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Figure 1. The gallery of DreamOmni. DreamOmni, as a native unified image generation and editing model, can handle various tasks.

Abstract

projectpagepCurrently, the success of large language
models (LLMs) illustrates that a unified multitasking ap-
proach can significantly enhance model usability, stream-
line deployment, and foster synergistic benefits across dif-
ferent tasks. However, in computer vision, while text-to-
image (T2I) models have significantly improved genera-
tion quality through scaling up, their framework design did
not initially consider how to unify with downstream tasks,
such as various types of editing. To address this, we in-
troduce DreamOmni, a unified model for image generation
and editing. We begin by analyzing existing frameworks
and the requirements of downstream tasks, proposing a uni-
fied framework that integrates both T2I models and vari-
ous editing tasks. Furthermore, another key challenge is
the efficient creation of high-quality editing data, particu-
larly for instruction-based and drag-based editing. To this

end, we develop a synthetic data pipeline using sticker-like
elements to synthesize accurate, high-quality datasets effi-
ciently, which enables editing data scaling up for unified
model training. For training, DreamOmni jointly trains
T2I generation and downstream tasks. T2I training en-
hances the model’s understanding of specific concepts and
improves generation quality, while editing training helps
the model grasp the nuances of the editing task. This collab-
oration significantly boosts editing performance. Extensive
experiments confirm the effectiveness of DreamOmni. The
code and model will be released.

1. Introudction

Recently, text-to-image (T2I) generative foundation mod-
els [6, 15, 27, 39, 44, 47] have made remarkable progress,
driving the development of various downstream applica-
tions such as image editing, video generation, and more.
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Currently, T2I foundation models face two significant
challenges: (1) Adapting these models for downstream ap-
plications often requires the integration of various plug-
ins (such as ControlNet [62] and IP-adapter [60]) in dif-
ferent ways, or the extension of input channels (e.g., SD-
inpainting [44], InstructP2P [8]). This reliance on spe-
cialized frameworks hampers multi-task generalization and
complicates deployment. (2) High-quality and accurate
editing data is difficult to obtain, including instruction-
based editing, drag editing, and subject-driven generation
data. In this paper, we propose to unify T2I models with
multiple editing tasks, such as instruction-based editing,
inpainting & outpainting, drag editing, and reference im-
age generation within a single framework. Additionally,
we introduce an efficient synthetic data pipeline for effi-
ciently and accurately constructing editing data, facilitating
the training of native unified generation and editing model.

We began by exploring fundamental model frameworks
to develop a unified framework that is both highly effective
and efficient, achieving rapid training convergence. (1) We
aligned certain frameworks, such as Unet [44] and DIT [38],
to have similar parameter sizes and runtime settings for
fair comparison (Fig. 3). Our analysis showed that DIT’s
effectiveness comes from concentrating most of its com-
putational and parameter load on latent at 2× downsam-
pling size, whereas Unet distributes more of its operations
at smaller scales. This allocation makes DIT comparatively
superior, as concentrating computations at the 2× down-
sampled latent achieves a better trade-off. However, we
observed that Unet’s residual connections significantly im-
prove the model’s training convergence speed. Inspired
by the efficiency of high-resolution latent computations,
we also incorporated additional residual convolutional net-
works for the input-scale latent. (2) We replaced the original
text encoder with a vision-language model (VLM) to unify
visual-language prompt encoding. This encoded prompt
was then concatenated with the noisy latent, allowing for
integrated computation within the DIT framework.

