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Figure 1. Autonomous micromobility. In public urban spaces, various mobile machines shown in the circle images are essential for
short-distance travel. However, urban environments are complex and contain varied terrain and challenging situations (rectangle images).
To bridge this gap, we present a scalable urban simulation solution to advance autonomous micromobility.

Abstract

Micromobility, which utilizes lightweight mobile ma-
chines moving in urban public spaces - such as delivery
robots and electric wheelchairs - emerges as a promising
alternative to vehicular mobility. Current micromobility de-
pends mostly on human manual operation (in-person or re-
mote control), which raises safety and efficiency concerns
when navigating busy urban environments full of unpre-
dictable obstacles and pedestrians. Assisting humans with
AI agents in maneuvering micromobility devices presents
a viable solution for enhancing safety and efficiency. In
this work, we present a scalable urban simulation solu-
tion to advance autonomous micromobility. First, we build
URBAN-SIM – a high-performance robot learning plat-
form for large-scale training of embodied agents in inter-
active urban scenes. URBAN-SIM contains three critical
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modules: Hierarchical Urban Generation pipeline, Inter-
active Dynamics Generation strategy, and Asynchronous
Scene Sampling scheme, to improve the diversity, realism,
and efficiency of robot learning in simulation. Then, we
propose URBAN-BENCH – a suite of essential tasks and
benchmarks to gauge various capabilities of the AI agents
in achieving autonomous micromobility. URBAN-BENCH
includes eight tasks based on three core skills of the agents:
Urban Locomotion, Urban Navigation, and Urban Tra-
verse. We evaluate four robots with heterogeneous em-
bodiments, such as the wheeled and legged robots, across
these tasks. Experiments on diverse terrains and urban
structures reveal each robot’s strengths and limitations.
Project page: https://metadriverse.github.
io/urban-sim/.
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1. Introduction

Micromobility becomes a promising urban transport way
for short-distance travel [3, 47]. It includes a range of
lightweight machines that have a mass of no more than 350
kg and operate at speeds not exceeding 45 kph [39] in public
spaces. These machines encompass mobile robots with dif-
ferent forms, such as wheeled, quadruped, wheeled-legged,
and humanoid robots, and assistive mobility devices for el-
derly and disabled people, such as electric wheelchairs and
mobility scooters. They can accommodate various users’
needs in individual travel and parcel delivery. The appeal of
micromobility lies in its provision of a flexible, sustainable,
cost-effective, and on-demand transport alternative, which
enhances urban accessibility [42, 55] and reduces reliance
on vehicles for short-distance trips [11, 62].

Current road designs predominantly cater to full-sized
vehicles [19]. Micromobility machines thus have to move
through intricate urban public spaces, such as sidewalks, al-
leys, and plazas, which contain unpredictable terrains, var-
ious obstacles, and dense pedestrian traffic. Traditional mi-
cromobility machines rely on either onboard control (like
wheelchairs) or teleoperation by humans (like food delivery
bots [1]) to navigate complex urban spaces. However, hu-
mans and their driven mobile machines face critical safety
concerns from human fatigue and limited situational aware-
ness. As reported by FARS [65], over 6,000 vulnerable road
users died on U.S. streets in 2018, a 14% increase over 2015
and a 27% increase over 2014. Humans are prone to distrac-
tions that can lead to collisions with road hazards. On the
other hand, human-driven machines have low operation ef-
ficiency, as they require high labor costs and have limited
agility. For instance, in teleoperated systems for parcel de-
livery [1, 2], robots require continuous human monitoring,
which limits the number of robots that can be operated si-
multaneously. Also, given the complexity of the urban en-
vironment, human teleoperators may find it challenging to
move swiftly through a hustling street.

Autonomous micromobility harnesses embodied AI
agents for decision-making and maneuvering, providing a
viable way to improve safety and efficiency. Existing AI
solutions are mainly targeted at specific abilities of robots,
such as obstacle avoidance [60] and parkour [9]. How-
ever, micromobility tasks require agents to have versatile
capabilities facing various complex and challenging terrains
and situations (bottom row in Figure 1), i.e., traversing
varied terrains (stairs, slopes, and rough surfaces), mov-
ing on traversable paths in open spaces, and avoiding both
static and dynamic obstacles. Current AI solutions, fo-
cused on isolated tasks, are thus incapable of conducting
complex micromobility tasks. Apart from that, existing
robot learning and simulation platforms are insufficient for
agent training on micromobility. They either have simple
training scenes with no contextual environments [36, 43] or

have low training performances without environment par-
allelization on GPUs [16, 32, 71]. For example, Isaac-
Gym [36] has superior performance but simple environ-
ments, while CARLA [16] provides rich town scenes but
has low end-to-end training efficiency. However, for mi-
cromobility tasks, on the one hand, robots should learn
situational awareness by interacting with large-scale scene
contexts, such as urban facilities and pedestrians; on the
other hand, robots need a high-performance training plat-
form to sample diverse scenes to obtain strong generaliz-
ability. Yet, “large-scale training” with abundant diverse
scenes and “high-performance training” are contradictory
in the existing robot learning platforms. Current platforms
can not balance these two demands and thus lack sufficient
support for autonomous micromobility tasks.

