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Figure 1. An example of user-Al conversation around an image. Left: The current state-of-the-art grounding model GLaMM [60] is
effective for grounded conversation when prompted by “answer with interleaved masks”, but fails to follow user instruction to answer a
single word (yes or no) and misunderstands the question as a referring segmentation prompt. Right: Our F-LMM preserves instruction-

following ability while being able to perform visual grounding.

Abstract

Endowing Large Multimodal Models (LMMs) with visual
grounding capability can significantly enhance Als’ under-
standing of the visual world and their interaction with hu-
mans. However, existing methods typically fine-tune the
parameters of LMMs to learn additional segmentation to-
kens and overfit grounding and segmentation datasets. Such
a design would inevitably cause a catastrophic diminu-
tion in the indispensable conversational capability of gen-
eral Al assistants. In this paper, we comprehensively
evaluate state-of-the-art grounding LMMs across a suite
of multimodal question-answering benchmarks, observing
drastic performance drops that indicate vanishing gen-
eral knowledge comprehension and weakened instruction
following ability. To address this issue, we present F-
LMM—grounding frozen off-the-shelf LMMs in human-Al
conversations—a straightforward yet effective design based
on the fact that word-pixel correspondences conducive to
visual grounding inherently exist in the attention mechanism
of well-trained LMMs. Using only a few trainable CNN lay-
ers, we can translate word-pixel attention weights to mask
logits, which a SAM-based mask refiner can further opti-
mise. Our F-LMM neither learns special segmentation to-

kens nor utilises high-quality grounded instruction-tuning
data, but achieves competitive performance on referring
expression segmentation and panoptic narrative ground-
ing benchmarks while completely preserving LMMs’ orig-
inal conversational ability. Additionally, with instruction-
following ability preserved and grounding ability obtained,
F-LMM can be directly applied to complex tasks like rea-
soning segmentation, grounded conversation generation
and visual chain-of-thought reasoning. Our code can be
found at https://github.com/wusize/F—LMM.

1. Introduction

Large Multimodal Models (LMMs), which integrate Large
Language Models (LLMs) with visual signals, have demon-
strated remarkable success in multimodal understanding,
reasoning and interaction [34, 38—40, 44, 65, 78]. To further
advance LMMs with better perception capability, a recent
line of research [28, 60, 61, 70, 80, 84] that visually grounds
language contents in user-model conversations has drawn
increasing attention. This explicit association between key
phrases/words and visual objects greatly enhances LMMs’
understanding of the visual world and allows for more intu-
itive and meaningful human-Al interactions.
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Figure 2. (a) Geometric and spatial cues conducive to visual grounding are observed in the visualisations of word-image attention maps in
frozen LMMs. (b) Existing grounding LMMs are fine-tuned to generate a special mask token (e.g., [ SEG]) for visual grounding purposes,
which ruins the original conversational ability. (c) Our F-LMM translates word-image attention maps from frozen LMMs to grounding

masks, while fully preserving the general-purpose chat capability.

By design, one commonly adopted build (Figure 2(b))
for visually grounding language contents is connecting
LMMs with a mask head (e.g., Segment Anything Model
(SAM) [26]), wherein both the LLM backbone and the
mask head are fine-tuned with well-prepared visual ground-
ing data that contains segmentation annotations. Also, some
additional learnable tokens (e.g., [ SEG]) are introduced to
the LMMSs’ vocabulary, to directly associate key phrases
or words with visual objects in conversations. However,
this design will inevitably provoke a catastrophic diminu-
tion in general knowledge comprehension and instruction-
following ability due to the following reasons. First, ex-
isting segmentation and visual grounding data only con-
tain elementary patterns for answering simple grounding
prompts. Second, during the fine-tuning stage, the LMMs
are mainly optimised for effectively modelling the relation-
ship between key phrases or words and special segmenta-
tion tokens, i.e., overfitting the segmentation and ground-
ing data. Therefore, the conversational ability is sacri-
ficed. For instance, the state-of-the-art grounding model
GLaMM [60] fails to answer a simple yes-or-no ques-
tion (Figure 1). Moreover, quantitative evaluations of ex-
isting grounding LMMs in conversational ability are pre-
sented in Table 1, with zero or near-zero scores on general
multimodal question-answering benchmarks necessitating
instruction-following ability.