Next, we need to obtain accurate training data efficiently
for our unified model. For various types of editing, such as
instruction-based editing, it’s challenging to create and fil-
ter pairs of data that precisely match the instructions while
avoiding detail corruption. We have discovered that the
key to effective editing lies in helping the model understand
the meaning of the editing operations, rather than learning
specific concepts (a capability the model already possesses
in T2I training). Therefore, we propose a synthetic col-
lage data pipeline that easily scales up to generate accurate
and diverse edited data, enabling models to better under-
stand the nuances of specific editing tasks (Fig. 2 (b)). (1)
For instruction-based editing, we constructed synthetic data
for three main categories: addition, removal, and replace-
ment. (2) For drag editing, we utilized synthetic data to cre-

ate scaling, translating, and rotating editing data. (3) For
inpainting and outpainting, we randomly generate masks
for each given image. (4) For reference image generation,
We divided the tasks into subject-driven generation and
image-conditioned generation (i.e., ControlNet-like gener-
ation) tasks. For subject-driven generation, we used a can-
vas filled with stickers, allowing the model to reference a
specific sticker for generation, which helps train the model
to extract the demanded objects or details from given im-
ages for generation. For the image-conditioned generation,
we created canny, depth, and segment maps, similar to Con-
trolNet. (5) We use synthetic data to enhance the model’s
T2I accuracy in responding to attributes such as quantity,
position, relationships, color, shape, and text. Concretely,
we randomly arrange different quantities of stickers, text,
and geometric shapes on a canvas, and obtain precise de-
scriptions of their quantity, position, relationships, and col-
ors based on their exact coordinates.

During training, thanks to our unified framework that in-
tegrates T2I with multiple editing tasks, we can easily train
T2I data alongside various types of editing data, obtaining
a native unified image generation and editing model, called
DreamOmni. The editing tasks benefit from the T2I data,
which helps prevent the model from forgetting specific con-
cepts and generation quality decline, while the T2I task can
leverage synthetic data to enhance instruction following.
• We conducted an analysis of existing model frameworks

under fair settings and, drawing on the characteristics of
different tasks, proposed an efficient and powerful unified
image generation and editing framework, DreamOmni.

• We introduced a synthetic collage data pipeline to tackle
the current inefficiency and difficulty in creating and fil-
tering high-quality editing data. Furthermore, we uti-
lized the synthetic collage data pipeline to enhance the
accuracy of the T2I model’s output. Experimental re-
sults demonstrate that synthetic data is an effective, high-
quality, and cost-efficient method to scale up data for
achieving unified image generation and editing training.

• After unified training with T2I data and various synthetic
datasets, our DreamOmni showcases competitive perfor-
mance on T2I generation and various editing tasks.

2. Related Work
Text-to-image Diffusion Model. Diffusion models [1, 5,
14, 21, 23, 24, 35, 52, 53] have emerged as highly ef-
fective methods for image generation, outperforming pre-
vious generative models like GANs [20] and VAEs [26].
The latent diffusion model [44], also known as Stable
Diffusion, enhances the diffusion process within the im-
age latent space and utilizes cross-attention to guide im-
age generation through text input. This approach enhances
the usability of the image generation model, driving its
widespread adoption. Subsequently, more advanced text-to-
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Figure 2. The overview of DreamOmni. (a) The DreamOmni framework supports unified image generation and editing, with fast training
convergence and powerful performance. (b) To overcome the difficulty and inefficiency in data creation and filtering for image editing, we
propose a collage-based synthetic data pipeline. This pipeline enables the efficient creation of data for various editing tasks, such as adding,
deleting, and replacement operations in instruction-based editing, as well as translation, scaling, and rotation in drag editing. Additionally,
it supports reference image generation and segmentation & detection. Furthermore, our synthetic data pipeline enhances the accuracy of
T2I generation. Due to space limitations, we have optionally shown the corresponding prompts or instructions for these cases.