In this work, we present a scalable urban simulation so-
lution to advance autonomous micromobility. This solution
consists of two critical components: a robot learning plat-
form URBAN-SIM, and a suite of tasks and benchmarks
URBAN-BENCH. It forges a path to autonomous micromo-
bility by enabling large-scale training and evaluation of var-
ied embodied AI agents in complex urban environments.

First, we propose URBAN-SIM – a high-performance
robot learning platform for autonomous micromobility. It
can automatically construct infinite diverse and realistic in-
teractive urban scenes for large-scale robot learning while
providing more than 1,800 fps high training performance
with large-scale parallelization in a single Nvidia L40S
GPU. URBAN-SIM has three key designs: 1) The Hierar-
chical Urban Generation pipeline, which can construct an
infinite number of static urban scenes, from street block to
ground division to building and infrastructure placements
to terrain generation. This pipeline remarkably enhances
the diversity of training environments. 2) The Interactive
Dynamics Generation strategy, which can provide rich dy-
namics of pedestrians and cyclists that are responsive to
robots in real-time during training. This strategy highly im-
proves the realism of dynamic agents while maintaining the
performance in our large-scale, distributed robot learning
workflows. 3) The Asynchronous Scene Sampling scheme,
which can train robots on thousands of various urban scenes
on GPUs in parallel. This scheme significantly enhances
the training performance, especially for large-scale scenes,
achieving more than 26.3% relative improvement compared
to synchronous approaches with the same training steps.
URBAN-SIM is built on top of Nvidia’s Omniverse [45]
and PhysX 5 [46] to provide realistic scene rendering and
physics simulation.

Though the goal of autonomous micromobility is to
move from point A to B in an urban environment, it re-
quires the multifaceted capabilities of the agent. Thus, we
construct URBAN-BENCH – a suite of essential tasks and
benchmarks to train and evaluate different capabilities of
an agent. We first construct a set of tasks for the agent to
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acquire two orthogonal skills in micromobility: Urban Lo-
comotion and Urban Navigation. For urban locomotion, an
agent must learn various movement skills to tackle differ-
ent ground conditions, i.e., flat surfaces, slopes, stairs, and
rough terrain. We define four tasks for urban locomotion
based on these ground conditions. For urban navigation, an
agent needs to develop different operational skills to man-
age various scenarios, i.e., unobstructed ground, static ob-
stacles, and dynamic obstacles. We define three tasks for
urban navigation based on these scene conditions. Further-
more, real-world micromobility often requires kilometer-
scale navigation in complex urban spaces; it remains ex-
tremely challenging to tackle this problem. Thus, we de-
fine Urban Traverse as a new task with a substantially long
time horizon, where a mobile robot needs to make tens of
thousands of actions at a kilometer-scale distance. We fur-
ther introduce a human-AI shared autonomous approach to
tackle the task. It is designed with a flexible architecture
that ranges from full human control to complete AI man-
agement of the workflow, allowing us to explore various la-
bor division modes between humans and AI agents in the
urban traverse task.

We construct comprehensive benchmarks across four
robots with heterogeneous mechanical structures for all 8
defined tasks. Experimental results demonstrate that all
URBAN-BENCH tasks are challenging for existing solu-
tions. By presenting well-defined challenges beyond the
capabilities of current solutions, URBAN-BENCH can serve
as a unified benchmark that facilitates the future develop-
ment of autonomous micromobility. Furthermore, through
training in complex urban environments, qualitative results
indicate that agents have developed interesting and surpris-
ing skills based on their mechanical structures. For in-
stance, humanoid robots learn to maneuver through narrow
spaces by sidestepping, while wheeled robots learn to navi-
gate around stairs by detouring. Finally, we demonstrate our
work’s strong scale-up ability, which is essential for learn-
ing skills in autonomous micromobility.

