dense video captioning task.

2. Related Works

Dense Video Captioning. Dense video captioning con-
sists of two subtasks: event localization [9, 11, 25, 26] and
event captioning [24, 31, 42]. Based on different pipelines,
the methods can be divided into two categories: two-stage
methods and end-to-end methods. For two-stage meth-
ods, they solve dense video captioning by a “localize-then-
describe" scheme. These methods first predict a set of
event proposals with corresponding time boundaries and
then generate a detailed sentence description for each pro-
posal by further extracting semantic knowledge and visual
context. Krishna et al. [19] propose the first two-stage dense
video captioning model. Wang et al. [43] and Yang et
al. [54] focus on mining useful contextual information to
improve DVC performance. Iashin et al. [15, 16] construct
architectures to utilize any number of modalities for event
description. However, these methods lack inter-task inter-
actions and heavily rely on hand-crafted components.

To address the limitations above, recent methods follow
the end-to-end pipeline [3, 6, 18, 23, 30, 36, 53, 60]. Li
et al. [23] propose a joint and global optimization of detec-
tion and captioning. Islam et al. [17] and Deng et al. [6]
solve DVC in hierarchical ways where the former follows
a bottom-up structure while the latter proposes a top-down
framework. Mun et al. [30] and Zhou et al. [60] leverage
visual and linguistic context from prior events for coherent
storytelling while the latter proposes an additional mem-
ory module and streaming decoding algorithm to support
streaming video input. Kim et al. [18] utilize external mem-
ory to incorporate prior video-to-text knowledge to gener-
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Figure 2. The overview of our E?DVC. Our model follows an encoder-decoder structure. Given an input video, a pre-trained visual
encoder is adopted to extract frame-level features. (a) Event Perception Module (EPM). Based on visual features similarity, these frames are
clustered to multiple uneven segments and a refinement mechanism is utilized to discard outliers. The remaining segments are assigned with
pseudo-events. (b) Event-Enhanced Encoder (EEE). By incorporate the pseudo-event labels with visual frame features, it could enhance
the encoder’s ability to explore frame-event and event-event relationships, preventing short-duration events from being overwhelmed.
(c) Pseudo-Event Initialization module (PEI). Given the pseudo events, we calculate and encode their temporal locations and use the
embedding to initialize the queries, helping the model allocate its attention equally among them. Finally, we obtain the predictions of the
event-number, time localization and event captions through heads.

ate natural descriptions. Yang et al. [53] reformulate sen- using shared queries for classification and localization will
tence boundaries of transcribed speech as pseudo-events to lead to suboptimal results. Instead, they introduce a task-
achieve large-scale video data and propose a multi-modal aware query generation module to decouple these two tasks.
pertaining model trained on this dataset. However, it re- DualDETR [62] presents a joint query initialization strategy
mains a significant challenge to detect all events and local- to align queries from the instance level and boundary level
ize them with high precision in a video. We propose a sim- to obtain better performance in the Temporal Action Detec-
ple yet effective approach to enable the model to treat all tion task. In this paper, we introduce the query formula-
events equally thus improving the DVC performance. tion strategies into the Dense Video Captioning task. Our

E2DVC employs a novel Pseudo-Event Initialization mod-
ule to initialize the decoder queries with pseudo-events to
ensure that every possible events are treated equally.

Query Formulation in Transformers. Since Detection
Transformer (DETR)[2] has achieved promising perfor-
mance in object detection without the need for any hand-