image (T2I) models were developed, such as Imagen [47],
DALLE [43], and others [3, 6, 13, 16, 39]. Recently, the
DIT frameworks [4, 38] has become increasingly popular
as more models [10, 15, 31] transition from the Unet frame-
work [45], thanks to its straightforward structure and out-
standing compatibility with multimodal inputs. However,
the current T2I model fails to account for the design of
downstream editing tasks, necessitating numerous special-
ized adaptations. For instance, Instructp2p [8] requires an
expansion of input channels, while ControlNet [62] and IP-
adapter [60] rely on additional plugins and various meth-
ods for injecting reference image information. These frag-
mented designs are inconsistent with the trend toward uni-
fied models, complicating deployment and impeding the
joint training of T2I and editing tasks. In this paper, we will
analyze the existing T2I frameworks and propose a more ef-
ficient and powerful unified generation and editing model.
Multimodal-guided Image Editing and Generation of-
fers richer guiding information and has broader applica-
tions [2, 7, 9, 12, 37, 54, 55] than T2I models. It encom-
passes instruction-based editing [8, 18, 25, 49, 61], inpaint-
ing & outpainting [34, 57, 59], drag editing [32, 51], and
reference image generation [28, 29, 40, 62, 63]. A signif-
icant challenge in editing, especially in instruction-based
and drag editing, lies in creating and filtering accurately
paired editing data. For example, InstructP2P [8] utilizes
finetuned GPT-3 and a Prompt-to-Prompt strategy [22] to

generate instruction-based editing datasets, but it achieves a
success rate of under 15% with frequent artifacts and de-
tail loss. Additionally, filtering high-quality editing data
is a persistent challenge, complicating scaling up. Mag-
icbrush [61] addresses this by employing people to cre-
ate and filter editing data, but this manual method limits
data volume. Furthermore, for drag editing, most meth-
ods [32, 51] are training-free, which restricts their perfor-
mance and efficiency. To this end, InstaDrag [50] lever-
ages video data to construct drag editing data. However,
InstaDrag still faces challenges with inefficiency in filter-
ing valid data from video. Moreover, for subject-driven
generation [28, 36], DreamBooth [46] requires training on
several subject-related images before each inference, which
is inconvenient and inefficient. Some works [30, 58] col-
lect multiple photos of the same person from the internet
to build datasets for training more efficient and powerful
subject-driven generation models. However, the process of
gathering and filtering such data still presents a challenge,
limiting the scaling up of the dataset. In this paper, we pro-
pose a simple, efficient, and accurate synthetic collage data
pipeline to create quite a few data for unified training.

3. Methodology

The unification of multiple tasks is a trend and pursuit in
the field of computer vision and AI, which not only en-
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hances model usability and reduces deployment complex-
ity but also enables collaborative training that fosters syner-
gies between tasks. However, current T2I foundation mod-
els are primarily designed specifically for T2I and often
overlook the potential for integration with other tasks, such
as various image editing tasks. To this end, we propose
DreamOmni, a unified model for image generation and edit-
ing. We design and train DreamOmni from three aspects.
(1) In Sec. 3.1, we compare various frameworks in a fair
setting and design a powerful and fast training converging
framework that supports unified multi-tasking based on the
characteristics of different tasks. (2) In Sec. 3.2, we aim
to propose a convenient, efficient, and accurate synthetic
data pipeline for data scaling up to facilitate multi-task uni-
fied training and enhance the model’s instruction-following
ability. (3) In Sec. 3.3, we introduce the training scheme
for DreamOmni. Native unified training of T2I and vari-
ous editing tasks prevents concept forgetting and genera-
tion quality decline, while enhancing the model’s editing
and prompt-following capabilities.

3.1. Framework

In this part, we aim to design a unified and powerful im-
age generation and editing framework. Currently, differ-
ent editing models often have distinct structure designs.
For example, IP-adapter [60] and BLIP-Diffusion [28] in-
ject information through cross-attention to maintain sub-
jects. In contrast, InstructP2P [8] achieves editing consis-
tency by adding different numbers of input channels for
models. These structures are tailored for specific tasks and
lack generalizability. To this end, as shown in Fig. 2 (a), we
concatenate VLM features with noisy latent and input them
into a DIT Block for joint multi-head self-attention oper-
ations. After that, the VLM features and noisy latent are
processed by the FeedForward modules. This allows the
model to autonomously learn any level features (from over-
all consistency to subject consistency) for editing and gener-
ation. Notably, for FeedForward modules, we separate the
VLM features and noisy latent, passing them through two
distinct FeedForward modules with the same network struc-
ture. Additionally, instead of using CLIP [41] or T5 [42] as
the text encoder, we introduce a Vision-Language Model
(VLM) that enables joint understanding and encoding of
both image and text prompts. For tasks that require high
consistency, such as instruction-based editing and drag edit-
ing, we input the VAE encoding of the source image into the
DIT model to ensure strong consistency between the non-
edited regions of the output image and the source image.