2. Related Work
Micromobility. Conventional mobility solutions [6], such
as cars and buses, primarily operate on structured road-
ways, suited for medium to long-distance commutes. How-
ever, these systems often struggle with last-mile connec-
tivity, where efficient transport is needed for the final leg
of a journey, such as moving people from transit hubs
to destinations or delivering parcels directly to recipients’
doorsteps. Micromobility [3, 47], emerging in Europe and
North America in the late 1900s [23, 40], offers a practi-
cal solution for short-distance travel in urban spaces. It
relies on lightweight and low-speed devices, such as elec-
tric wheelchairs and e-mobility scooters for personal trans-
port [35], or small robots for parcel delivery [14], providing
flexible, sustainable, and cost-effective alternatives to pri-

vate vehicles. This approach reduces emissions [56], allevi-
ates congestion [38], and enhances accessibility [55], espe-
cially in densely populated areas.

Recently, a few AI-driven solutions [22, 70] have been
introduced in micromobility, focusing on device-sharing
systems [63] and scene understanding [73], including fleet
management, demand prediction, as well as road change
and hazard detection. While these improve operational ef-
ficiency, they do not tackle the core challenge of enabling
autonomous travel from point A to B in urban spaces. Cur-
rent solutions lack the embodied intelligence essential for
real-time decision-making, which is crucial for tasks like
assistive mobility and autonomous delivery.
Robot autonomy tasks. Recent advances in robotics and
embodied AI have significantly enhanced specific skills for
robot autonomy, particularly in locomotion [26] and naviga-
tion [15]. In locomotion, the main goal is to enable robots
to move efficiently across diverse terrains. Considerable
progress has been achieved in tasks categorized by different
mechanical structures (e.g., bipedal [33], quadrupedal [4],
multilegged [10]) or unique abilities (e.g., parkour [9],
whole-body control [34], jumping [59]). In navigation, the
focus is on guiding robots to specific destinations while
avoiding obstacles. Research has proposed various tasks
categorized by goals and conditions, such as point naviga-
tion [5], object navigation [74], and social navigation [64].
However, these tasks address isolated skills and struggle
to meet micromobility’s demands, which require unique
and versatile abilities for complex urban environments. A
few pioneering studies have explored long-horizon out-
door navigation tasks, but they are limited to case-specific
robots [29, 41] and scenarios [54, 60], lacking the general-
izability needed for micromobility tasks.
Simulation platforms for robot learning. Simulation
platforms have rapidly advanced over the past decades, of-
fering scalable training for embodied agents and robots, as
well as safe evaluation before real-world deployment [12,
13, 30, 49, 61]. Existing platforms mainly focus on two
types of environments: 1) indoor environments [48, 52],
such as homes and offices, and 2) driving environments [24,
28], like roadways and highways. In indoor environments,
platforms like AI2-THOR [25], Habitat [52], iGibson [57],
OmniGibson [31], and ThreeDWorld [17] are tailored for
tasks like indoor navigation, object rearrangement, and ma-
nipulation, which differ greatly from micromobility scenar-
ios in complex urban spaces. In driving environments, plat-
forms like GTA V [37], CARLA [16], DriverGym [27],
Nuplan [8], and MetaDrive [32] support medium to long-
distance driving tasks, focusing on vehicle-centric road sce-
narios rather than urban public spaces like sidewalks and
alleys, which are crucial for micromobility tasks.

Some recent works have constructed detailed urban
spaces [18, 69, 72, 75]. However, these focus mainly on
algorithm evaluation [18, 69] or scene generation [72, 75],
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Stage 1 - Street Block Connection Stage 2 - Ground Planning Stage 4 - Object PlacementStage 3 - Terrain Generation

Large-scale Robot Training in Parallel Environments on GPUsRealistic Interactions

(a) Hierarchical Urban Generation (c) Asynchronous Scene Sampling

(b) Interactive Dynamics Generation

Figure 2. URBAN-SIM: a robot learning platform for autonomous micromobility. (a) Hierarchical Urban Generation. It generates an
infinite number of diverse scenes through four progressive stages. (b) Interactive Dynamics Generation. GPU-based generation of realistic
agent-scene and agent-agent interactions on the fly. (c) Asynchronous Scene Sampling. An asynchronous sampling scheme to enable
high-efficiency training on varied scenes with rich context information.

and lack support for interactive robot training, which re-
quires efficient scene sampling, physical simulation, and
real-time dynamics. Recently, task-oriented robot learning
platforms, such as IsaacGym [36], IsaacSim [44], and Isaa-
cLab [43], built on Nvidia ecosystem, have shown impres-
sive training efficiency with high visual and physical real-
ism. However, these platforms are mainly suited for repet-
itive tasks in uniform environments, like locomotion and
manipulation, and often neglect contextual scene simulation
needed for complex, long-horizon micromobility tasks.

