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Abstract

Classifier-Free Guidance (CFG), which combines the
conditional and unconditional score functions with two
coefficients summing to one, serves as a practical technique
for diffusion model sampling. Theoretically, however,
denoising with CFG cannot be expressed as a reciprocal
diffusion process, which may consequently leave some
hidden risks during use. In this work, we revisit the
theory behind CFG and rigorously confirm that the im-
proper configuration of the combination coefficients (i.e.,
the widely used summing-to-one version) brings about
expectation shift of the generative distribution. To rec-
tify this issue, we propose ReCFG1 with a relaxation on
the guidance coefficients such that denoising with ReCFG
strictly aligns with the diffusion theory. We further show
that our approach enjoys a closed-form solution given the
guidance strength. That way, the rectified coefficients can
be readily pre-computed via traversing the observed data,
leaving the sampling speed barely affected. Empirical
evidence on real-world data demonstrate the compatibility
of our post-hoc design with existing state-of-the-art diffu-
sion models, including both class-conditioned ones (e.g.,
EDM2 on ImageNet) and text-conditioned ones (e.g., SD3
on CC12M), without any retraining. Code is available at
https://github.com/thuxmf/recfg.

1. Introduction

Diffusion probabilistic models (DPMs) [13, 27, 29], known
simply as diffusion models, have achieved unprecedented
capability improvement of high-resolution image gener-
ation. It is well recognized that, DPMs are the most
prominent generative paradigm for a broad distribution
(i.e., text-to-image generation) [3, 9, 22]. Among DPM
literature, Classifier-Free Guidance (CFG) [12] serves as

*Work finished during internship at Ant Group.
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1ReCFG, pronounced as “reconfigure”, is the abbreviation for “rectified

Classifier-Free Guidance”.

an essential factor, enabling better conditional sampling in
various fields [23, 25]. Vanilla conditional sampling via
DPMs introduces the conditional score function st(x, c) =
∇xt log qt(xt|c), resulting in poor performance in which
synthesized samples appear to be visually incoherent and
not faithful to the condition, even for large-scale mod-
els [25]. By drawing lessons from Bayesian theory, CFG
employs an interpolation between conditional and uncondi-
tional score functions with a preset weight γ, i.e.,

st,γ(x, c) = γ∇x log qt(x|c) + (1− γ)∇x log qt(x), (1)

in which ∇xt
log qt(xt) is the unconditional score function

by annihilating the condition effect. By doing so, DPMs
turn out to formulate the underlying distribution with a
gamma-powered distribution [1], i.e.,

qt,γ(x|c) = qt(x|c)γqt(x)1−γ , (2)

which is proportional to qt(x)qt(c|x)γ . Enlarging γ > 1
focuses more on the classifier effect qt(c|x), concentrating
on better exemplars of given condition and thereby sharpen-
ing the gamma-powered distribution. In other words, CFG
is designed to promote the influence of the condition.

However, inspired by seminal works [1], we argue that
denoising with CFG cannot be expressed as a reciprocal of
vanilla diffusion process by adding Gaussian noises, since
the normally nonzero score function expectation of gamma-
powered qt,γ(x|c) violates the underlying theory of DPMs.
Theoretically, score functions with zero expectation at all
timesteps guarantee that the denoised x̃0 has expectation
E[x̃0] = α0

αT
E[xT ], thus E[x̃0] = E[x0] and no bias on

the conditional fidelity. Therefore, this theoretical flaw
leaves some hidden risks during use, manifesting as a severe
expectation shift phenomenon, i.e., the expectation of the
gamma-powered distribution will be shifted away from the
ground-truth of the conditional distribution qt(x|c). This is
more conspicuous when applying larger γ. Fig. 1 clearly
clarifies the expectation shift, in which the peak of induced
distribution via CFG in red fails to coincide with that of
ground-truth q0(x0|c). This theoretical flaw is known in
theory [1, 8, 15], while being largely ignored in practice.
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Figure 1. Visualization of expectation shift. The demonstrated toy data is simulated by q0(x0|c) ∼ N (c, 1), q(c) ∼ N (0, 1), q0(x0) ∼
N (0, 2). Gamma-powered distribution q0,γ(x0|c) from CFG [12] fails to recover the same conditional expectation as ground-truth due to
expectation shift (i.e., probability density function and histogram by DDIM [28] sampler in red). To make a further step, larger γ suggests
more severe expectation shift, i.e., the peak of q0,γ(x0|c) tends further away from q0(x0|c) (i.e., probability density function in blue)
as γ goes from 1.5 to 2.5. As a comparison, our ReCFG successfully recovers the ground-truth expectation and smaller variance (i.e.,
probability density function and histogram by DDIM [28] sampler in green), consistent with the motivation of guided sampling.