In the current framework design, some works, such as
DIT [38], are compared under label-conditioned generation
rather than T2I. However, T2I is inherently more complex
than label-based generation, as it requires the integration
and understanding of complex prompts. Additionally, many

T2I models [15, 44], such as SDXL [39], are trained with
different model sizes, datasets, and training settings. This
variability makes it challenging to assess the impact of dif-
ferent model components on overall performance. More-
over, SDXL incorporates many Transformer blocks within
its UNet structure. So, why does DIT outperform SDXL?
To address this, we conducted extensive experiments as
shown in Fig. 3. We observe that DIT surpasses Unet be-
cause it allocates most of its computation to 2× downsam-
pled latent, whereas Unet allocates a greater proportion to
4× downsampled latent. Since attention operations on 1×
latent cause memory burden, we further employ residual
Conv blocks to refine generation details for 1× latent.

Additionally, we observed that the use of long connec-
tions in the UNet framework can significantly accelerate the
model’s training convergence without compromising per-
formance. As shown in Fig. 2 (a), we concatenate early
and later features along the channel dimension and apply
a linear layer to combine the two features. Notably, linear
layers used for VLM features and noisy latent are different.

3.2. Synthetic Data

In addition to the unified framework, we also require quite
a few data to support joint training. While T2I data is read-
ily available, creating and filtering accurate, high-quality
data for tasks like instruction-based editing is far more chal-
lenging. To address this, we introduce a synthetic collage
data pipeline that efficiently and accurately generates the
required editing data. As shown in Fig. 2 (b), our pipeline
encompasses six tasks. Notably, this is not the full extent
of our synthetic pipeline’s capabilities; it is also capable of
handling more complex task combinations.
• T2I generation. As shown in Fig. 2 (b), in addition to

the conventional T2I data, we further enhance the model’s
performance on the T2I by incorporating synthetic data,
specifically focusing on improving the text, shape, po-
sition, quantity, and color generation. Specifically, for
the text, we randomly generate words or short phrases
on a blank canvas using a variety of fonts, colors, thick-
nesses, and sizes. For the shape and quantity, we ran-
domly create geometric shapes with different quantities,
colors, and sizes, and arrange them on the canvas. Based
on these attributes and their positions, we generate ac-
curate prompts, which are then refined using a LLM.
Furthermore, we use a diverse set of stickers and seg-
mentation data for synthesis, placing them on the canvas
and calculating their precise spatial relationships. These
prompts are then created and further polished by the LLM
to produce descriptions that are more natural.

• Inpainting & Outpainting. We randomly generate masks
for smearing, blocks, and image edges. Notably, during
training, in addition to feeding the masked image and its
corresponding mask into the VLM for encoding, we also
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include the image caption with a 50% probability.
• Instruction-based editing. We categorize the task into

three operations: addition, removal, and replacement.
For both removal and replacement, we randomly select
a background image and an object image to create the
source image. In the removal case, the target image is
simply the background image. For replacement, the tar-
get image is generated by replacing the object in the same
location with a different object. Notably, for the addition,
due to the need for the added object to be placed in a con-
textually appropriate position relative to the background,
we use a blank background in the paper.

• Drag editing. We categorize the data into three types:
translation, scaling, and rotation. Notably, Instadrag [50]
treats each pair of drag points as a separate image, which
is sparse and impractical due to the fixed number of drag
points required. Therefore, we represent each drag point
using the format (x, y, dx, dy) as a prompt input, where
x and y denote the coordinates of the drag points in the
source image, and dx and dy represent the translation
vector. Furthermore, we normalize these coordinates by
dividing them by the image’s width or height.

