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Abstract

Exploiting temporal correlations is crucial for video
super-resolution (VSR). Recent approaches enhance this
by incorporating event cameras. In this paper, we intro-
duce MamEVSR, a Mamba-based network for event-based
VSR that leverages the selective state space model, Mamba.
MamEVSR stands out by offering global receptive field
coverage with linear computational complexity, thus ad-
dressing the limitations of convolutional neural networks
and Transformers. The key components of MamEVSR in-
clude: (1) The interleaved Mamba (iMamba) block, which
interleaves tokens from adjacent frames and applies multi-
directional selective state space modeling, enabling effi-
cient feature fusion and propagation across bi-directional
frames while maintaining linear complexity. (2) The cross-
modality Mamba (cMamba) block facilitates further in-
teraction and aggregation between event information and
the output from the iMamba block. The cMamba block
can leverage complementary spatio-temporal information
from both modalities and allows MamEVSR to capture finer
motion details. Experimental results show that the pro-
posed MamEVSR achieves superior performance on vari-
ous datasets quantitatively and qualitatively.

1. Introduction

Video super-resolution (VSR) [18, 25–28] is a fundamen-
tal task in computer vision aimed at reconstructing high-
resolution (HR) videos from low-resolution (LR) inputs.
Given its broad applications in areas such as video surveil-
lance [1, 39, 91], high-definition television [2–4, 12–15, 20,
45–47, 57, 79, 83], and satellite imagery [16, 54, 76, 77],
VSR has attracted significant interest. The main challenge
lies in effectively exploiting temporal information. Ad-
vanced VSR techniques often leverage temporal informa-
tion through sliding window methods [29, 34, 42, 48, 53, 70,
73–75, 88], recurrent architectures [8–10, 36, 40, 61, 86],
and Transformer-based designs [49, 50, 59, 63, 65, 66],
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Figure 1. Inference time and performance comparison.
MamEVSR outperforms advanced methods with high efficiency.
Comparisons are performed on the CED dataset. The green cir-
cles represent RGB-based VSR methods, while the yellow circles
represent event-based VSR methods.

all demonstrating significant achievements. Recently, re-
searchers have integrated event cameras into VSR to boost
performance by harnessing their high temporal resolution
and dynamic range capabilities.

Event cameras are bio-inspired sensors that asyn-
chronously detect intensity changes at the microsecond
level on a per-pixel basis, generating millions of events
per second while maintaining robustness in high-dynamic-
range lighting. Leveraging these advantages, recent event-
based VSR methods [30, 33, 52, 81, 82] have outper-
formed frame-only approaches by enhancing flow estima-
tion, temporal alignment, and cross-modal fusion using
event streams. However, current methods, primarily based
on CNNs and attention models, face limitations, including
poor adaptability to dynamic inputs, insufficient receptive
fields for capturing inter-frame correlations at high resolu-
tions, and high computational costs.

On the other hand, natural language processing (NLP)
has recently witnessed the emergence of structured state
space models (SSMs) [22]. Theoretically, SSMs com-
bine the benefits of recurrent neural networks (RNNs) and
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CNNs, leveraging the global receptive field characteristic
of RNNs and the computational efficiency of CNNs. One
particularly notable SSM is the selective state space model,
also known as Mamba [21], which has garnered signifi-
cant attention within the vision community. Mamba’s key
feature is its ability to make SSM parameters time-variant
(i.e., data-dependent), enabling it to effectively select rele-
vant context within sequences–a crucial factor for enhanc-
ing model performance. Inspired by Mamba’s capabilities,
we explore its potential in addressing the task of Event-
based VSR, and we propose the first Mamba-based method
for this task, named MamEVSR.