In this work, we first revisit the formulation of native
CFG, theoretically confirming its flaw that we concluded
above and summarizing as Theorem 1. Then, to quantita-
tively reveal the consequent expectation shift phenomenon
by CFG, we employ a toy distribution, enjoying closed-
form description of the behavior on the gamma-powered
distribution. Under the toy settings, we analytically calcu-
late the function of the precise value of expectation shift
in correspondence with γ, as summarized in Theorem 2.
Motivated by theoretical compatibility and canceling the
expectation shift, we apply relaxation on the guidance
coefficients in native CFG by circumventing the constraint
that two coefficients sum to one, enabling a more flexible
control on the induced distributions. To be more concrete,
we propose to formulate the underlying distribution with
two coefficients, i.e.,

qt,γ1,γ0
(x|c) = qt(x|c)γ1qt(x)

γ0 . (3)

Aiming at consistency with the diffusion theory and thus
better guidance efficacy, we specially design the constraints
on γ1 and γ0, and theoretically confirm the feasibility. We
further provide a closed-form solution to the constraints,
and propose an algorithm to analytically determine γ0
from a pre-computed lookup table in a post-hoc fashion.
Thanks to the neat formulation, we can employ pixel-
wise γ0 according to the lookup table involving guidance
strength γ1, condition c and timestep t, as demonstrated in
Fig. 2. We name the above process ReCFG. Compared
with a global CFG weight applied on all denoising steps
and pixels, ReCFG may achieve more flexible and accu-
rate guidance. Experiments with state-of-the-art DPMs,
including both class-conditioned ones (e.g., EDM2 [16])
and text-conditioned ones (e.g., SD3 [9]) under different
NFEs and guidance strengths show that our ReCFG can
achieve better guidance efficacy without retraining or extra
time cost during inference stage. Hence, our work offers a
new perspective on guided sampling of DPMs, encouraging
more studies in the field of guided generation.

2. Related Work

DPMs and conditional generation. Diffusion probabilis-
tic model (DPM) introduces a new scheme of generative
modeling, formulated by forward diffusing and reverse de-
noising processes in a differential equation fashion [13, 27,
29]. Practically, it is trained by optimizing the variational
lower bound. Benefiting from this breakthrough, DPM
achieves high generation fidelity, and even beat GANs on
image generation. By drawing lessons from conditional
distribution, conditional generation [5, 14] takes better ad-
vantage of intrinsic intricate knowledge of data distribution,
making DPM easier to scale up and the most promising
option for generative modeling. Among the literature, text-
to-image generation injects the embedding of text prompts
to DPM, faithfully demonstrating the text content [3, 9, 22].
Classifier-Free Guidance. Classifier-Free Guidance
(CFG) serves as the successor of Classifier Guidance
(CG) [7], circumventing the usage of a classifier for noisy
images. Both CFG and CG are based on Bayesian theory,
and attempt to formulate the underlying distribution by
concentrating more on condition influence, achieving better
conditional fidelity. Despite great success in large-scale
conditional generation, CFG faces a technical flaw that
the guided distribution is not theoretically guaranteed to
recover the ground-truth conditional distribution [1, 4, 8,
15]. To be more detailed, there exists a shifting issue
that the expectation of guided distribution is drifted away
from the correct one [1, 4]. This phenomenon may harm
the condition faithfulness, especially for extremely broad
distribution (e.g., open-vocabulary synthesis).

3. Method

3.1. Background on conditional DPMs and CFG

Let x0 ∈ RD be a D-dimensional random variable with an
unknown distribution q0(x0|c), where c ∼ q(c) is the given
condition. DPM [13, 27, 29] introduces a forward process
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{xt}t∈(0,T ] by gradually corrupting data signal of x0 with
Gaussian noise, i.e., the following transition distribution
holds for any t ∈ (0, T ]:

q0t(xt|x0, c) = q0t(xt|x0) = N (αtx0, σ
2
t I), (4)

in which αt, σt ∈ R+ are differentiable functions of t
with bounded derivatives, referred to as the noise schedule.
Let qt(xt|c) be the marginal distribution of xt conditioned
on c, DPM ensures that qT (xT |c) ≈ N (0, σ2I) for some
σ > 0, and the signal-to-noise-ratio (SNR) α2

t /σ
2
t is strictly

decreasing with respect to timestep t [17].
Seminal works [17, 29] studied the underlying stochas-

tic differential equation (SDE) and ordinary differential
equation (ODE) theory of DPM. The forward and reverse
processes are as below for any t ∈ [0, T ]:

dxt = ftxtdt+ gtdwt, x0 ∼ q0(x0|c), (5)

dxt = [ftxt − g2t∇xt
log qt(xt|c)]dt+ gtdw̄t, (6)

where wt, w̄t are standard Wiener processes in forward
and reverse time, respectively, and ft, gt have closed-
form expressions with respect to αt, σt. The unknown
∇xt

log qt(xt|c) is referred to as the conditional score
function. Probability flow ODE (PF-ODE) from Fokker-
Planck equation enjoys the identical marginal distribution
at each t as that of the SDE in Eq. (6), i.e.,

dxt

dt
= ftxt −

1

2
g2t∇xt log qt(xt|c). (7)

Technically, DPM implements sampling by solving the
reverse SDE or ODE from T to 0. To this end, it introduces
a neural network ϵθ(xt, c, t), namely the noise prediction
model, to approximate the conditional score function from
the given xt and c at timestep t, i.e., ϵθ(xt, c, t) =
−σt∇xt log qt(xt|c), where the parameter θ can be opti-
mized by the objective below:

Ex0,ϵ,c,t[ωt∥ϵθ(xt, c, t)− ϵ∥22], (8)

where ωt is the weighting function, ϵ ∼ N (0, I), c ∼ q(c),
xt = αtx0 + σtϵ, and t ∼ U [0, T ].