crafted components, many researchers have studied and fur- 3. Method

ther modified the model. Among these, research on decoder

query formulation has received significant attention. Condi- Our goal is to treat each event equally and localize and cap-
tional DETR [29] learns a conditional spatial query by en- tion all events without omission. To realize this, we intro-
coding the reference points as the query position embedding duce an Event Perception module (Section 3.1) with a del-
to help focus on distinct regions. Anchor DETR [49] and icately devised refinement mechanism to perceive the input
DAB-DETR [27] utilize anchor boxes to initialize queries to video with only visual features available and select those
improve interpretability and force each query to only pay at- segments where events may exist. Furthermore, A novel
tention to a specific region in the object detection task. DN- Event-Enhanced Encoder (Section 3.2) is also introduced
DETR [20] additionally adds ground-truth bounding boxes to incorporate the pseudo-event labels into the self-attention
with noises into decoder queries to reduce bipartite graph framework in order to explore frame-frame and frame-event
matching difficulty and achieve faster convergence. Group relationships . Meanwhile, we design an Pseudo Event Ini-
DETR [4] utilizes multiple groups of queries to conduct tialization module (Section 3.3) to ensure that the model
one-to-many assignments in order to speed up training and pays equal attention to those pseudo-event locations. The
improve performance. Decoupled DETR [55] discovers that overall framework of E2DVC is illustrated in Figure 2,
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Figure 3. Illustration of the refinement mechanism. Different
shapes denote different events. In the same events, frames with
different color are temporal consistent. Our refinement mechanism
could split the temporal inconsistent events into multiple new con-
sistent events and discard the extremely short events which is short
than the defined temporal event threshold.

which follows a standard parallel encoder-decoder structure
with subtask heads. The objective is to generate N pairs of
events and captions {(t7,t", Cap™)})_,, where N denotes
the number of events detected in the video. ¢7' and ¢! de-
note the start and end timestamps of the n-th event. C'ap™
denotes the corresponding caption. The details of task heads

and training loss will be introduced in Section 3.4 and 3.5.
3.1. Event Perception Module

To perceive the whole video with only visual features and
pick out those pseudo-events, we devise an event per-
ception module with agglomerative hierarchical clustering.
The input video is first sampled in a certain ratio to ob-
tain the image frames V = {v;}!7; where F denotes
the number of frames. Then, a pre-trained image encoder
E [15, 35, 39, 46] is utilized to extract visual features
X = {x;}} from each video frame. Based on the visual
feature similarities, we perform a hierarchical clustering al-
gorithm to obtain pseudo-events.

In this paper, we choose the Agglomerative clustering
algorithm because it doesn’t assume any particular cluster
shape and sizes. It could progressively merge the individual
frames to generate uneven clusters with different sizes and
assign them with pseudo-event labels. Specifically, each vi-
sual feature x; is initially considered an individual cluster
with one element. We calculate the pairwise distance ma-
trix among all the clusters. The two clusters that are the
most close in feature space are combined into a bigger clus-
ter. Then we recalculate the distance matrix. This proce-
dure is iterated until the final number of clusters is equal to
N, which is a hyper-parameter which is set to control the
granularity of the clustering process. Finally, we obtain a
number of clusters C which can be formulated as

C = {Ci}e, = {{al} e 3 e (1)

in which C; denotes the i-th cluster and N/ denotes the
number of this cluster.

Additionally, since the timestamps of the frame features
are not considered during the clustering process, some clus-
tered frames are temporally inconsistent with others in the
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same cluster. Considering that frames belonging to the same
event should be temporally consistent, as illustrated in Fig-
ure 3, we utilize a refinement mechanism to split the tem-
porally discontinuous events into multiple new consistent
events based on the timestamps of the video frames. More-
over, since an event typically occupies a certain duration,
we devise a temporal event threshold 7. If the durations of
the events are shorter than 7, these events would be con-
sidered outliers and discarded. The remains are regarded as
final pseudo-events. Our framework will pay special atten-
tion to these pseudo-event locations with improved local-
ization and captioning performance.

3.2. Event-Enhanced Encoder

After obtaining the pseudo events, we directly assign the
video frames with their pseudo labels. In this section, we
introduce how to incorporate the assigned labels with vi-
sual features into transformer encoder to get better repre-
sentations. We hope that in the process of encoding frame
features, the focus should not only be on the frame-frame
relationships but also on the frame-event one. In this way,
frame features from short-duration events will not be over-
whelmed during the self-attention process.