• Reference image generation. We categorize the data into
two types: image-conditioned generation, akin to Con-
trolNet [62], and subject-driven generation. For image-
conditioned generation, we begin by selecting high-
quality images and creating corresponding canny maps,
depth maps, and segmentation masks as source images
for training. For subject-driven generation, we synthesize
source images and then randomly select objects within
these images to create target images. The model is trained
to generate new content based on specific attributes ref-
erenced from the source image, allowing for the flexible
generation of varied scenes and subjects.

• Segmentation & detection. We randomly selected a back-
ground image and an object image. These images are then
composited together to create a source image. Following
this, we apply color manipulation or draw a bounding box
around the object region based on the alpha channel of the
object image, obtaining the target image.
Our synthetic collage data pipeline is efficient and pre-

cise, enabling the generation of billions of diverse images
for large-scale pretraining and fine-tuning of DreamOmni.

3.3. Model Training

After careful consideration, we chose a 2.5B parameter
size for DreamOmni’s DIT model. This size strikes a good
balance between being user-friendly and ensuring powerful
performance. For the VLM encoder, we directly adopt the
Qwen2-VL [56] 7B model, based on three reasons: (1) It
supports image inputs of arbitrary resolution, (2) It delivers
strong model performance, and (3) It is released under a per-
missive open-source license. The VLM features are derived
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DreamOmni-V1 828 28.32
DreamOmni-V2 836 25.14
DreamOmni-V3 (Ours) 827 27.04

Figure 3. Comparison of different frameworks. The left figure
shows the FID comparison among different frameworks, while the
right table shows their number of parameters and runtime.

Table 1. Comparisons on GenEval [19]. Our model outperforms
all current open models (including SOTA SD3-Medium [15]).

Objects

Model Overall Single Two Counting Colors Position
Color

Attribution

SD 1.5 [44] 0.43 0.97 0.38 0.35 0.76 0.04 0.06
PixArt-alpha [10] 0.48 0.98 0.5 0.44 0.8 0.08 0.07
SDv2.1 0.5 0.98 0.51 0.44 0.85 0.07 0.17
SDXL [39] 0.55 0.98 0.74 0.39 0.85 0.15 0.23
SD-cascade 0.52 0.98 0.57 0.47 0.87 0.08 0.15
SD3-Medium [15] 0.70 0.99 0.84 0.63 0.88 0.28 0.55

DreamOmni (Ours) 0.70 0.99 0.81 0.65 0.88 0.34 0.54

from the penultimate layer of Qwen2-VL. Additionally, we
use the FLUX-schnell’s VAE as DreamOmni’s VAE, which
retains more latent channels, enabling the model to capture
finer image details. Furthermore, we optimize DreamOmni
using Rectified Flow [33], which performs the forward pro-
cess by linearly interpolating between noise and data along
a straight trajectory. we train DreamOmni using loss L:

L = E
(
∥(z− ϵ)− vθ (zt, c, t)∥22

)
, (1)

where zt = tz+ (1− t)ϵ represents the noised feature map
at timestep t. Ground truth images are encoded by VAE
into latent space to derive z. Here, ϵ ∈ N (0, I) represents
Gaussian noise, and vθ refers to the DIT model. c indicates
the conditional information.

The T2I training dataset consists of 125M images, in-
cluding both the LAION dataset (103M ) [48] and our col-
lected data (22M ). These images have been annotated using
InternVL2 [11]. For synthetic data, such as T2I, instruc-
tion editing, inpainting & outpainting, drag editing, and
reference image generation, we generated 12M images re-
spectively, bringing the total to approximately 60M images.
Additionally, for segmentation & detection, we created 8M
images. Prior to training, to improve training speed usage,
we first encoded prompts into VLM features.