3. URBAN-SIM: A Robot Learning Platform
for Autonomous Micromobility

To support robot learning in complex urban scenes, an
ideal simulation platform needs to have two important fea-
tures: large-scale – the platform should provide a vast ar-
ray of diverse scenes with realistic interactions; and high-
performance – the platform should support high-efficiency
scene sampling for training. In this section, we intro-
duce URBAN-SIM – a robot learning platform for au-
tonomous micromobility, which can balance the contra-
diction between scale and performance. It supports infi-
nite urban scene generation with arbitrary size and achieves
high-performance training with more than 1,800 fps sam-
pling rate in a single GPU. We highlight three key de-
signs of URBAN-SIM: the Hierarchical Urban Genera-
tion pipeline (Section 3.1), which ensures the diversity of
static scenes on a large scale; the Interactive Dynamics
Generation strategy (Section 3.2), which ensures the re-
alism of dynamics on a large scale; and the Asynchronous
Scene Sampling scheme (Section 3.3), which ensures high-
efficiency training on complex urban environments.

3.1. Hierarchical Urban Generation
The diversity of simulation environments is essential for the
robustness and generalizability of robot training, especially
in deep learning approaches. Following recent advance-
ments in procedural generation in games [58], we introduce

a hierarchical urban generation pipeline to procedurally cre-
ate complex urban scenes, from macroscale street blocks to
microscale terrains, enabling infinite variations of diverse
scenes with arbitrary sizes (from a street corner to a city).

As shown in Figure 2 (a), this pipeline includes four
progressive stages: 1) In street block connection, blocks
(e.g., straight, curve, roundabout, diverging, merging, in-
tersection, and T-intersection) are sampled and connected
to form diverse road networks. 2) In ground planning, we
divide urban public areas into functional zones (e.g., side-
walks, crosswalks, plazas, buildings, and vegetation) us-
ing randomized parameters for each area’s dimensions. 3)
In terrain generation, we employ the Wave Function Col-
lapse (WFC) [21] algorithm to generate typical urban ter-
rains - flat (e.g., pathway on grass), stair (e.g., front steps),
slope (e.g., assistive ramps), and rough (e.g., cracked side-
walks) - each with adjustable parameters like step height
or ramp angle, providing diverse ground conditions. 4) In
object placement, static objects (e.g., trees and bus stops)
are placed adaptably within the functional areas accord-
ing to their sizes, creating varied obstacle layouts. To en-
sure the coverage of objects, we have compiled a reposi-
tory of over 15,000 high-quality 3D assets of urban objects.
This pipeline enables the creation of enormous static urban
scenes with diverse street layouts, functional divisions, ob-
stacles, and terrains in a breeze1.

3.2. Interactive Dynamics Generation
Beyond static scene diversity, the realism of dynamic
agents, i.e., vehicles, pedestrians, and other mobile ma-
chines, is crucial for simulated urban environments. To
form realistic dynamics, the environmental agents should be
interactive, with both the static scenes and other dynamic
agents. A naive approach uses multi-agent path planning
algorithms like ORCA [68] to optimize agents’ trajectories,
avoiding collisions and deadlocks. However, these methods

1Empowered by the UI of Omniverse [45], users can easily modify the
scenes generated by our pipeline further, to cater to specific needs.
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pre-compute trajectories, preventing real-time interaction
with the trained agent, and run only on the CPU, causing in-
efficiencies when integrated with GPU-based platforms due
to the frequent CPU-GPU data transfer during training.

To address these issues, we follow Waymax [20] and
JaxMARL [51] in upgrading ORCA with JAX [7] for multi-
agent path planning on GPUs without any CPU bottlenecks.
This method enables parallelization across multiple envi-
ronments for simultaneous collision avoidance with static
and dynamic objects and interaction with the trained agent.
Specifically, we first generate a 2D occupancy map label-
ing obstacles, roadways (for vehicles), and traversable areas
(for pedestrians and mobile machines), then sample random
start and end points for each agent. Using ORCA for initial
trajectories, we adjust agents’ positions in real-time based
on proximity and relative velocity, all on GPUs. We illus-
trate the realistic interactions between agents and environ-
ments and other agents in Figure 2 (b). This strategy enables
the creation of dynamic environments with realistic interac-
tions on the fly in robot training.
3.3. Asynchronous Scene Sampling
So far, we can generate diverse scenes with realistic dynam-
ics. However, the complexity of these scenes, with numer-
ous objects and dense physical interactions, poses new chal-
lenges for the training performance, especially in learning
long-horizon behaviors for robots with high degrees of free-
dom. Recent robot learning platforms like IsaacGym [36]
and IsaacLab [43] achieve high performance through envi-
ronment parallelization on GPUs. These platforms are de-
signed for tasks that require extensive repetitive training in
uniform environments with enormous trial and error, such as
locomotion and manipulation. In micromobility tasks, how-
ever, rather than uniform environments, robots must make
decisions based on varied environments with rich contex-
tual information, such as ground paving, obstacles seman-
tics, and pedestrian movements. Thus, existing synchronous
scene sampling in [36, 43] will encounter huge barriers fac-
ing micromobility tasks, where the essential is not the repet-
itive training in uniform environments but the multi-faceted
training in enormous varied environments.