To realize this, we devise an Event-Enhanced En-
coder (EEE) to add pseudo-event labels to the frame feature
encoding process. Specifically, for each video frame v;, we
have its pseudo-event label [;. The pseudo-event label /;
is transformed into a label embedding le; with a label en-
coder, which consists of a learnable dictionary and a multi-
layer perceptron. During the encoding process, we concate-
nate the frame-level features X = {z;}/, with their corre-
sponding label embedding and positional embedding (PE).
They are fed into the deformable transformer encoder and
a multi-scale convolution layers to extract multi-scale fea-
tures with frame-frame and frame-event relationships.

3.3. Pseudo-Event Initialization

Given the pseudo-events from Event Perception module, we
want the model to pay equal attention to their temporal lo-
cations. Previously, the decoder aimed to query the event-
level features from all frame features directly with IV, ran-
domly initialized and learnable event queries. In this way,
each event query is associated with multiple random tem-
poral locations and learns which part to focus on from the
uneven training dataset, leading to those events with out-of-
distribution temporal characteristics easy to be overlooked.

To address this issue, we devise a novel Pseudo-Event
Initialization (PEI) module to initialize those event queries
with pseudo-events. Specifically, given a pseudo-event
E;, = {z;; }jv;l in which L; is the number of frames for
N;, we calculate its center temporal location ¢; (reference
points) with:

ti = (tin +ti1,)/2, 2



in which ?; ; is the timestamp for frame feature x; ;. In this
way, for each pseudo-event F;, we have its reference points
t;. We calculate the inverse sigmoid (Invg;,) of ¢; and use
temporal encoder f; [40] to get the temporal embedding.
Instead of randomly initializing the event queries, we ini-
tialize them with the positional embeddings of all pseudo-
events. The process can be formulated as:

¢ = fi(Invsig(ts)), 3)

in which g; is the i-th event query. What’s more, consider-
ing that the pseudo-events may not cover all possible events
in the ground truth, we also concatenate [V,. randomly ini-
tialized queries with these pseudo-event queries together.
In this way, the event queries explicitly prioritize the loca-
tions of these pseudo-events. This significantly enhances
the performance of event localization and further improves
the event captioning performance as well.

3.4. Task Heads

Our work follows an encoder-decoder framework with a
parallel decoding structure [18, 48, 52]. Given the event
features, three parallel prediction heads are utilized to do
dense video captioning.

Localization Head. The localization head is responsible
for box prediction and binary classification for each event

query g;. It outputs a set of tuples {t, 1, '} %  where ¢
and ! denote the start and end timestamps and ¢’ represents
the localization confidence.

Captioning Head. We utilize LSTM [14] as the backbone
of our captioning head. At each timestamp ¢, we feed con-
text features z; ¢, event query features g; and previous words
{wz]}j;ll into the LSTM model to get the current word
w; 4. As the sentence is generated, the captioning head pro-
duces the complete sentence S; = w; 1, ..., w;, 7, Where T’
denotes the length of the sentence.

Event Counter. It aims to detect the number of events in
the given video. It first compresses the most salient infor-
mation of event queries () to a global feature vector with
a max-pooling layer and predicts a fixed-size vector feount
with an FC layer with softmax activation. In f.,yn¢, €ach
value refers to the possibility of a specific number. During
the inference stage, the event number Ng,.,: iS obtained
by Nevent = argmaz(feount). The final outputs are ob-
tained by selecting N¢,epnt events with the highest confi-
dence score ¢ which is calculated by:

M;
oc M ca
ci = cloc ¢ Wil E log(ci?"),

v ot=1

“4)

in which M; is the number of words for the i-th event cap-
tion. C!°¢ is the localization confidence for the i-th event.
c; ¢’ is the confidence score for the ¢-th word for the i-th
event. p and ~y are two hyper-parameters to control the in-
fluence of the captioning confidence.