For better condition fidelity, during denoising stage,
CFG [12] turns to use a linear interpolation between con-
ditional and unconditional score functions, i.e.,

st,γ(x, c) = γ∇x log qt(x|c) + (1− γ)∇x log qt(x). (9)

Then PF-ODE can be rewritten as

dxt

dt
= ftxt −

1

2
g2t st,γ(xt, c). (10)

We further describe the CFG under the original DDIM
theory. Recall that DDIM turns out to formulate dis-
crete non-Markovian forward diffusing process such that

the reverse denoising process obeys the distribution with
parameters {δt}Tt=0 [28]:

qδ(xt−1|xt,x0, c) = qδ(xt−1|xt,x0) (11)

∼ N
(
αt−1x0 +

√
σ2
t−1 − δ2t ·

xt − αtx0

σt
, δ2t I

)
. (12)

Trainable generative process pθ(xt−1|xt, c) is designed
to leverage qδ(xt−1|xt,x0, c) with a further designed de-
noised observation f tθ with noise prediction model ϵθ, i.e.,

f tθ(xt, c) =
1

αt
(xt − σtϵθ(xt, c, t)), (13)

pθ(xt−1|xt, c) =

{
qδ(xt−1|xt, f

t
θ(xt, c), c), t > 1,

N (f tθ(x1), σ
2
1I), t = 1.

(14)

DDIM proves that for any {δt}t, score matching of non-
Markovian process above is equivalent to native DPM. With
CFG weight γ, we generalize the theory as below:

ϵ̂θ(xt, c, t) = γϵθ(xt, c, t) + (1− γ)ϵθ(xt, t), (15)

f̂ tθ(xt, c) =
1

αt
(xt − σtϵ̂θ(xt, c, t)), (16)

p̂θ(xt−1|xt, c) =

{
qδ(xt−1|xt, f̂

t
θ(xt, c), c), t > 1,

N (f̂ tθ(x1, c), σ
2
1I), t = 1.

(17)

Native DDIM theory still holds since qδ(xt−1|xt,x0, c) =
qδ(xt−1|xt,x0), i.e., with the definition

Jδ,γ(ϵθ) = Eqδ(x0:T |c)

[
log

qδ(x1:T |x0, c)

p̂θ(x0:T |c)

]
, (18)

we have the following theorem. Proof is in Appendix A.1.

Theorem 1. For any {δt}t and γ > 1, Jδ,γ is equivalent to
native DPM under CFG up to a constant. However, denois-
ing with CFG is not a reciprocal of the original diffusion
process with Gaussian noise due to nonzero expectation of
unconditional score function Eqt(xt|c)[∇xt

log qt(xt)].

Remark 1. ϵθ(xt, c, t) and ϵθ(xt, t) are proportional to
∇xt

log qt(xt|c) and ∇xt
log qt(xt) with coefficients being

each minus standard deviation respectively, and empirically
we use the same fixed variance for both q(xt−1|xt,x0, c)
and q(xt−1|xt,x0). Therefore, Theorem 1 is consistent with
the original CFG using score functions in Eq. (9).

3.2. Misconceptions on Expectation Shift
CFG is designed to concentrate on better exemplars for
each denoising step by sharpening the gamma-powered
distribution as below [1]:

qt,γ(x|c) = qt(x|c)γqt(x)1−γ . (19)
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We first generalize the counterexample in [1] to confirm
the expectation shift phenomenon. For VE-SDE with de-
terministic sampling recipe, we consider the 1-dimensional
distribution with q0(x0|c) ∼ N (c, 1), q(c) ∼ N (0, 1),
q0(x0) ∼ N (0, 2). Then we can formulate the forward
process and score functions as below:

qt(xt|c) ∼ N (c, 1 + t), ∇xt
log qt(xt|c) = −xt − c

1 + t
, (20)

qt(xt) ∼ N (0, 2 + t), ∇xt
log qt(xt) = − xt

2 + t
. (21)

We state the theorem below describing the expectation
shift. Proof is addressed in Appendix A.2.