To solve this problem, we propose an asynchronous
scene sampling scheme, which can remarkably enhance
training efficiency by training simultaneously on thou-
sands of non-uniform environments with various static lay-
outs, obstacles, dynamics, terrains, and episodes of agents.
Specifically, as illustrated in Figure 3, all assets are ini-
tially loaded into a cache, from which environments ran-
domly sample assets to create diverse settings simultane-
ously. Observations, rewards, and actions for each envi-
ronment are fully vectorized on the GPU, enabling effi-
cient parallel training of agents across multiple environ-
ments. Figure 2 (c) visualizes the parallel training on varied
environments simultaneously with the asynchronous scene
sampling scheme. This approach significantly accelerates

model convergence and reduces training time, essential for
context-aware micromobility tasks.
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Figure 3. Scene sampling diagram. (Left) Assets Cache that
stores all assets in urban scenes. (Right) With a random sampling
of assets, parallel environments can be constructed on GPU.
Performance benchmarking. Using the asynchronous
scene sampling scheme, we can enable parallelization with
any number of unique environments, depending on the GPU
used. On a single GPU, parallelized training can be con-
ducted across 256 environments, achieving performance
ranging from 1,800 to 2,600 fps with RGBD sensors, de-
pending on the specific scenario. Note that, due to the scal-
able nature of our platform, the sampling rate can be con-
tinually increased by adding more GPUs. Please refer to the
Appendix for detailed performance benchmarks.

4. URBAN-BENCH: A Suite of Essential Tasks
for Autonomous Micromobility

In this section, we introduce URBAN-BENCH, a suite of es-
sential tasks and benchmarks that capture high-frequency
scenarios in autonomous micromobility. Based on the data
from users of micromobility, we first summarize several
key Human Needs (Section 4.1) as the basis of the task
definition. The real-world demands for micromobility de-
vices mainly ask for two primary skills: Urban Loco-
motion (Section 4.2) — moving stably across diverse ter-
rains, including flat, slope, stair, and rough surfaces, and
Urban Navigation (Section 4.3) — moving efficiently in
spaces with varying conditions like unobstructed pathways,
static, and dynamic obstacles. Furthermore, we define a
long-horizon task, Urban Traverse (Section 4.4), where
robots must navigate urban spaces at kilometer scales. To
tackle this challenging task, we introduce a pilot approach -
human-AI shared autonomy - leveraging the power of both
humans and AI agents. We will present benchmark results
for these tasks in Section 5.

LocoFlat LocoStairLocoSlope LocoRough

(a) Urban Locomotion

(b) Urban Navigation (c) Urban Traverse

NavClear NavStatic NavDynamic Traverse

Figure 4. URBAN-BENCH: a suite of essential tasks for au-
tonomous micromobility. Simulation environments of eight es-
sential tasks of (a) Urban Locomotion, (b) Urban Navigation, and
(c) Urban Traverse.
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4.1. Tasks Grounded in Human Needs
The selection of tasks in URBAN-BENCH is informed by ur-
ban mobility studies and infrastructure assessments, high-
lighting their practical importance. U.S. Department of
Transportation (DOT) reports [66] indicate the prevalence
of diverse terrains like ramps, stairs, and uneven surfaces
in public spaces, so it is necessary to have various locomo-
tion capabilities, including slope traversal, stair climbing,
and rough terrain traversal. Besides, the National House-
hold Travel Survey (NHTS) [67] indicates that a significant
portion of urban travel involves short trips on sidewalks and
plazas, where micromobility devices must navigate both un-
obstructed pathways and crowded zones. This underscores
the need for safe and efficient clear pathway traversal, and
static and dynamic obstacle avoidance. Based on these
scene conditions, we define a set of essential tasks of urban
locomotion and navigation.

4.2. Urban Locomotion
In urban locomotion, the embodied AI agent controls the
robot’s locomotion, ensuring stable and efficient movement
across various terrains such as flat surfaces, slopes, and
stairs. We define four tasks for urban locomotion (Figure 4
(a)) based on different ground conditions as below:

LO
C LocoFlat → Flat Terrain Traversal: Traversing sta-

ble, flat surfaces commonly found on sidewalks and pedes-
trian zones. This is necessary for basic mobility in city
spaces designed for foot traffic.

LO
C LocoSlope → Incline Ascent and Descent: Moving

up and down ramps and inclined surfaces with varying slope
angles. This is essential in urban areas where slopes and
accessibility ramps are common.