8421

3.5. Loss Function

Suppose N, events are predicted with their localizations
and captions, Hungarian algorithm [2] is utilized to find the
best bipartite matching results between the predicted events
and the ground truth, during which the generalized IOU [37]
between the predicted temporal segments and grund-truth
segments is calculated as Lg;,,, and the focal loss between
the predicted classification score and the ground-truth label
is calculated as L.;s. The matched event pairs are selected
to calculate the set prediction loss, which is the weighted
sum of gIOU loss, classification loss, countering loss, and
caption loss. The loss function is formulated as:

®)

L= agiouLgiou + aclchls + aecLec + acachazh

in which L., is the cross-entropy loss between the pre-
dicted word probability and the ground truth normalized by
the caption length M. L., is the cross-entropy loss between
the predicted count distribution and the ground truth. More
details can be found in Supplementary.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate our method on the two commonly
used dense video captioning benchmark datasets: Activi-
tyNet Captions [19] and YouCook2 [58]. ActivityNet Cap-
tions includes over 20000 long videos covering a wide range
of human daily activities and actions. Each video spans
about 120s and is annotated with 3.7 temporally localized
sentences on average. YouCook2 consists of 2000 long
untrimmed videos from 89 cooking recipes. Generally, each
video lasts approximately 320s and has 7.7 annotated seg-
ments with the corresponding sentences. For both datasets,
we adhere to the standard split for training, validation, and
testing. It’s worth noting that we only use those videos
that are still online on YouTube, leading to roughly 7% less
videos compared to the original datasets.

Implementation Details. For both datasets, we sample
video frames at a rate of 1 FPS (one frame per second) and
subsample or pad the sequence of frames to reach a total
of F frames, where F is set to 100 for ActivityNet Captions
and 200 for YouCook2. We use CLIP ViT-L/14 [8, 35] to
extract clip visual features for video frames [18]. To fur-
ther investigate the generalization ability of our model to
different frame-level features, we also evaluate our model
based on C3D [39] features provided by PDVC [48] and
TSN [46] features provided by [59]. We utilize a two-
layer deformable transformer that incorporates multi-scale
deformable attention across four levels. We adopt the Ag-
glomerative Hierarchical cluster algorithm for generating
pseudo events. For ActivityNet Captions, we set the num-
ber of event queries to 10, while for YouCook2, we set it



Table 1. Comparison with the state-of-the-art methods for
dense video captioning in ActivityNet Captions. B4/M/C is
short for BLEU4/METEOR/CIDEr. * indicates the results of our
implementation using the official code. The best performance re-
sults are highlighted for each feature type. We also present results
from those pretrained models.

Method Features Pretrain | B4t M{ C{ SODA_ct
UEDVC [56] C3D v - - - 5.50
Vid2Seq [53] CLIP v - 850 30.10 5.80

OmniVID [45] - v 1.73 7.54 26.00 5.60
ECHR [47] C3D x 1.82 720 147 3.20
E2ESG [61] C3D x - 350 25.00 -
PDVC [48] C3D x 1.65 7.50 25.87 5.26

E’DVC C3D x 1.79 7.54 26.83 5.32

MT [59] TSN x 030 3.20 14.70 -

PDVC [48] TSN x 1.78 7.96 28.96 5.44
E?DVC TSN x 2.03 8.02 2991 5.77
CM? [18] CLIP x 2.38 855 33.01 6.18
PDVC* [48] CLIP x 221 8.06 29.97 5.92
E?DVC CLIP x 243 8.57 33.63 6.13

Table 2. Comparison with the state-of-the-art methods for
dense video captioning on Youcook2. Since C3D features for
YouCook? are not publicly available, we fail to provide the results.