Theorem 2. Denote by qdeter0,γ (x0|c) the conditional distri-
bution by solving PF-ODE in Eq. (10) with γ > 1. Then
qdeter0,γ (x0|c) follows the closed-form expression as below.

qdeter0,γ (x0|c) ∼ N
(
cϕ(γ, T ), 21−γψ(γ, T )

)
, (22)

in which

ϕ(γ, T ) =
2

1−γ
2

(T + 1)
γ
2 (T + 2)

1−γ
2

(23)

+
γ

2
γ+1
2

∫ T

0

(s+ 1)−
γ+2
2

(s+ 2)
1−γ
2

ds, (24)

ψ(γ, T ) =
T + 1

(T + 1)γ(T + 2)1−γ
. (25)

Specifically, when T → +∞, denote by ϕ(γ) with

ϕ(γ) = lim
T→+∞

ϕ(γ, T ), (26)

we have ϕ(γ) ⩾ γ 7
15

(
10
7

) 5−γ
2 for γ ∈ [1, 3], ϕ(1) = 1,

ϕ(3) = 2, ϕ(γ) ⩾ 2 for all γ > 3, and

qdeter0,γ (x0|c) ∼ N (cϕ(γ), 21−γ). (27)

However, note that the ground-truth conditional distri-
bution q0(x0|c) ∼ N (c, 1), indicating that the ground-truth
expectation is equal to c. That is to say, denoising with CFG
achieves at least twice as large expectation as the ground-
truth one. Fig. 1 clearly describes the phenomenon.

3.3. Rectified Classifier-Free Guidance
Recall that the constraint of the two coefficients with sum-
mation one disables the compatibility with diffusion theory
and indicates expectation shift. Theorem 2 quantitatively
describes the expectation shift, claiming that the two co-
efficients of conditional and unconditional score functions
in Eq. (9) dominate both the expectation and variance of

qdeter0,γ (x0|c). To this end, we propose to rectify CFG with
relaxation on the guidance coefficients, i.e.,

st,γ1,γ0
(x, c) = γ1 ⊗∇x log qt(x|c) (28)

+ γ0 ⊗∇x log qt(x), (29)

in which γ1, γ0 ∈ RD are functions with respect to condi-
tion c and timestep t, and ⊗ indicates element-wise product.
Denote by qdeter0,γ1,γ0

(x0|c) the attached conditional distribu-
tion following PF-ODE in Eq. (10) with st,γ1,γ0

(x, c).
To make guided sampling compatible with the diffusion

theory and annihilate expectation shift, it suffices to choose
more appropriate γ1 and γ0 according to input condition c
and timestep t. Intuitively, we need the constraint such that:
• Each component of γ is larger than one for strengthened

conditional fidelity, i.e., γ1,i > 1,
• Denoising with PF-ODE and Eq. (28) is theoretically the

reciprocal of forward process, thus qdeter0,γ1,γ0
(x0|c) enjoys

the same expectation as the ground-truth q0(x0|c),
• qdeter0,γ1,γ0

(x0|c) enjoys smaller or the same variance as the
ground-truth q0(x0|c) for sharper distribution and thus
concentrated better exemplars.
In the sequel, we omit ⊗ for simplicity. We first focus

on the compatibility with the diffusion theory. We have
claimed in Theorem 1 that CFG cannot satisfy the diffusion
theory due to nonzero Eqt(xt|c)[∇xt

log qt(xt)]. To this end,
it suffices to annihilate the expectation shift as below:

Eqt(xt|c)[st,γ1,γ0
(x, c)] = 0. (30)

To confirm the feasibility and precisely describe the expec-
tation of qdeter0,γ1,γ0

(x0|c), resembling Eqs. (16) and (17) we
write denoised observation and denoising process as below:

ϵ̂θ(xt, c, t) = γ1ϵθ(xt, c, t) + γ0ϵθ(xt, t), (31)

f̂ tθ(xt, c) =
1

αt
(xt − σtϵ̂θ(xt, c, t)), (32)

p̂θ(xt−1|xt, c) =

{
qδ(xt−1|xt, f̂

t
θ(xt, c), c), t > 1,

N (f̂ tθ(x1, c), σ
2
1I), t = 1.

(33)

We have the theorem below, proof is in Appendix A.3.

Theorem 3. Let xt ∼ qt(xt|c), x̃t ∼ p̂θ(x̃t|c) induced
from DDIM sampler in Eq. (33). Assume that all δt = 0,
denote by ∆t the difference between expectation of xt and
x̃t, by ϵc,tγ1,γ0

the interpolation between score functions, i.e.,

∆t = Eqt(xt|c)[xt]− Ep̂θ(x̃t|c)[x̃t], (34)

ϵc,tγ1,γ0
(x) = (γ1 − 1)ϵθ(x, c, t) + γ0ϵθ(x, t). (35)

Then we have the following recursive equality:

∆t−1 =
σt−1

σt
∆t − (σt−1 −

αt−1

αt
σt)Ex̃t

[ϵc,tγ1,γ0
(x̃t)]. (36)

Specifically, when ∆t = 0, we have:

∆t−1 = −(σt−1 −
αt−1

αt
σt)Ext

[ϵc,tγ1,γ0
(xt)]. (37)
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Figure 2. Visualization of the lookup table on LDM [25], EDM2 [16], and SD3 [9], each of which consists of the expectation ratio
Ext [ϵθ(xt, c, t)]/Ext [ϵθ(xt, t)]. Each pixel represents the scale of the pixel-wise ratio, i.e., color red implies that ratio is greater than one,
while color blue stands for ratio smaller than one. The darker the color is, the farther the ratio appears away from one. We report in each
row the expectation ratios on five timesteps uniformly sampled from the whole trajectory, under different DPMs and NFEs. It is noteworthy
that expectation ratios at the same timestep vary largely by different pixels, and there is no general pattern along with timesteps or pixels.

Theorem 3 studies the difference between expectation of
denoising with Eq. (28) and the ground-truth. Note that

Ext
[ϵθ(xt, c, t)] = Ext

[E[ϵ|xt]] = Ext
[ϵ] = 0, (38)

therefore we have

Ext
[ϵc,tγ1,γ0

(xt)] (39)

= Ext
[(γ1 − 1)ϵθ(xt, c, t) + γ0ϵθ(xt, t)] (40)

= Ext
[γ1ϵθ(xt, c, t) + γ0ϵθ(xt, t)], (41)

which coincides with Eq. (30), indicating the feasibility and
a closed-form solution given c and t as below:

γ0 = (1− γ1)Ext
[ϵθ(xt, c, t)]/Ext

[ϵθ(xt, t)]. (42)

As for variance, however, normally we cannot analyti-
cally calculate the variance of p̂θ(xt|c). Instead, we study
the variance of toy data in Sec. 3.2 as an empirical evidence
in the following theorem, where proof is in Appendix A.4.

Theorem 4. Under settings in Theorem 2, denote by
qdeter0,γ1,γ0

(x0|c) the conditional distribution by PF-ODE with
γ1 and γ0 as in Eq. (28). Then we have

varqdeter
0,γ1,γ0

(x0|c)[x0] = 2γ0(T + 1)1−γ1(T + 2)−γ0 . (43)

According to Theorem 4, it is noteworthy that variance
of qdeter0,γ1,γ0

(x0|c) under toy setting is guaranteed to be

smaller than the ground-truth varq0(x0|c)[x0] = 1 when
each component satisfies that γ0,i ⩽ 0 and γ1,i + γ0,i ⩾ 1,
especially when T → +∞.

Now we formally propose the constraints. First, we
need each component γ1,i > 1 for strengthened conditional
fidelity. Then for expectation, it is noteworthy that ∆T =
0 satisfies the assumption in Theorem 3. Therefore by
induction, it is feasible to annihilate ∆0 by annihilation
of Eq. (30) at all intermediate timesteps t. Finally as for
variance, we empirically set γ0,i ⩽ 0 and γ1,i + γ0,i ⩾ 0.

Practically, we can determine γ0 according to the
guidance strength γ1, condition c, and timestep t, ac-
cording to the closed-form solution in Eq. (42). Con-
cretely, given condition c, it is feasible to pre-compute
a collection of {(ϵθ(xt, c, t), ϵθ(xt, t))}t by traversing
q0(x0|c), and maintain a lookup table consisting of
Ext

[ϵθ(xt, c, t)]/Ext
[ϵθ(xt, t)]. Then given any γ1, we

can directly achieve γ0 by multiplying −(γ1 − 1) with the
expectation ratio. Pseudo-code is addressed in Appendix B.

We make further discussion about ReCFG. By Cauchy-
Schwarz inequality and Eq. (37) we have:

∥∆t−1∥22 ⩽ (σt−1 −
αt−1

αt
σt)

2Ext
[∥ϵc,tγ1,γ0

(xt)∥22]. (44)

Then we can define the objective resembling DPMs as
below, optimizing reversely from t = T to 0.

L = Ext,t[∥(γ1 − 1)ϵθ(xt, c, t) + γ0ϵθ(xt, t)∥22]. (45)
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(a) EDM2 (b) SD3

Figure 3. Qualitative comparison on EDM2 and SD3. Left and right in each cell suggest samples via CFG and ReCFG, respectively.

Resembling Theorem 1, with Eq. (45), we can also show the
compatibility of ReCFG with DDIM, which is summarized
as the theorem below. Proof is addressed in Appendix A.5

Theorem 5. For any {δt}t, ReCFG with L is compatible
with native DPM up to a constant.