MamEVSR leverages a bidirectional recurrent pipeline
to recurrently align and propagate temporally correlated
features and integrate cross-modal information from the
event stream. Its key components include: (1) The in-
terleaved Mamba (iMamba) block: To facilitate efficient
feature fusion and propagation across bi-directional frames
while maintaining linear complexity, we introduce the
iMamba block. Since the original SSMs model processes
a single sequence, we merge tokens from two adjacent
frames into one sequence for effective inter-frame model-
ing. By interleaving tokens from both frames and conduct-
ing multi-directional SSMs, we enable interactions between
adjacent tokens from different propagated frames during
sequence modeling. This design ensures that intermedi-
ate tokens in the sequence are from their spatio-temporal
neighborhood. Stacking multiple iMamba blocks enhances
MamEVSR’s ability to handle complex inter-frame infor-
mation exchange and frame alignment. (2) The cross-
modality Mamba (cMamba) block: The cMamba block em-
ploys a cross-multiplication mechanism to enhance the in-
teraction and aggregation between event information and
the output from the iMamba block. This mechanism al-
lows for the effective integration of event data with the
temporal-fused features, thereby enriching the model’s abil-
ity to leverage complementary cross-modal information and
improve the overall reconstruction quality. By combin-
ing these two blocks, MamEVSR effectively exploits the
strengths of both Mamba and event data to achieve superior
performance in event-based VSR tasks. Experimental re-
sults on benchmark datasets demonstrate the effectiveness
of our proposed MamEVSR (see an example in Figure 1).

Our contributions can be summarized as follows: (1)
To the best of our knowledge, this marks the first success-
ful application of state space models, specifically Mamba,
in event-based VSR. (2) We propose the iMamba block
and the cMamba block as core components in MamEVSR
for event-based VSR. The former enables efficient feature
fusion and propagation across bi-directional frames while
maintaining linear complexity, the latter leverages com-
plementary spatio-temporal information to capture finer
motion details. (3) Extensive evaluations on benchmark

datasets demonstrate MamEVSR’s superior performance,
establishing a new benchmark for future explorations of
Mamba’s potential within event-based VSR.

2. Related Work
Video super-resolution. Existing VSR methods are de-
signed to enhance the quality of LR frames by leveraging
temporal information through sliding windows and recur-
rent structures. Sliding-window-based methods align adja-
cent LR frames with a reference frame to estimate an HR
output. Early work focused on explicit optical flow estima-
tion for frame alignment [6, 53, 69, 80, 84]. More recent
methods have shifted to implicit alignment using dynamic
filters [31], deformable convolutions [70, 75], and attention
modules [28, 43]. Recent attention-based methods achieve
new state-of-the-art performance [7, 37, 38, 43, 49, 53, 75,
78, 80]. However, these methods face challenges in captur-
ing long-distance temporal features. Recurrent-based meth-
ods use RNNs to exploit temporal information across mul-
tiple frames. Sajjadi et al. [61] introduce a recurrent frame-
work with optical flow for alignment. BasicVSR [9] and
BasicVSR++[10] utilize bi-directional hidden states and
advanced grid propagation techniques. PSRT [63] builds
on BasicVSR++ with multi-frame self-attention for feature
processing. In this paper, we focus on event-based VSR and
introduce MamEVSR.
Event-based VSR. Event cameras have the unique capabil-
ity to measure intensity changes at each pixel independently
with microsecond accuracy, making them valuable for VSR.
Jing et al. [30] propose a two-stage method that uses events
to interpolate low-resolution (LR) video, generating a high-
frequency video for subsequent high-resolution (HR) frame
reconstruction. Lu et al. [52] present a joint framework
learning implicit neural representations from both RGB
frames and events, enabling arbitrary-scale VSR. Kai et
al. [32] introduce EvTexture, an event-driven texture en-
hancement network dedicated to restoring textures in VSR
through the incorporation of high-frequency event signals.
Xiao et al. [82] take inspiration from the parameter-efficient
tuning, introducing an event adapter for event-based VSR.
In this paper, we introduce MamEVSR, the first Mamba-
based method for event-based VSR.
State space models. SSMs [17, 23, 44, 55, 64, 87, 90] are
emerging as strong alternatives to Transformers [71] in nat-
ural language processing. S4 [23] is introduced for efficient,
linear-complexity sequence modeling, followed by S5 [64],
which improves parallelization, and GSS [55], which in-
corporates gated mechanisms. Mamba (S6) [21] stands out
with its data-dependent parameters and hardware efficiency,
outperforming Transformers in long-sequence tasks. In the
computer vision domain, Vim [92] permutes 2D images into
sequences for global modeling using bidirectional SSMs.
Vmamba [51] extends this to four directions with a hier-