Method ‘Features Pretrain ‘ B4t Mt Ct  SODA_c¢t
Vid2Seq [53] | CLIP vl - 930 4710 790
MT[59] | TSN » 115 500 930 -
PDVC [48] | TSN « 1080 475 2271 442
E2DVC TSN « 1105 476 2315 431
cM?[ig] | cup « |163 608 3166 534
PDVC* [48] | CLIP « 1140 556 2969 492
EDVC | CLIP « 168 611 3426  5.39

to 100. For the event counter, we select a maximum count
of 10 for the ActivityNet Captions dataset and 20 for the
YouCook?2 dataset. We set N, to 5 and 7 to 4. Other model
hyperparameters follow the recipe of PDVC [48].

Evaluation Metrics. We evaluate our model in two as-
pects: 1) To assess dense captioning performance, we adopt
the official evaluation tool from ActivityNet Challenge [13],
which use the metrics BLEU4 [32], METEOR [1], and
CIDEr [41] to compute the average precision of matched
pairs between generated captions and the ground truth.
These scores are averaged over IOU at {0.3,0.5,0.7,0.9}.
BLEU4 focuses on n-gram precision, METEOR incorpo-
rates semantic matching, and CIDEr emphasizes consen-
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Table 3. Comparison to state-of-the-art methods for event Lo-
calization. We report the results on ActivityNet Captions and

Youcook?2 datasets.

PT denotes Pretrain. Pre./Rec.

is short for

Precision/Recall.
ActivityNet YouCook2
Method |Features PT
Pre.f Rec.t FI7 ‘Pre.T Rec.t F1t
Vid2Seq [53]| CLIP v |53.90 52.70 53.29‘27.80 27.90 27.84
E2ESG [61] | C3D  «x - - - 120.60 20.70 20.65
MFT [51] TSN x |51.41 24.31 33.01 - - -
CM? [18] CLIP  x |56.81 53.71 55.21|33.38 24.76 28.43
PDVC* [48] | CLIP x |56.38 53.27 54.78|32.37 22.89 26.81
E’DVC C3D  x [57.71 5470 56.17| - - -
E’DVC TSN  x |57.77 55.14 56.42(34.13 25.01 28.87
E’DVC CLIP  x |57.70 54.67 56.14|34.75 24.36 28.64

sus among multiple references. Moreover, we employed
SODA_c [10] for measuring the storytelling quality of
generated captions. 2) For evaluating localization perfor-
mance, we reported the average precision, average recall,
and their harmonic mean, F1 score across IOU thresholds
of {0.3,0.5,0.7,0.9}.

4.2. Comparison with State-of-the-art Methods

Dense Video Captioning Performance. In Table | and Ta-
ble 2, we compare our E2DVC to the state-of-the-art meth-
ods for the task of dense video captioning on the Activi-
tyNet Captions and YouCook?2 datasets. Compared to base-
line PDVC [48], our method achieves substantial gains for
three different types of characteristics. From Table 1, our
method achieves the best scores over BLEU4, METEOR,
CIDEr even compared to the pretrained methods that use
extra videos for pretraining. For Table 2, Vid2Seq [53] per-
forms better on YouCook2 dataset than our method. This
is because the YouCook?2 dataset has fewer videos for train-
ing but a more diverse range of action types and semantic
descriptions. Vid2seq uses an extra 1 million videos for
pretraining, thus having a great advantage over our method.
We achieve the best scores among all non-pretrained meth-
ods. This validates that by treating each event equally, our
method will not overlook those out-of-distribution events
and caption them with improved quality.

Event Localization Performance. In Table 3, we compare
our method with the state-of-the-art methods for the event
localization task. For the ActivityNet Captions dataset, our
method obtains the highest scores on the Precision, Re-
call, and F1 metrics among all. On the YouCook?2 dataset,
we achieve the highest performance over Precision and F1
scores even compared with the pretaining method. This is
because our initialized queries will focus on each tempo-
ral location with high event possibilities. In this way, few



Table 4. Ablation on the designed components. We report the
results on YouCook2. PEI denotes the Pesudo-Event initialization
module. EEE denotes the Event-Enhanced encoder module. With-
out PEI, the queries will be randomly initialized and are updated
during the training process. Without EEE, we directly fuse visual
features and positional embedding for each video frame together.