4. Experiments

4.1. Experimental Setups

Datasets and baselines. We apply ReCFG to seminal
class-conditioned and text-conditioned DPMs, including
LDM [25] and DiT [21] on ImageNet 256 [6], EDM2 [16]
on ImageNet 512, and SD3 [9] on CC12M [2], respectively.
Evaluation metrics. As for class-conditioned LDM, DiT,
and EDM2, we draw 50,000 samples for Fréchet Inception
Distance (FID) [11] and FDDINOv2 [30] to evaluate the
fidelity and global coherency of the synthesized images,
respectively. We further use Improved Precision (Prec.)
and Recall (Rec.) [18] to separately measure sample fidelity
(Precision) and diversity (Recall). As for text-conditioned
SD3, following the official implementation, we use CLIP
Score (CLIP-S) [10, 24], FID, and FDDINOv2 on CLIP
features [26] on 1,000 samples to evaluate conditional faith-
fulness and fidelity of the synthesized images, respectively.
We also use MPS [31] to evaluate aesthetic scores. All four
metrics are evaluated on the same MS-COCO validation
split [20] as in official implementation [9].
Implementation details. We implement ReCFG with
NVIDIA A100 GPUs, and employ pre-trained LDM2,
DiT3, EDM24, and SD35 checkpoints provided in official
implementation. We reproduce all the experiments with
official and more other configurations including NFEs and
guidance strengths.

2https://github.com/CompVis/latent-diffusion
3https://github.com/facebookresearch/DiT
4https://github.com/NVlabs/edm2
5https://huggingface.co/stabilityai/stable-diffusion-3-medium-

diffusers

4.2. Results on Toy Example in Section 3.2
We first confirm the effectiveness of our method on toy
data, as presented in Sec. 3.2. Given the closed-form
expressions of score functions, we are able to precisely
describe the distributions of both gamma-powered distri-
bution q0,γ(x0|c) by native CFG and qdeter0,γ1,γ0

(x0|c) by
our ReCFG. The theoretical and numerical DDIM-based
simulation value of probability density functions of both
q0,γ(x0|c) and qdeter0,γ1,γ0

(x0|c) are shown in Fig. 1. It
is noteworthy that native CFG drifts the expectation of
q0,γ(x0|c) further away from the peak of the ground-truth
q0(x0|c) as γ becomes larger, consistent with Theorem 2.
As a comparison, the peaks of qdeter0,γ1,γ0

(x0|c) and q0(x0|c)
coincide, while qdeter0,γ1,γ0

(x0|c) is sharpened with smaller
variance. Therefore, by adopting relaxation on coefficients
γ1 and γ0 with specially proposed constraints, our ReCFG
manages to annihilate expectation shift, enabling better
guidance and thus better conditional fidelity.

4.3. Results on Real Datasets
We showcase some results in Fig. 3. One can see that
ReCFG could fix artifacts on EDM2. It is also noteworthy
that ReCFG significantly improves synthesis quality on
SD3, especially detailed textures. Beyond the exhibited vi-
sualization, we conduct extensive quantitative experiments
on state-of-the-art DPMs to further convey the efficacy of
ReCFG. From Tabs. 1 and 2, we can tell that ReCFG is ca-
pable of better performance on both class-conditioned and
text-conditioned DPMs under various guidance strengths
and NFEs especially CLIP-S, indicating better conditional
fidelity on open-vocabulary synthesis. Furthermore, cor-
rection for theoretical flaws of CFG enables strong com-
patibility of ReCFG with other empirical strategies such as
RescaleCFG [19], achieving better performance.

4.4. Analyses
Variance of lookup table. Note that we need to pre-
compute the lookup table consisting of expectation ratios
for all conditions c, which is time-consuming and impracti-
cal for open-vocabulary distributions (e.g., text-conditioned
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Table 1. Sample quality on ImageNet [6].

ImageNet 256x256
Model Method NFE (↓) FDDINOv2 (↓) FID (↓) Prec. (↑) Rec. (↑)
DiT-XL/2 CFG 250 120.07 2.27 0.83 0.57
γ1 = 1.50 ReCFG 250 118.71 2.13 0.83 0.58
DiT-XL/2 CFG 250 162.68 3.22 0.76 0.62
γ1 = 1.25 ReCFG 250 145.79 3.01 0.77 0.63
LDM CFG 20 180.60 18.87 0.95 0.15
γ1 = 5.0 ReCFG 20 169.41 16.95 0.91 0.18
LDM CFG 20 149.79 11.46 0.94 0.27
γ1 = 3.0 ReCFG 20 142.54 9.78 0.91 0.32
LDM CFG 20 152.51 5.32 0.88 0.42
γ1 = 2.0 ReCFG 20 149.91 4.40 0.88 0.45
LDM CFG 20 203.17 5.36 0.80 0.51
γ1 = 1.5 ReCFG 20 198.44 4.78 0.80 0.53
LDM CFG 10 156.41 16.78 0.94 0.16
γ1 = 5.0 ReCFG 10 150.47 14.46 0.89 0.22
LDM CFG 10 153.97 10.13 0.91 0.28
γ1 = 3.0 ReCFG 10 142.04 8.26 0.91 0.33
LDM CFG 10 183.39 7.83 0.81 0.38
γ1 = 2.0 ReCFG 10 182.04 5.98 0.83 0.42
LDM CFG 10 251.07 13.19 0.69 0.46
γ1 = 1.5 ReCFG 10 248.23 11.27 0.72 0.49
ImageNet 512x512
Model Method NFE (↓) FDDINOv2 (↓) FID (↓) Prec. (↑) Rec. (↑)