One possible option to deal with this dilemma is to col-
lect high-quality training data encompassing both mean-
ingful conversations and mask annotations. For example,
LLaVA-G [80] annotates the 150k LLaVA-Instruct data
samples [39] with segmentation masks so that the LMMs

simultaneously learn to chat and segment. Nonetheless, an-
notating high-quality grounded conversation data is costly
and hard to scale. Despite being trained on costly annotated
data, LLaVA-G still lags behind general-purpose LMMs
on multimodal understanding tasks. Furthermore, train-
ing on large-scale annotated data normally consumes sig-
nificant computational resources, which is, obviously not a
resource-efficient solution.

In this paper, we propose a simple yet effective de-
sign, i.e., grounding frozen LMMs (dubbed as F-LMM) in
human-AlI conversations. We argue that freezing the pa-
rameters of well-trained LMMs is the most practical design
choice for fully preserving the original excellent conver-
sational ability when building general-purpose grounding
LMMs. In particular, we take inspiration from the built-
in interpretability of the attention mechanism in transform-
ers [0, 68] that represents interrelations between text and
image contents in design. We observe that off-the-shelf
LMMs already produce word-pixel correspondences nec-
essary for visual grounding, despite they were not explic-
itly pre-trained with region or pixel annotations. As il-
lustrated in Figure 2(a), we visualise word-image attention
maps from frozen LMMs via K-Means clustering, revealing
notable geometric and spatial cues of the objects '. For ex-
ample, coarse visual grounding masks for key phrases (e.g.,
“two girls”, “two elephants”, and “the plate”) in language
sentences emerge from attention maps in LMMs. There-
fore, our F-LMM takes these visual-language correspon-
dences as useful segmentation priors for decoding ground-

!For better visibility, we perform K-Means clustering on the stack-up of
all attention maps collected in a forward pass instead of selecting a single
attention map.
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ing masks, without further tuning the LMMs’ weights or
learning a special segmentation token to model object loca-
tions, as shown in Figure 2(c).

The only trainable part of our F-LMM is a mask head
plus a keyword selector. The mask head comprises a
CNN-based mask decoder (a tiny U-Net [62]) that trans-
lates stacked attention maps to mask logits and a light-
weight mask refiner (retrofitted from SAM [26]’s mask
head) that uses additional image and language cues to re-
fine the semantic-agnostic masks from the mask decoder.
The keyword selector is a linear layer that discovers ob-
ject nouns in text sequences, automating the process of
grounded human-AlI conversation. Moreover, we only use
the RefCOCO(+/g) [24, 46] and PNG [16] datasets as our
training data, enabling LMMs to segment user-described
objects and ground key phrases or words in a text sequence.
Unlike previous works [60, 61, 80], our F-LMM eliminates
the necessity for high-quality conversation data that are an-
notated with masks to preserve conversational ability when
learning grounding.

Our experiments demonstrate that F-LMM maintains
the original excellence of off-the-shelf LMMs on general
question-answering benchmarks, while achieving compet-
itive results on referring segmentation and phrase ground-
ing. In more complex tasks like reasoning segmenta-
tion, grounded conversation generation and visual chain-of-
thought reasoning, F-LMM achieves better or comparable
results when contrasted with models specially trained for
such tasks. Compared with existing grounding LMMs, F-
LMM offers the best balance between grounding and chat
capabilities.

2. Related Work

Large Multimodal Models. Recent advancements in
LMMs [2, 3, 13,29-31, 34, 36, 38-40, 44, 47, 65, 75] have
been fueled by the success of LLMs [1, 4, 12,22, 48, 51, 66,
67, 81] since the debut of GPT series [1, 4, 56, 57] that fea-
ture an auto-regressive framework based on transformer de-
coders [68]. These LLMs possess general world knowledge
and excellent conversational ability to follow human in-
structions, thanks to large-scale generative pre-training [4]
and supervised finetuning on instruction-tuning data [71] or
human feedback [50]. By integrating image representations
from vision encoders [58, 79] to LLMs, LMMs enable vi-
sual understanding and reasoning in Al assistants. This in-
tegration is usually established by a multilayer perceptron
(MLP) that directly maps image features to the LLMs’ in-
put embedding space [34, 38—40, 44, 65, 78] or a cross-
attention module that abstracts the image contents with a
set of query embeddings [2, 3, 31, 75]. In our research, we
build F-LMM on LMMs of the former type (MLP-based),
which preserves images’ 2-D topological structure in the
cross-modal integration.