PEI EEE | BLEU4t METEOR?T CIDErt SODA_c¢t Flt
x x 1.40 5.56 29.69 4.92 26.81
x v 1.49 5.75 31.15 5.13 28.04
v x 1.56 5.88 30.92 5.27 28.13
v v 1.68 6.11 34.26 5.39 28.64

Table 5. Ablation on varying number of clusters. We report the
results on the Youcook?2 dataset. The best and second performance
results are highlighted.

N. | BLEU4 METEOR! CIDErt SODA_c¢t FIt
0 1.40 5.56 29.69 4.92 26.81
1 1.45 5.74 31.45 5.15 26.72
2 1.43 5.92 31.32 5.14 27.66
3 1.57 5.95 32.57 527 27.27
4 1.51 5.78 30.89 5.04 27.71
5 1.68 6.11 34.26 5.39 28.64
6 1.57 5.90 33.27 5.26 28.11
7 1.29 5.78 30.10 5.16 28.02

Table 6. Ablation on varying temporal event threshold 7 .

7 | BLEU4 METEORT CIDErt SODA_ct  FIt

0 1.32 5.56 29.59 5.00 27.21
1 1.35 5.57 31.69 5.17 27.51
2 1.42 5.68 30.25 5.08 27.70
3| 159 5.79 31.76 5.12 27.48
4 1.68 6.11 34.26 5.39 28.64
5 1.57 5.89 31.50 5.22 28.41
6 1.51 5.85 29.51 5.18 28.62
7 1.46 5.83 31.13 5.24 28.24

events will be overlooked. Also, our event-enhanced en-
coder has the pseudo-event labels as an additional input.
This will help the transformer encoder to perceive the visual
differences between video frames, thus preventing short-
duration videos from being overwhelmed and helping the
model obtain more accurate boundaries.

4.3. Ablation Studies

Analysis of Different Components in E2DVC. As illus-
trated in Table 4, we present an ablation study to explore
the effectiveness of the Pseudo-Event Initialization mod-
ule (PEI) and the Event-Enhanced Encoder (EEE). PEI ini-
tializes decoder queries with pseudo-event locations to en-
sure equal attention to all potential events, while EEE pre-
vents those short-duration events from being overwhelmed
during encoding. The results show that PEI significantly
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Figure 4. The distribution of the predicted and ground-truth
events on ActivityNet Captions. Horizontal and vertical axes
represent the normalized center time position and duration respec-
tively. We compare our methods with PDVC [48] and CM? [18].
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Figure 5. Different events duration proportion in ActivityNet
Captions. Compared with PDVC, our method E?’DVC could iden-
tify more short events and the distribution is more close to GT.

improves both dense video captioning and event localiza-
tion performance, enabling more precise event detection
and better captions by focusing queries on specific pseudo-
event locations. Although the improvement from EEE is
smaller, it still outperforms the baseline by enhancing event-
level knowledge extraction. Combining PEI and EEE yields
the best performance, which demonstrates the effectiveness
of our proposed components.

Parameter Analysis on the Number of Clusters V.. We
try different numbers of clusters N, on the YouCook2
dataset. Table 5 shows the performance. The first row is the
result from the baseline. When the cluster number is set to
1, all video frames are clustered together as a single pseudo-
event, where the model only adds one additional query to
focus on the middle of the video. In this case, the perfor-
mance shows a slight improvement compared to the base-
line. As the cluster number increases, video frames will be
distinguished more finely based on visual differences. The
best performance appears when N, is set to 5. When N,
equals to the number of video frames, each frame will be
allocated a single query to focus on. The model’s attention
will be distracted and the real events may be overlooked.