EDM2-S
CFG 63 52.32 2.29 0.83 0.59
ReCFG 63 50.56 2.23 0.83 0.59

EDM2-M
CFG 63 41.98 2.12 0.81 0.60
ReCFG 63 41.55 2.06 0.81 0.61

EDM2-L
CFG 63 38.20 1.96 0.81 0.62
ReCFG 63 36.75 1.89 0.81 0.62

Table 2. Sample quality on CC12M [2]

CC12M 512x512, SD3 [9]

Method γ1 NFE (↓) CLIP-S (↑) FDDINOv2 (↓) MPS (↑)

CFG 7.5 10 0.262 1105.51 9.828

ReCFG 7.5 10 0.263 1010.14 10.250

RescaleCFG [19] 7.5 10 0.267 1011.62 11.258

RescaleCFG + ReCFG 7.5 10 0.268 979.87 11.336

CFG 5.0 10 0.268 1053.44 10.883

ReCFG 5.0 10 0.269 999.48 11.031

RescaleCFG [19] 5.0 10 0.267 1009.67 11.242

RescaleCFG + ReCFG 5.0 10 0.269 984.25 11.297

CFG 2.5 10 0.265 1016.79 10.367

ReCFG 2.5 10 0.265 977.39 10.438

RescaleCFG [19] 2.5 10 0.265 1003.64 10.445

RescaleCFG + ReCFG 2.5 10 0.266 963.21 10.477

CFG 7.5 5 0.209 1466.91 3.189

ReCFG 7.5 5 0.229 1323.49 3.979

RescaleCFG [19] 7.5 5 0.258 1114.92 8.102

RescaleCFG + ReCFG 7.5 5 0.258 1070.65 8.219

CFG 5.0 5 0.248 1218.18 6.484

ReCFG 5.0 5 0.258 1074.60 7.398

RescaleCFG [19] 5.0 5 0.265 1087.98 8.719

RescaleCFG + ReCFG 5.0 5 0.266 1040.01 8.813

CFG 2.5 5 0.261 1119.06 7.902

ReCFG 2.5 5 0.263 1058.86 8.172

RescaleCFG [19] 2.5 5 0.262 1093.85 8.133

RescaleCFG + ReCFG 2.5 5 0.263 1041.53 8.266

Table 3. Variance of lookup table over condition c and timestep t. Note that we employ pixel-wise lookup table involving both c and t.
We report the the mean and variance of lookup table over c and t, respectively, which are computed by averaging on all pixels.

Config. LDM, NFE = 10 EDM2, NFE = 63 SD3, NFE = 5 SD3, NFE = 10

Variance over c 1.0050 ± 0.0012 1.0060 ± 0.0119 1.0250 ± 0.0369 1.0125 ± 0.0281
Variance over t 1.0050 ± 0.0013 1.0060 ± 0.1545 1.0250 ± 0.0359 1.0125 ± 0.0306

DPMs). In Tab. 3 we report the mean and variance of
expectation ratios over condition c, which is averaged on
all timesteps and pixels. One can observe that larger NFE
suggests smaller ratio with also smaller variance. It is also
noteworthy that the variance of text-conditioned DPMs is
larger than that of class-conditioned ones due to far more
complex open-vocabulary conditions, while both of which
is insignificant compared to the mean. Therefore, it is
feasible to prepare the lookup table for only part of all
potential conditions and use the mean for all conditions,
serving as a practically adequate strategy to improve time
efficiency. Variance over timestep t averaged on all pixels
and part of conditions is also reported in Tab. 3, where
similar conclusion could be achieved.
Ablation studies. Recall that we pre-compute the lookup
table by traversing q0(x0|c) for each condition c. Compre-
hensive ablation studies reported in Tabs. 4 and 5 convey
a direct and clear picture of the efficacy of ReCFG under
different numbers of traversals. We can conclude that larger

number of traversals suggests better guidance performance,
yet improvements from 100 to 500 traversals are relatively
inconspicuous, especially on text-conditoned DPMs. In
other words, employing 500 samples per condition is ad-
equate in practice to serve as an empirical setting.
Time cost. Given the analyses on variance of expectation
ratios over condition c and ablation on traversals, preparing
the lookup table is quite efficient. In practice, we sample
500 images for a subset of 100 conditions, which takes ∼ 3
hours using 1 NVIDIA A100 GPU. The time cost is very
close to performing FID evaluation using 50,000 images.
Pixel-wise lookup table. ReCFG enables pixel-specific
guidance coefficients γ1 and γ0 with the same shape as
score functions, thanks to the closed-form solution in
Eq. (42), i.e., we can assign γ0 for each pixel by maintaining
the lookup table of pixel-wise expectation ratios. Fig. 2
demonstrates the ratios on LDM, EDM2, and SD3 at uni-
formly sampled timesteps under different NFEs. Both LDM
and EDM2 show the generation of class 0 in ImageNet
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Table 4. Ablation study of the number of traversals (the number
after ReCFG) for lookup table on ImageNet [6]. For clearer
demonstration, baselines of native CFG are highlighted in gray.