Visual Segmentation. The task of predicting 2D masks for
visual objects is known as image segmentation, which can
be categorised into semantic segmentation [5, 8, 10, 87],
instance segmentation [11, 19, 83] and panoptic segmenta-
tion [9, 25, 32, 73] depending on whether the goal is to dif-
ferentiate pixel semantics or object instances. These stan-
dard segmentation approaches rely on a pre-defined set of
object classes for recognition. In contrast, referring expres-
sion segmentation (RES) [24, 37, 45, 46, 49, 74, 88] in-
volves segmenting objects based on free-form human lan-
guage descriptions, allowing for enhanced human-model
interaction.  Additionally, panoptic narrative grounding
(PNG) [14, 16, 17, 69] requires segmenting masks for key
phrases or words in a sentence. In this study, we mainly
leverage RES and PNG tasks to evaluate the grounding ca-
pability of LMMs. Besides, we also test LMMs’ segmen-
tation ability in complex scenarios that necessitate reason-
ing [28, 60, 63]. Moreover, the prompt-based SAM [26]
pre-trained on billion-scale high-quality mask data has be-
come a constituent component in many grounding LMMs
to boost segmentation performance. We also adopt SAM’s
mask head to initialise our mask refiner.

Grounding Large Multimodal Models. Grounding Large
Multimodal Models [3, 7, 28, 53, 54, 60, 61, 70, 72, 76,
78, 80, 84, 85] can localise language contents during user-
model conversations. Some approaches [3, 7, 53, 76] repre-
sent coordinates of bounding boxes as texts and train LMMs
to predict the coordinates in a generative manner. Several
recent works [28, 54, 60, 61, 70, 80] train LMMs to pre-
dict a special segmentation token for encoding the grounded
object and utilise a segmentation head (e.g., SAM [26]) to
decode object masks. This study mainly focuses on ground-
ing LMMs with segmentation ability for visual perception.
To obtain competitive visual grounding performance, exist-
ing works extensively fine-tune the parameters of LMMs
on a large amount of segmentation [5, 18, 25, 59, 87] and
grounding [16, 23, 24, 27, 46, 55] datasets. And to balance
the LMMs’ grounding and conversational abilities, there are
efforts [61, 80, 84] to collect high-quality instruction-tuning
data annotated with segmentation masks. In contrast, we
make the first attempt to build grounding LMMs on top of
off-the-shelf LMMs without fine-tuning their parameters.
Furthermore, we bypass the need for grounded instruction-
tuning data to preserve decent chat ability.

3. Method

In this section, we introduce our F-LMM by first probing
the causal attention mechanism in LMMs with visualisa-
tions of word-image attention maps in Sec 3.1. Then, we
elaborate on F-LMM exploiting segmentation priors from
frozen LMMs for visual grounding using the mask head in
Sec 3.2. Finally, we show how to automate the process of
grounded conversation with a linear keyword selector to in-
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Figure 3. The overall pipeline of F-LMM. The word-image attention maps from the frozen LLM serve as segmentation priors for the
mask head. The keyword selector discovers object nouns in the text sequence. The mask head encompasses a mask decoder that translates
attention weights to mask logits and a mask refiner that optimises the mask decoder’s predictions. M and N represent the numbers of

transformer layers and attention heads.

‘bench’

Figure 4. Visualisations of word-image attention maps. The letters
m and n indicate that the attention map is derived from the n-th
attention head of the m-th transformer layer.

dicate words of grounding targets in Sec 3.3. The overall
pipeline is illustrated in Figure 3.

3.1. Segmentation Priors from Frozen LMM

Vision-Language Sequence. A typical build of a LMM >
comprises an image encoder f,, (e.g., CLIP [58] ?), a vision-
language projector f,, and a LLM, denoted as fi,. The
inputs to an LMM are usually an image X, € R3*HxW
and the associated text X;. The input image is first encoded
by the vision encoder f,, and then mapped to the input space
of the LLM by the projector f;:

7, = fp(Flatten(fv(XU))) c Rhwxd’

where h and w are the height and width of projected fea-
ture maps via f,. The Flatten operation unfolds the 2-D

2In this paper, the term ‘multimodal’ stands for vision and language
modalities.