Parameter Analysis on the Event Threshold 7. The pa-



Input Frames

Ground Truth I< 0~10.84: a man jumps onto I 10.57~48.25: he does a gymnastics routine on the bars. 49.34~54.22: he jumps off the I
parallel bars. bars and lands on a mat.
PDVC |<.0~13.2‘ﬂ: aman is seen standing DI I‘ 21.09~54.22: the man continues to do several flips and tricks and 'I
in a room and begins performing ends by jumping off into the distance.

a routine on the bars. I: yl
7.23~45.32: he does a gymnastics routine on the bars.

E2DVC (Ours) | 10‘ 14.18: a man is seen standing VI o | 49.10~54.21: he dismounts and I
in a large gymnasium and begins|" 1 walks away.
to do a routine.

11.80~42.90: He does a gymnastics routine on the bars.

Figure 6. Example visualizations of dense event captioning prediction on ActivityNet Captions. The color of the image border
represents the category of the pseudo-event. From top to down, we show the results from the ground truth, the baseline (PDVC) and our
method.

rameter decides the lower-bound of pseudo-events duration. duration events. Besides, its event duration distribution is
In the Table 6, we presents the results by changing the closer to the ground truth. This indicates that E2DVC is
event threshold 7 in the YouCook2 dataset. When 7 is set more effective at capturing events of varying lengths, par-
too small, the performance drops significantly. It’s because ticularly short-duration ones. By better aligning with the
even isolated frames are treated as pseudo-events and are al- GT distribution, E2DVC demonstrates improved event lo-
located certain decoder queries to focus on, which distracts calization performance, highlighting its ability to handle a
the attention of the model. The best performance appears wider range of event durations, leading to more accurate
when 7 is set to 4. As T increases, the overall performance and comprehensive video captioning.
decreases. However, the performance of event localization Visualization of Predicted Example. Figure 6 visualizes
remains at a high level. This is because long-duration events an example of dense video captioning predictions of PDVC
account for the majority and discarding some short-duration and our method. Compared with PDVC, our method can
events will not hurt performance on long-duration ones. localize short-duration events more accurately. This also
helps improve the video captioning performance. The rea-
4.4. Qualitative Results son is that since short-duration events have fewer frames,

they are more sensitive to localization deviations. If too

Visualization of Event Temporal Distribution. Fig- ) ‘ .
many irrelevant frames are localized in the same short

ure 4 shows the generated event temporal distribution from o . ;
PDVC [48], CM2 [18] and our method E2DVC. As can events, the description will become inaccurate.
be seen from the figure, our method generates more short-

duration events compared with the other two. The distribu- 5. Conclusion

tion predicted by our methods is more similar to the ground

truth. We noticed that for long-duration events, we still In conclusion, we propose the Event-Equalized Dense
cannot generate the precise duration. This is because the Video Captioning framework to address temporal bias and
model is trained by captioning loss and localization loss to- treat all events equally in video captioning. By leveraging
gether. For long-duration events, due to the large number a non-trainable Event Perception module with agglomera-
of frames, some localization deviations have little effect on tive hierarchical clustering, we identify pseudo-events and
the final captioning performance. Even in some cases, pre- ensure temporal continuity through a refinement mecha-
dicting a shorter duration can help in describing the event nism. The Event-Prior Initialization and Event-Prior En-
more delicately, while predicting a longer duration allows coder modules allocate equal attention to all events, enhanc-
for a more comprehensive caption of the event. Therefore, ing the model’s precision, particularly for short-duration
in order to achieve better captioning performance, some lo- events. Experimental results on ActivityNet Captions and
calization accuracy may be sacrificed. YouCook2 datasets validate the effectiveness of our ap-
Visualization of Events Duration Statistics. In Figure 5, proach, showing improved dense video captioning perfor-
we present the event duration statistics in the ActivityNet mance. E2DVC offers a robust solution for handling di-
Captions dataset. Our proposed E2DVC outperforms the verse event durations and temporal distributions, making it
baseline PDVC by identifying a greater number of short- a promising advancement in dense video captioning.
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