LO
C LocoStair → Stair Ascent and Descent: Ascending

and descending stairs with varying heights. This is criti-
cal in urban spaces where ramps are unavailable, allowing
access to multi-level areas.

LO
C LocoRough → Uneven Terrain Traversal: Maintain-

ing stability on uneven surfaces like cobblestones or dam-
aged sidewalks. This is important for robust movement in
urban environments with irregular, worn-down paths.

4.3. Urban Navigation
In urban navigation, the embodied AI agent handles local
navigation, determining how the robot should move to stay
within traversable areas while avoiding obstacles and pedes-
trians. We define three tasks for urban navigation (Figure 4
(b)) based on different scene conditions as below:

N
A

V NavClear → Traversable Area Finding: Moving
across open, unobstructed ground, avoiding non-walkable
areas like mud or bushes. This is essential for efficient nav-
igation on open plazas and trails on lawns.

N
A

V NavStatic → Static Obstacle Avoidance: Navigat-
ing around stationary urban obstacles such as benches, trash
bins, and signposts. This is vital for safely maneuvering in
crowded city environments with fixed structures.

N
A

V NavDynamic → Dynamic Obstacle Avoidance: Ad-
justing paths to avoid moving obstacles like pedestrians and
cyclists. This is crucial in urban spaces with high foot traf-
fic, ensuring safe interactions with moving entities.
4.4. Urban Traverse
In kilometer-scale urban traverse, the embodied AI agent’s
goal is to reach the target point as efficiently as possible,
minimizing travel time while ensuring safety in the journey.
We define the urban traverse task (Figure 4 (c)) as below:

TR
A Traverse → Urban Traverse: Moving from point A

to point B with a distance of more than 1 km within a com-
plex urban environment safely and efficiently. A challeng-
ing real-world setting for micromobility.
Human-AI shared autonomous approach. We propose
a human-AI shared autonomous approach as a pilot study
to address this task, combining AI capabilities with human
interventions. In this approach, we structure the robot con-
trol into three layers: high-level decision-making, mid-level
navigation, and low-level locomotion. With the layered ar-
chitecture, we decompose the complex urban traverse task
into a series of subtasks, with AI managing mid-level and
low-level routine tasks, and humans making high-level de-
cisions and intervening in risky situations. This approach
allows a flexible transition between human and AI control.
Humans can manage the entire process if needed, while
AI can manage the entire operation using an extra rule-
based/AI-based decision model to direct the dispatch of ur-
ban navigation and locomotion models. We evaluate these
control variants to study micromobility performance at the
kilometer scale in Section 5. Please refer to the Appendix
for a detailed discussion of this approach.

5. Benchmarks
We benchmark four tasks in urban locomotion, three tasks
in urban navigation, and one long-horizon task in urban tra-
verse. We describe the benchmarks below regarding the
Settings (Section 5.1) of robots, data, and models, as well
as the analysis of the Results (Section 5.2) of benchmarks.
These benchmarks will be maintained and updated as time
goes on to cover more robots, tasks, and models, as we aim
to build a standard evaluation platform to facilitate research
in autonomous micromobility and robot learning in urban
spaces. Please see the Appendix for more details, including
data, training parameters, evaluation metrics, etc.

5.1. Settings

Robots. We evaluate four representative robots, each with
distinct mechanical structures, to gain insights and demon-
strate the general applicability of the proposed platform.
The robots selected for this study include a wheeled robot
(COCO Robotics’ delivery robot), a quadruped robot (Uni-
tree Go2), a wheeled-legged robot (Unitree B2-W), and a
humanoid robot (Unitree G1) 2.

2It is simple to import new robots in URBAN-SIM.
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Data. We construct 4 datasets in URBAN-SIM: Urban-
Nav is used for the train and test of urban navigation;
Urban-Loc is used for the train and test of urban locomo-
tion; Urban-Tra-Standard and Urban-Tra-City are used for
the test of urban traverse.
Models. For the urban navigation and locomotion task,
we formulate it as a Markov Decision Process (MDP) [50],
where the AI learns to optimize its navigation or locomotion
policy using the reinforcement learning algorithm Proximal
Policy Optimization (PPO) [53]. For each robot, we train
and test three models for urban navigation tasks on Urban-
Nav and four models for urban locomotion on Urban-Loc
(except wheeled devices), which form a 24-model matrix.
For the urban traverse task, we construct 4 control modes,
spanning from the full human to full AI: Human – a full
human control mode; Human-AI-Mode-1 – a human AI
shared control mode with the dispatch of foundational nav-
igation and locomotion models; Human-AI-Mode-2 – a hu-
man AI shared control mode with the dispatch of founda-
tional navigation models and a general locomotion model;
AI – a full AI control model.