3The image encoder might be any vision model that is pre-trained on
image-text pairs. We use the classic term ‘CLIP’ in this paper to represent
all such models for brevity.

image feature map to a 1-D sequence. The constant d is the
hidden state dimension of the LLM. Likewise, the text input
is first encoded as discrete tokens and then mapped to text
embeddings:

Z; = Embed(Tokenize(X;)) € REX?

where L denotes the length of text embeddings. The visual-
language sequence input to the LLM is a concatenation of
image and text embeddings: Z = {Z,, Z;} € RUw+L)xd,

Segmentation Priors in Self-Attention. The vision-
language sequence is mainly processed by causal self-
attentions [56, 68] in the LLM, including inner product and
weighted-sum operations. Specifically, for a word token
with position index ¢ in the vision-language sequence Z ,
its embedding z* is updated by the weighted sum of the

first i embeddings: 2 = SoftMax(m) - Z[: i], where

d
SoftMax( is the attention weights. Here, we omit
the residual layers and feedforward layers for brevity.
Considering the word-image interaction in the multi-
modal scenario, we can select the word token’s attention
weights with the image embeddings from the overall vision-

language attention weights:

) zi i Z[ Z} hxXw
a' = Unflatten(SoftMax(T)[: hw]) € R"™%,
where Unflatten restores the 2-D spatial structure from
the 1-D sequence to form an attention map. In Figure 4,
we visualise such word-image attention maps from various
transformers layers and attention heads in an LMM (i.e.,
DeepSeek VL-7B [44]). The objects’ shape and location can
be observed in word-image attention maps of certain layers
or heads. The visibility is further enhanced when we stack
the attention maps from all layers and heads and perform
K-Means clustering. It can be observed that the attention
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Table 1. The main evaluation results on question-answering benchmarks, referring expression segmentation (RES) benchmark and panoptic
narrative grounding (PNG) benchmark. LLaVAYW: LLaVA-In-the-Wild. LLaVA-1.6 and MGM-HD take high-resolution image inputs.
LLaVA-1.6-M-7B means the model is based on Mistral-7B [22]. GLaMM-FS-7B means we use the ‘FullScope’ version of GLaMM.

Model Multimodal Question Answering RES PNG

MME MMBench MMVet LLaVAW | RefCOCO RefCOCO+ RefCOCOg | All  Thing Stuff
PixelLM-7B [61] 309/135 17.4 15.9 46.4 73.0 66.3 69.3 43.1  41.0 479
LISA-7B [28] 1/1 0.4 19.1 47.5 74.9 65.1 67.9 - - -
PerceptionGPT-7B [54] - - - - 75.1 68.5 70.3 - - -
LLaVA-G-7B [80] - - - 55.8 77.1 68.8 71.5 - - -
GroundHog-7B [84] - - - - 78.5 70.5 74.1 66.8 650 69.4
GLaMM-FS-7B [60] 14/9 36.8 10.3 32.0 78.6 70.5 74.8 558 529 623
GSVA-TB [72] 446/18 17.8 19.4 38.3 71.7 68.2 73.2 418 39.6 46.6
LaSagnA-7B [70] 0/0 0.0 16.7 34.5 76.8 66.4 70.6 - - -
F-LMM (DeepSeekVL-1.3B [44]) | 1307/225 64.6 34.8 511 75.0 62.8 68.2 649 634 683
F-LMM (MGM-2B [34]) 13417312 59.8 31.1 65.9 75.0 63.7 67.3 65.6 644 684
F-LMM (LLaVA-1.5-7B [38]) 1511/348 64.3 30.5 69.0 75.2 63.7 67.1 64.8 634 682
F-LMM (HPT-Air-6B [65]) 1010/ 258 69.8 313 59.2 74.3 64.0 67.5 655 640 6838
F-LMM (HPT-Air-1.5-8B [65]) 1476/308 75.2 36.3 62.1 76.3 64.5 68.5 654 641 685
F-LMM (MGM-T7B [34]) 1523/316 69.3 40.8 75.8 75.7 64.8 68.3 663 653 68.6
F-LMM (DeepSeekVL-7B [44]) 1468/298 73.2 41.5 77.8 76.1 66.4 70.1 657 645 685
F-LMM (LLaVA-1.6-7B [40]) 1519/322 68.1 44.1 72.3 75.8 65.8 70.1 663 65.1 69.0
F-LMM (LLaVA-1.6-M-7B [40]) | 1501/324 69.5 47.8 71.7 75.7 66.5 70.1 66.5 654  69.1
F-LMM (MGM-HD-7B [34]) 1546/319 65.8 41.3 74.0 76.1 65.2 68.5 66.7 656  69.1

maps offer meaningful segmentation priors with spatial and
geometric cues for grounding objects visually.