Our training process is divided into three stages. In the
first stage, we train on images with 256× 256 size, a batch
size of 2048, a learning rate of 1 × 10−4, and 377K it-
erations. In the second stage, we train on images with
512 × 512 size, a batch size of 1024, a learning rate of
5× 10−5, and 189K iterations. In the final stage, we select
12M high-quality T2I data and randomly sample 1M high-
quality images from each type of synthetic data for training.
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Figure 4. Visual comparison on T2I generation. Compared to other competitive methods (including SD3-Medium [15], SDXL [39],
SD-Cascade, and SD1.5 [44]), our DreamOmni not only better adheres to user prompts but also generate more visually appealing results
with delicate details, elegant composition, and so on.

Figure 5. Visual comparison on inpainting & outpainting between DreamOmni, ControlNet-Inpainting [62] and SD-inpainting [44].

We train models with 1024×1024 size, a batch size of 256,
a learning rate of 2×10−5, and 140K iterations. All exper-
iments are conducted on 64 A100 GPUs. Additionally, to
enable the model to generate images at varying resolutions,
similar to the approach used in SDXL [39], we divide the
images into 31 buckets based on their aspect ratios, ranging
from 4 : 1 to 1 : 4, during training.

4. Experiments
Evaluation on Framework. We compared several T2I
model frameworks under similar settings to identify ef-
fective components. Using the same VAE, CLIP text en-
coder, parameters, runtime, and LAION training/testing
datasets, we evaluated the Unet-based SDXL [39], DIT-

based Pixart [10], SD3-Medium [15], and our developed
DreamOmni variations. Notably, as shown in Fig. 3, to
facilitate comparison, we do not use the full 2.5B param-
eters of DreamOmni, but instead adjust the parameters of
all models to 0.85B. DreamOmni-V1 has two downsam-
pling layers (2× and 4×) like SDXL but lacks an Unet
connection. DreamOmni-V2 builds on DreamOmni-V1 by
adding the Unet connection, while DreamOmni-V3 takes
DreamOmni-V2 further by focusing all DIT operations on
2× downsampled latent. (1) Models with the Unet con-
nection (SDXL, DreamOmni-V2, DreamOmni-V3) showed
significantly faster convergence than those without (SD3-
Medium, DreamOmni-V1). DreamOmni-V3, notably, con-
verges four times faster than the SD3-Medium, enhancing
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Figure 6. Visual comparison on image-conditioned generation. Our DreamOmni excels at using canny, depth, and segmentation maps
as conditions for image generation. Compared to the classic ControlNet [62], DreamOmni not only follows the user’s prompts and image
conditions more accurately but also generates content and color schemes that are visually more pleasing.

Figure 7. Visual comparison on subject-driven generation. Compared with BLIP-Diffusion [28] and IP-adapter [60], DreamOmni excels
at accurately following user prompts while preserving the specified subject. Furthermore, its success across both photo and anime cases
underscores DreamOmni’s generalization capabilities.

both training and fine-tuning efficiency. (2) Comparing
DreamOmni-V3 and DreamOmni-V2, we found that con-
centrating DIT block computations on higher-resolution la-
tent (2×) is more cost-effective.
Evaluation on T2I generation. As shown in Tab. 1,
our synthetic data significantly enhances DreamOmni’s T2I
generation capabilities in aspects such as quantity, color,
and position, enabling our model to achieve SOTA results
on GenEval [19]. Notably, SD3-Medium [15] is a 2B open-
source SOTA T2I model, which has a similar parameters as
our DreamOmni. Furthermore, qualitative results are shown
in Fig. 4. We can see that DreamOmni’s outputs are not only
more visually pleasing but also align more accurately with
the given prompts.
Evaluation on Inpainting. We compare our DreamOmni
with ControlNet-Inpainting [62] and SD-Inpainting [44]
on our high-quality evaluation datasets to evaluate its per-
formance. The quantitative results, presented in Tab. 2
, demonstrate that DreamOmni significantly outperforms
both ControlNet-Inpainting and SD-Inpainting, highlight-
ing its superior generation quality and coherence. Vi-
sual results (Fig. 5) further emphasize that DreamOmni ex-

cels in generating fine details, surpassing both ControlNet-
Inpainting and SD-Inpainting. Additionally, DreamOmni
effectively handles large mask holes, generating realistic
content instead of blurry and incoherent outputs.
Evaluation on Reference Image Generation. For image-
conditioned generation, we conducted a comparison with
ControlNet [62] on canny, depth, and segmentation im-
age conditions. Visual results are presented in Fig. 6.
These results reveal that, across all tested conditions, our
DreamOmni significantly outperforms ControlNet. Our
method not only adheres more faithfully to both the image
condition and the prompt but also demonstrates enhanced
visual quality with better composition and richer detail.