5.2. Results

Urban locomotion benchmark. Table 1 brings the fol-
lowing insights: 1) Quadruped robot achieves optimal
smoothness: The quadruped robot consistently demon-
strates the best Smoothness scores across all terrains, high-
lighting its stability and controlled movement, even on chal-
lenging surfaces like stairs and rough ground. 2) Wheeled-
legged robot excels in versatility: Leveraging its hybrid
leg-wheel design, the wheeled-legged robot leads in both
distance traversal (X-displacement and Time to Fall) and
keeping Balance, enabling it to cover diverse urban terrains
efficiently. 3) Humanoid robot shows stability on even sur-
faces: The Humanoid robot achieves the best Balance per-
formance on both flat and inclined ground, indicating its
capability for navigation in even urban environments.
Table 1. Urban Locomotion benchmark. Different colors in-
dicate the best performance of different metrics among three
robots: Balance; X-displacement; Time to Fall (TTF);

Smoothness.

Metrics

LO
C LocoFlat

LO
C LocoSlope

LO
C LocoStair

LO
C LocoRough

Quadruped Robot

Balance (%) ↑ 100.00± 0.00 90.56± 3.13 91.89± 2.07 72.18± 4.76
X-dis. (m) ↑ 19.58± 0.41 4.63± 0.23 9.20± 0.36 4.88± 0.14

TTF (s) ↑ 20.00± 0.00 19.50± 0.44 19.58± 0.39 18.31± 0.25
Smooth. ↓ 7.85± 0.04 5.18± 0.07 8.11± 0.12 10.02± 0.09

Wheeled-Legged Robot

Balance (%) ↑ 100.00± 0.00 95.57± 3.31 83.01± 2.37 85.04± 2.16
X-dis. (m) ↑ 19.62± 0.15 12.54± 0.34 16.73± 0.27 18.24± 0.22

TTF (s) ↑ 20.00± 0.00 19.95± 0.02 19.07± 0.17 19.13± 0.11
Smooth. ↓ 210.43± 0.07 253.24± 0.28 236.52± 0.18 231.96± 0.14

Humanoid Robot

Balance (%) ↑ 100.00± 0.00 95.67± 2.24 80.98± 4.32 82.45± 3.15
X-dis. (m) ↑ 16.61± 0.50 7.16± 0.22 13.99± 0.27 16.28± 0.31

TTF (s) ↑ 20.00± 0.00 19.91± 0.03 19.03± 0.36 19.02± 0.33
Smooth. ↓ 40.94± 0.15 57.69± 0.31 42.36± 0.19 53.67± 0.24

Urban navigation benchmark. Table 2 brings the fol-
lowing insights. 1) Wheeled robot excels in clear pathway
navigation: The wheeled robot achieves the highest Suc-
cess Rate (97.60%) and Route Completion (98.61%) in the
NavClear task, highlighting its suitability for open, pre-
dictable urban environments. 2) Quadruped robot leads in
safety metrics: The quadruped robot outperforms others in
tasks with obstacles, achieving the lowest Collision rates
(0.08 in NavSta and 0.13 in NavDyn) and the highest per-
centage On Walkable Regions. This demonstrates its stabil-
ity in complex, obstacle-rich environments. 3) Humanoid
robot performs best in complex scenarios: The humanoid
robot shows the highest Success Rates and Route Comple-
tion in tasks with static and dynamic obstacles, indicating
its flexibility in navigating crowded urban spaces.

Table 2. Urban navigation benchmark. Different colors indicate
the best performance of different metrics among four robots:
Success Rate; Route Completion; On Walkable Region;
SPL; Collision.

Metrics N
A

V NavClear N
A

V NavStatic N
A

V NavDynamic

Wheeled Robot

Success Rate (%) ↑ 97.60± 0.92 51.95± 2.63 48.82± 3.26
Route Completion (%) ↑ 98.61± 1.28 53.11± 2.92 50.04± 3.02

On Walkable Region (%) ↑ 74.38± 0.99 81.88± 1.00 84.82± 1.49
SPL ↑ 0.48± 0.05 0.24± 0.04 0.23± 0.01

Collision ↓ - 0.31± 0.09 0.35± 0.04

Quadruped Robot

Success Rate (%) ↑ 90.29± 3.25 76.13± 3.07 77.14± 2.57
Route Completion (%) ↑ 94.28± 2.16 77.47± 2.99 77.63± 2.12

On Walkable Region (%) ↑ 93.96± 3.38 85.81± 1.67 88.20± 2.17
SPL ↑ 0.37± 0.05 0.36± 0.04 0.36± 0.05

Collision ↓ - 0.08± 0.02 0.13± 0.02

Wheeled-Legged Robot

Success Rate (%) ↑ 79.94± 3.06 42.97± 4.14 31.06± 3.77
Route Completion (%) ↑ 80.44± 2.97 44.33± 3.74 33.95± 3.21