Language Cues. In addition to the spatial and geometric
cues from word-image attention maps, F-LMM can also
capitalise on the object’s corresponding text embeddings
from the LLM fy),,,, which provide extra language cues for
the grounding of visual objects.

3.2. Visual Grounding with Mask Head

We use the segmentation priors from the frozen LMM for
pixel-level grounding, with the help of a mask head consist-
ing of a mask decoder and a mask refiner.

Mask Decoder. The mask decoder f; is a 2-D CNN model
that transforms the word-image attention maps of grounded
objects into mask logits, which is instantiated by a 3-stage
U-Net [62]. Please refer to the supplemental material for
details on the mask decoder. The extraction of word-image
attention map a’ for a word token with position index i
is illustrated in Eq. 3.1 and Figure 3. For an object de-
scribed by multiple words, we merge their corresponding
word-image attention maps to a single attention map a via
element-wise average or max operation. The attention map
a is further normalised as a/sum(a) so that all elements
sum to 1. Considering M layers and IV attention heads,
we stack the M N attention maps as A € RMNxhxw,
which forms the input to a mask decoder. Given the im-
portance of high input resolution for segmentation mod-
els, we upsample the stacked attention maps A to h’ x w’
by bilinear interpolation before feeding it to a mask de-
coder, where b’ > h and w’ > w. In practice, we set
h' = w' = 64. Then, the mask decoder maps A into mask

logits: Miogits = fa(A). We derive the corresponding bi-
nary mask via M;eq = Miggits > 0. During training, the
mask decoder is optimised with BCE and DICE losses [64].
Mask Refiner. The mask refiner f, is retrofitted from the
mask head of SAM [26], which predicts masks based on
prompts as well as image embeddings from SAM’s ViT-
based image encoder. To refine the output of the mask de-
coder fy, we re-use SAM’s prompt encoder to transform
M ogits into dense prompt embeddings (i.e., a 2-D feature
map) and the bounding box of M,;.q to box embeddings.
In addition to the location cues from the mask and the box,
the language cues, i.e., the object’s corresponding text em-
beddings, are also utilised by f,.. Considering text embed-
dings from the M transformer layers, we train M learn-
able scalars to calculate a weighted sum of these text em-
beddings. The weighted-summed text embeddings are pro-
cessed by a linear layer and then concatenated with the box
embeddings to form sparse prompt embeddings. The dense
and sparse prompt embeddings, together with SAM’s image
embeddings, are fed to the mask refiner f,. for finer-grained
mask predictions M;red. During training, we keep the ViT-
based image encoder of SAM frozen and optimise the mask
refiner f,. using BCE loss and DICE loss [64]. For more
details on the SAM’s prompt-based mask head, please refer
to the original SAM paper [26].

3.3. Keyword Selector for Grounded Conversation

In grounded conversation [60] with interleaved segmenta-
tion masks and words, existing grounding LMMs [60, 61]
expand LLMs’ vocabularies with special tokens that indi-
cate the start and end of grounding targets, which is infeasi-
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Table 2. Reasoning Segmentation.

Table 3. Grounded Conversation Generation (GCG). M. stands for METEOR.

Model Val Test Model GCG Val Test
- Short Long All Training | M. mloU Recall | M. mloU Recall

X-Decoder [88] 226 | 204 222 217 LISA [28] v 13.0 62.0 363 | 129 617 355
SEEM [89] 2551 201 256 243 OMG-LLaVA [82] v 149 655 - 145 647 -
GroundingSAM [41] | 26.0 | 17.8 224 213 GLaMM [60] v 162 663 41.8 | 158 656 40.8
OVSeg [35] 285 | 180 28.7 26.1 BuboGPT [86] X 172 540 294 | 171 541 27.0
LISA [28] 444 | 376 366 368 KOSMOS-2 [52] X 16.1 55.6 283 | 158 56.8 29.0
F-LMM 46.7 | 369 49.1 462 F-LMM X 176 635 420 | 174 63.6 38.6

Table 4. Unleashing visual chain-of-thought reasoning with both excellent grounding and instruction-following ability.