For subject-driven image generation, we compared our
method with competitive approaches, including BLIP-
Diffusion [28] and IP-Adapter [60]. To demonstrate
DreamOmni’s powerful generalization, we validated their
performance on both anime and photographic images. Vi-
sual results are shown in Fig. 7. Compared to other meth-
ods, our DreamOmni not only preserves the specified sub-
ject effectively but also follows the prompt well.
Evaluation on Instruction Editing. We compare
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Figure 8. Visual comparison on instruction-based editing. Our DreamOmni achieves more precise editing (including addition, removal,
and replacement) compared to competitive methods such as MGIE [17] and InstructP2P [8].

Table 2. Quantitative comparison for inpainting & outpainting.

Inpainting Outpainting

Model FID↓ LPIPS↓ FID↓ LPIPS↓
SD-inpainting [44] 1.3522 0.1560 2.9179 0.2475
ControlNet-inpainting [62] 1.8393 0.1594 4.2337 0.2521

DreamOmni (Ours) 0.8371 0.1203 1.6926 0.1995

DreamOmni with competitive methods such as MGIE [17]
and InstructP2P [8]. The visual results are presented in
Fig. 8. We can see that DreamOmni performs more accurate
edits, including addition, removal, and replacement. Specif-
ically, our editing results exhibit superior consistency with
minimal changes to non-edited areas and higher-quality
generation of the edited content. This further validates
that our synthetic data pipeline is an efficient and effec-
tive method for creating instruction-based editing datasets,
enabling models to learn precise instruction-based editing.
Moreover, the efficiency of our synthetic data pipeline al-
lows for models to easily scale up diverse training data.
Evaluation on Drag Editing. We evaluate DreamOmni
on our synthetic evaluation dataset. The visual results are
shown in Fig. 9. (1) Compared to the target image, we can
see that DreamOmni can accurately perform translation, ro-
tation, and scaling drag edits. (2) for translation and scal-
ing, DreamOmni can maintain the integrity of the dragged
object. However, large-scale rotation operations are more
challenging for DreamOmni, as they involve complex trans-
formations of the object itself, which may lead to deforma-
tions of the edited object. (3) The results demonstrate the
effectiveness of our synthetic data pipeline for drag editing,
and encoding the drag point positions and displacement in-
formation as instruction inputs allows the model to learn
precise drag edits (shown in Fig. 2).

5. Conclusion
Current T2I foundation models lack a unified framework
and training for downstream tasks, such as image editing.
To address this, we introduce DreamOmni, a unified model
for T2I generation and editing. We evaluate the frameworks

Figure 9. Visual results of drag editing: DreamOmni accurately
performs translation, rotation, and scaling edits.

of existing models under fair settings and consider the spe-
cific needs of various editing tasks. From this analysis,
we develop a framework that integrates T2I with various
editing tasks. Besides, a challenge in training editing mod-
els is the creation of high-quality, large-scale editing data,
which is inefficient. To overcome this, we designed a syn-
thetic collage data pipeline capable of efficiently generating
quite a few precise, high-quality editing data. Moreover, the
pipeline enhances the model’s generation accuracy in text,
position, quantity, color, and geometry. By jointly training
on T2I and multi-task synthetic data, we develop a native,
unified model for both image generation and editing. T2I
training strengthens the model’s grasp of specific concepts
and improves generation quality, while editing training en-
ables it to handle the requirements of editing tasks.
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