On Walkable Region (%) ↑ 67.93± 0.85 62.17± 2.95 63.29± 2.71
SPL ↑ 0.37± 0.03 0.19± 0.02 0.14± 0.02

Collision ↓ - 0.15± 0.04 0.19± 0.02

Humanoid Robot

Success Rate (%) ↑ 80.47± 2.29 77.86± 3.54 79.23± 2.71
Route Completion (%) ↑ 80.92± 1.36 79.72± 2.76 80.26± 2.92

On Walkable Region (%) ↑ 65.86± 1.56 86.89± 1.73 65.85± 1.94
SPL ↑ 0.37± 0.01 0.37± 0.03 0.38± 0.03

Collision ↓ - 0.13± 0.03 0.15± 0.04

Urban traverse benchmark. We evaluate a quadruped
robot on a kilometer-scale urban traverse task using the
Urban-Tra-Standard dataset with three control modes. As
shown in Figure 6, the AI mode achieves the lowest hu-
man intervention but exhibits the poorest completeness and
safety. Conversely, the Human mode achieves the highest
completeness and safety but at a significantly higher labor
cost. The two human-AI shared autonomy modes balance
completeness and cost while maintaining moderate safety.
Future research in urban traverse should aim to move the
dot closer to the origin with minimal dot size, indicating op-
timized completeness, cost, and safety. Please refer to the
Appendix for the complete benchmark of urban traverse.
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Figure 5. Emerging behaviors. The results of evaluating different robots in the same environment. After training in diverse urban scenes,
robots with distinct structures have developed their unique movement skills.
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Figure 6. Comparison of different control modes in urban tra-
verse. X-axis: Attempts to Success – the number of failures before
reaching the goal points (completion ability). Y-axis: Human Cost
– time of human takeover of the control (labor cost). Size of cir-
cle: Collision Times to obstacles and pedestrians (safety property).

indicate four control modes.

Emerging robot behaviors. Through large-scale train-
ing in diverse urban environments, different robots obtain
movement skills that exploit their unique mechanical struc-
tures, as shown in Figure 5: quadruped robots, known to be
proficient at stair climbing, can traverse challenging terrain
directly to reach the goal; wheeled robots prefer detouring
over even surfaces to reduce the risk of getting stuck, de-
spite the longer path; Wheeled-legged robots benefit from
their hybrid design and show the ability to partially descend
on slopes and stairs simultaneously; The humanoid robot,
with greater degrees of freedom, can sidestep through nar-
row spaces efficiently.

6. Evaluation of Scalability
We try to address a fundamental question underlying the
strengths demonstrated in this work: How does the scal-
ability of our urban simulation contribute to autonomous
micromobility?

The proposed asynchronous scene sampling scheme in
URBAN-SIM enables high-performance, large-scale robot
training in diverse urban environments with realistic inter-
actions. We compare it to synchronous sampling, as used in
IsaacLab [43], where all scenes in a batch are identical. In
our asynchronous approach, however, each scene in a batch
is unique. Furthermore, to assess the impact of large-scale
training, we vary the number of training scenes from 1 to
1,024 and observe performance changes. All experiments

are conducted using the NavStatic task.
As shown in Figure 7 (Left), asynchronous sampling per-

forms the same as synchronous sampling with only one
scene. However, as unique training scenes increase from
8 to 256, a substantial performance gap (the colored ar-
eas) emerges, showing the strong scalability of our plat-
form for diverse scene training. Further, as seen in Fig-
ure 7 (Right), the performance remarkably improves as the
number of training scenes increases from 1 to 1,024, rising
from 5.1% to 83.2% (Success Rate). The result highlights
the importance of large-scale training on a greater variety of
scenes.

Figure 7. Effectiveness of scalable urban simulation. (Left)
Comparison between synchronous and synchronous scene sam-
pling. X-axis: training steps; Y-axis: Success Rate. Different
colors indicate training scene numbers – 1, 8, or 256. (Right)
Scaling-up ability. X-axis: training scene number; Y-axis: Suc-
cess Rate and Route Completion.

7. Conclusion

We introduce a scalable urban simulation solution to ad-
vance research in autonomous micromobility. This solu-
tion comprises a high-performance robot learning platform,
URBAN-SIM, and a suite of essential tasks and bench-
marks, URBAN-BENCH. Through experiments, we evaluate
various capabilities of AI agents across different tasks and
demonstrate the platform’s scalability for large-scale train-
ing in urban environments. Looking ahead, we plan to sup-
port real-world deployments of models trained on our plat-
form. Our strategy includes building a sim-to-real pipeline
based on ROS2 and enabling an integrated workflow for
model training, evaluation, and deployment.
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