Model Visual VisCoT Benchmark POPE
CoT | DocVQA TextCaps TextVQA DUDE SROIE Infographics | Acc  Fl1
VisCoT-7B [63] v 47.6 67.5 71.5 38.6 47.0 32.4 86.5 -
F-LMM X 43.2 63.5 74.5 320 28.4 432 87.0 86.0
F-LMM v 53.8 67.9 78.4 423 44.1 49.1 88.0 87.7

ble in F-LMM given its ‘frozen‘ nature. A common practice
to discover visual objects in text sequences offline is using
external tools such as SpaCy [20], which parse all nouns
from a sentence including unwanted non-object words. In-
stead of adopting such offline tools that produce noisy re-
sults, we automate generating interleaved words and masks
by training a linear layer to directly predict whether a word
is to be grounded or not.

Specifically, the linear layer (keyword selector) is placed
on top of the LLM’s transformer layers, projecting d-
dimension hidden state vectors into one-dimension scores,
followed by a sigmoid function that normalizes the scores
to [0, 1]. During training, the score prediction is supervised
by a BCE loss. During inference, word tokens with scores
exceeding a threshold \ are regarded as positive for visual
grounding. In practice, we set A = 0.3. Adjacent positive
word tokens are grouped to indicate a single visual object.
After the word tokens of visual objects are selected, the cor-
responding attention maps and text embeddings are fed to
the mask head for visual grounding.

4. Experiments

4.1. Implementation Details

Model Architectures. We build F-LMM on several
open-sourced LMMs, including LLaVA-1.5 [38], LLaVA-
Next [40], MiniGemini [34], DeepSeekVL [44] and HPT-
Air [65]. The main experiment covers 10 LMMs with
model sizes ranging from 1.3B to 8B. We employ a
lightweight 3-stage U-Net [62] as the mask decoder to trans-
form segmentation priors from frozen LLMs. The U-Net
architecture features an encoder-decoder structure with skip
connections, wherein feature maps are downsampled in the
encoder and upsampled in the decoder. Please check the
supplementary material for more details on the mask de-
coder. As for the SAM-based mask refiner, we choose SAM
ViT-L [26] that balances cost and performance well.

Model Training. We train F-LMM on RefCOCO(+/g) [24,
46] and PNG [16] datasets with about 190k data samples on
a single machine with § NVIDIA A800-40G GPUs, which
costs about 20 hours for each round of model training. We
set the batch size to 8 and train models for 8 epochs, with
gradient clipping at a max norm of 1.0. The AdamW [43]
optimiser is used with a learning rate of le-4, a weight de-
cay of 0.01, and betas as (0.9, 0.999). We choose a warm-up
ratio of 0.03 to stabilise model optimisation.

4.2. Standard QA and Grounding Tasks

For a comprehensive study of LMMSs’ conversational and
grounding capabilities, we first evaluate models under stan-
dard question-answering and grounding benchmarks sepa-
rately. We summarise the evaluation results of grounding
LMMs in Table 1. Please refer to the supplementary mate-
rial for more detailed results.

Benchmarks. For comprehensive conversational abil-
ity evaluation, we choose four widely used general
question-answering benchmarks including MME [15],
MMBench [42], LLaVA-In-the-Wild [39] and MM Vet [77].
The MME and MMBench require an LMM to strictly fol-
low the instruction to reply with single words (yes or no) or
answer MCQs with alphabetical letters (i.e., answering A,
B, C, or D). The LLaVA-In-the-Wild and MM Vet bench-
marks ask a model to respond with open-ended texts while
demanding general world knowledge comprehension. In
terms of grounding ability evaluation, we assess the LMMs’
ability to segment user-described objects on referring ex-
pression segmentation (RES) [24, 46] benchmarks includ-
ing RefCOCO, RefCOCO+, and RefCOCOg, using the
cloU metric. Due to limited space, we only report results
on the Val splits of RefCOCO(+/g) in Table 1. We also test
the LMMs’ ability to ground key phrases or words in user-
model conversations on the Panoptic Narrative Grounding
(PNG) [16] benchmark, measuring individual mask recalls
on thing/stuff objects and overall recall scores.
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Figure 5. Ablation study of the mask decoder.