ImageNet 256x256, LDM [25]
γ1 γ0 NFE (↓) FID (↓) Prec. (↑) Rec. (↑)
3.0 -2.0 10 10.13 0.91 0.28
3.0 ReCFG-10 10 8.88 0.92 0.30
3.0 ReCFG-100 10 8.70 0.92 0.31
3.0 ReCFG-500 10 8.26 0.91 0.33
ImageNet 512x512, EDM2-S [16]
γ1 γ0 NFE (↓) FID (↓) Prec. (↑) Rec. (↑)
2.5 -1.5 63 5.87 0.85 0.46
2.5 ReCFG-10 63 5.06 0.84 0.47
2.5 ReCFG-100 63 4.99 0.84 0.45
2.5 ReCFG-500 63 4.84 0.84 0.48
2.0 -1.0 63 4.18 0.85 0.52
2.0 ReCFG-10 63 3.70 0.84 0.52
2.0 ReCFG-100 63 3.66 0.84 0.52
2.0 ReCFG-500 63 3.61 0.84 0.52

Table 5. Ablation study of the number of traversals (the number
after ReCFG) for lookup table on CC12M [2]. For clearer
demonstration, baselines of native CFG are highlighted in gray.

CC12M 512x512, SD3 [9]

γ1 γ0 NFE (↓) CLIP-S (↑) FID (↓)

5.0 -4.0 25 0.267 72.37

5.0 ReCFG-10 25 0.267 72.15

5.0 ReCFG-100 25 0.268 72.03

5.0 ReCFG-500 25 0.268 71.95

5.0 -4.0 10 0.268 72.55

5.0 ReCFG-10 10 0.268 71.61

5.0 ReCFG-100 10 0.268 70.64

5.0 ReCFG-500 10 0.269 70.31

5.0 -4.0 5 0.248 115.51

5.0 ReCFG-10 5 0.252 107.09

5.0 ReCFG-100 5 0.256 103.25

5.0 ReCFG-500 5 0.258 101.82

(i.e., “tench”), while SD3 adopts the prompt “A bicycle
replica with a clock as the front wheel”. One can observe
that expectation ratios at the same timestep vary largely by
different pixels, and there appears no general rules on the
relation between γ1 and γ0. Therefore, it is indicated that
trivially setting γ1 and γ0 to be scalars is less reasonable.
As a comparison, our method makes it possible to employ
more precise control on guided sampling in a simple and
post-hoc fashion without further fine-tuning, enabling better
performance. It is also noteworthy that expectation ratio
of SD3 exhibits noticeable shapes, probably due to more
informative text prompts than one-hot class labels and more
powerful model thanks to the training scale.

4.5. Discussions
Classifier-Free Guidance is designed from Bayesian theory
to facilitate conditional sampling, yet appears incompatible
with original diffusion theory. Therefore, we believe
ReCFG is attached to great importance on guided sampling
by fixing the theoretical flaw of CFG. Despite the success
on better conditional fidelity, our algorithm has several
potential limitations. Theoretically, we need to pre-compute
the lookup table by traversing the dataset to achieve rectified
coefficients for each condition. Although we conduct
extensive ablation studies on the number of traversals and
variance over condition c, providing an adequate strategy
especially for open-vocabulary datasets on text-conditioned
synthesis, the optimal strategy is unexplored. Besides, we
at present cannot provide precise control on variance of
ReCFG due to incomputable variance in denoising process,
and turn to employ empirical values. Therefore, how to
further conquer these problems (e.g., employing a predictor
network ω(c, t) for better γ0 on open-vocabulary datasets

according to Eq. (45)) will be an interesting avenue for
future research. Although leaving the variance behavior
unexplored, we hope that ReCFG will encourage the com-
munity to close the gap in the future.

5. Conclusion

In this paper, we analyze the theoretical flaws of native
Classifier-Free Guidance technique and the induced expec-
tation shift phenomenon. We theoretically claim the exact
value of expectation shift on a toy distribution. Introducing
a relaxation on coefficients of CFG and novel constraints,
we manage to complete the theory of guided sampling
by fixing the incompatibility between CFG and diffusion
theory. Accordingly, thanks to the closed-form solution to
the constraints, we propose ReCFG, a post-hoc algorithm
aiming at more faithful guided sampling by determining
the coefficients from a pre-computed lookup table. We
further study the behavior of the lookup table, proposing
an adequate strategy for better time efficiency in practice.
Comprehensive experiments demonstrate the efficacy of our
method on various state-of-the-art DPMs under different
NFEs and guidance strengths.
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