Comparisons with Existing Methods. We compare F-
LMM with existing grounding LMMs. As shown in Ta-
ble 1, our F-LMM provides the best balance with conver-
sational and grounding abilities among compared methods.
On the question-answering benchmarks, existing grounding
LMMs obtain zero or near-zero scores on MMBench and
MME while lagging significantly behind general-purpose
LMMs on MMVet and LLaVA-In-the-Wild benchmarks,
indicating compromised instruction-following ability and
weakened general knowledge comprehension. On the RES
and PNG benchmarks, our F-LMM achieves comparable re-
sults despite not having the parameters of LMMs fine-tuned
for grounding purposes.

4.3. Complex Scenarios

In this section, we evaluate grounding LMMs under more
complex scenarios that typically require the LMMs to per-
form both reasoning and segmentation. The base LMM we
use is DeepSeekVL-7B [44], considering its flexibility in
supporting both single and multiple image inputs. And the
size of models compared in this section is also 7B.
Reasoning Segmentation is proposed in LISA [28] that
requires a model to infer what object to segment from
common-sense knowledge or via logical reasoning. The
evaluation results are provided in Table 2 and the metric is
gloU. F-LMM can effectively perform reasoning segmen-
tation even though it is not trained on such type of data. It
is remarkable that F-LMM significantly outperforms exist-
ing models on the subset of long sentences, reflecting the
advantage of F-LMM in handling complex contexts.
Grounded Conversation Generation (GCG) is proposed
in GLaMM [60], which requires a model to generate in-
terleaved segmentation masks and texts. For performance
evaluation, METEOR (M.) and mloU are used to measure
the quality of generated texts and masks, respectively. In
addition, we report the recall of object masks. As shown
in Table 3, F-LMM exhibits the best zero-shot performance
while being comparable with models fine-tuned on GCG

Table 5. Ablation study of the mask refiner on PNG benchmark.

(a) Effects of Mask Refiner (b) SAM Variants
Mask Refiner PNG SAM PNG
mask box text | All Thing Stuff All  Thing Stuff
X X X | 508 486 559 ViTB | 63.0 614 668
Voo X X 1634 620 668 VITL | 649 634 683
Voo v X187 622 671 VITH | 650 635 683
Vo o/ /| 649 634 683

Table 6. Ablation study of keyword selection.

Method F1  Recall Precision
SpaCy Parser [20] 57.8 973 41.1
Linear Keyword Selector | 82.8  96.6 72.5

training dataset.

Visual Chain-of-Thought Reasoning. In human-Al con-
versations that involve Visual Chain-of-Thought Reasoning
(VisCoT) [63], an LMM first localises the region/object rel-
evant to the human’s question and then generates the final
answer by zooming in on the question-related region. Here
we evaluate F-LMM and VisCoT-7B on the VisCoT bench-
mark [63]. As shown in Table 4, F-LMM achieves remark-
able performance gains when prompted in the VisCoT man-
ner. It is noticeable that F-LMM even outperforms VisCoT-
7B [63] that has been well-tuned on the VisCoT training
data [63]. Furthermore, we perform VisCoT on the object
hallucination benchmark POPE [33] and observe significant
performance gain in resisting object hallucinations.

4.4. Ablation Study

We investigate the effects of design choices of F-LMM. All
the ablation studies are conducted on the PNG dataset and
we use DeepSeekVL-1.3B [44] unless otherwise stated.
Mask Decoder. We summarise our analyses of the mask
decoder in Figure 5. Note that the mask refiner is not in-
volved in this part. We first consider attention maps from
different transformer layers, i.e., early (6"), mid (12%) and
late (24'") layers. As shown in Figure 5(a), attention maps
from late layers perform the worst, conforming to prior
studies [21] indicating that deeper transformer layers tend to
focus on abstract concepts instead of visual details. And us-
ing attention maps from all layers achieves the best perfor-
mance. Next, we study how to merge the word-image atten-
tion maps of multi-word objects, as shown in Figure 5(b).
We find that the average operation outperforms the max op-
eration by a margin of 0.7. In Figure 5(c), we show that
normalizing the inputs to the mask decoder provides a 0.5
performance gain. Finally, we experiment with different in-
put sizes for the mask decoder. As shown in Figure 5(d),
using 64 x 64 yields the best performance-cost trade-off.
Mask Refiner. We study the effects of the mask refiner on
segmentation in Table 5a. The performance of using only
the mask decoder is shown in the first row of Table 5a. With
the masks fed to the mask refiner, we observe a significant
12.6 performance gain on the PNG benchmark. Adding
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DeepseekVL-1.3B [44] 7.75 8.33
MGM-2B [34] 6.00 8.33
LLaVA-1.5-7B [38] 6.75 7.83
HPT-Air-6B [65] 9.00 7.16
HPT-Air-1.5-8B [65] 6.50 7.00
MGM-7B [34] 5.75 4.83
DeepseekVL-7B [44] 3.75 4.00
LLaVA-1.6-7B [40] 2.75 3.00
LLaVA-1.6-M-7B [40] 3.25 1.66
MGM-HD-7B [34] 3.50 2.83
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Figure 6. The relevance between an LMM’s chat ability and the grounding ability of the F-LMM built on it. The left table shows the
average ranks of each LMM on question-answering (‘Chat’) and grounding benchmarks (‘Ground’). | means the lower the better. The
dashed line in the right figure is the linear fit of the rank data points, indicating a positive correlation between abilities to chat and ground.

box and text prompts to the mask refiner further improves
the performance by 0.3 and 1.2. Then we experiment with
different SAM [26] model variants, i.e., ViT-B(ase), ViT-
L(arge) and ViT-H(uge) as mask refiners. As shown in Ta-
ble 5b, the performance grows with model sizes. For a good
trade-off between cost and performance, we select the ViT-
L variant of SAM as the default mask refiner.

Keyword Selector. We analyse the keyword selector, im-
plemented as a linear layer, on the PNG dataset, using the
F1 score as the main metric. As shown in Table 6, our key-
word selector achieves significantly higher F1 scores than
the external SpaCy tool [20]. We also report recall and pre-
cision scores. Our keyword selector achieves comparable
recall while being much more precise compared to SpaCy,
which enumerates all nouns in a sentence.

4.5. Analysis & Visualisation

Scalability: Does Better Chatting Lead to Better
Grounding? We study the relevance between an LMM'’s
chat ability and the grounding ability of the F-LMM built
on it. Specifically, we examine the correlation between per-
formance on the question-answering and grounding bench-
marks. For the ten models reported in Table 1, we cal-
culate their average ranks in each benchmark category.
In Figure 6, we plot these ranks as 2D coordinates, i.e.,
(Chat Rank, Ground Rank), and apply a linear fit to
the data points. As indicated by the blue dashed line, frozen
LMMs with stronger conversational ability can serve as bet-
ter backbones for grounding. We also observe that larger
LMMs generally excel in both conversation and ground-
ing tasks, and LMMs with larger input resolutions (e.g.,
LLaVA-1.6 and MGM-HD) can handle both tasks better.

From Attention Maps to Segmentation Masks. We visu-
alise the word-image attention maps by applying KMeans
clustering to the stacked attention maps that are collected
from all transformer layers and attention heads. The atten-
tion maps of multiple-word objects are merged by element-
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person in this picture
on the surfing board
who is surfing on a
ocean tide. There is
SKy in the background.

Figure 7. Visualisations of KMeans clustering on attention maps
and segmentation results from the CNN-based mask decoder and
the SAM-based mask refiner.

wise average. As shown in Figure 7, we observe that the
pixels of objects are roughly clustered together (top-left).
With the CNN-Based mask decoder, the attention weights
are mapped to 2D binary masks (top-right), which are then
further optimised by the SAM-based mask refiner (bottom-
left). The model used is DeepSeekVL-1.3B [44].

5. Conclusion

In this work, we have studied the limitation of existing
grounding LMMs, i.e., the loss of general world knowl-
edge and instruction-following ability. To address this is-
sue, we make the first attempt to ground fully frozen LMMs,
which are already well-trained for user-model conversation,
based on the insight that the geometric and spatial cues
needed for visual grounding are inherently present within
the self-attention mechanism of LMMs. By incorporating a
CNN-based mask decoder and a SAM-based mask refiner,
we achieve competitive visual grounding performance with-
out sacrificing any conversational abilities of pre-trained
LMMs. With this combination of strong conversational and
visual grounding capabilities, these LMMs show promise
for complex perception and reasoning tasks, such as seg-
mentation with reasoning, grounded conversation genera-
tion, and visual chain-of-thought reasoning.
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