12565



Frame Feature Encoder Event Feature Encoder

Feature Encoder

𝑬𝒕−𝟏
𝑳𝑹 𝑬𝒕

𝑳𝑹

𝐼𝑡−1
𝐿𝑅 𝐼𝑡

𝐿𝑅 𝐼𝑡+1
𝐿𝑅

𝑬𝒕+𝟏
𝑳𝑹

𝐼𝑡+2
𝐿𝑅

…………

time𝐼𝑡−2
𝐿𝑅

𝑬𝒕−𝟐
𝑳𝑹 𝑬𝒕+𝟐

𝑳𝑹

Feature Encoder

…………

…

…

…

…

𝐼𝑡+1
𝑆𝑅

Reconstructor

𝐼𝑡
𝑆𝑅

Reconstructor

𝐼𝑡−1
𝑆𝑅

……

…

……

… Reconstructor

𝐵𝑎𝑐𝑘𝐵𝑎𝑐𝑘𝐵𝑎𝑐𝑘

𝐹𝑜𝑟𝐹𝑜𝑟𝐹𝑜𝑟

Figure 2. Overview of the proposed MamEVSR. MamEVSR fol-
lows a typical bi-directional propagation scheme [9], consisting of
bi-directional recurrent cells For(·) and Back(·). For clarity, we
have omitted the residual connection from the bicubic upsampling
of the input, which is added to the final output, in the figure.

archical design. VideoMamba [41] applies S6 to spatio-
temporal video sequences, while MambaIR [24] is the first
to use S6 for image restoration, surpassing Transformer-
based methods. In this work, we explore the potential of
Mamba in event-based VSR.

3. Method

3.1. Revisiting State Space Models

State space models (SSM) [17, 23, 55, 64] represent a class
of sequence-to-sequence modeling systems characterized
by constant dynamics over time, a property also known as
linear time-invariant. With linear complexity, SSM can ef-
fectively capture the inherent dynamics through an implicit
mapping to latent states, which can be defined as

y(t) = Ch(t) +Dx(t), ḣ(t) = Ah(t) +Bx(t). (1)

Here, x(t) ∈ R, h(t) ∈ RN , and y(t) ∈ R denotes the in-
put, hidden state, and the output, respectively. N is the state
size and ḣ(t) refers to the time derivative of h(t). Addition-
ally, A ∈ RN×N , B ∈ RN×1, C ∈ R1×N , and D ∈ R
are the system matrices. To process discrete sequences like
image and text, SSMs adopt Zero-Order Hold discretiza-
tion [22] to map the input sequence {x1, x2, ..., xK} to
the output sequence {y1, y2, ..., yK}. Specifically, suppose
∆ ∈ RD is the pre-defined timescale parameter to map
continuous parameters A, B into a discrete space, the dis-
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Figure 3. Overview of the forward recurrent cell For(·), the back-
ward recurrent cell Back(·), and the reconstructor R(·).

cretization process can be formulated as

A = exp(∆A), B = (∆A)−1(exp(A)− I)∆B,C = C,

yk = Chk +Dxk, hk = Ahk−1 +Bxk.
(2)

Here, all the matrices keep the same dimension as the oper-
ation iterates. Notably, D, serving as a residual connection,
is often discarded in the equation

yk = Chk. (3)

Besides, following Mamba [21], the matrix B can be ap-
proximated by the first-order Taylor series

B = (exp(A)− I)A−1B ≈ (∆A)(∆A)−1∆B = ∆B. (4)

The proposed iMamba and cMamba blocks are built upon
Mamba and are specifically designed to address the chal-
lenges of event-based VSR tasks.

3.2. Overview
Let ILR = {. . . , ILR

t−1, I
LR
t , ILR

t+1, . . . } (ILR
t ∈ RH×W×3)

be a sequence of LR input frames, Ef,b be forward
and backward event streams, the goal of MamEVSR is
to generate ISR = {. . . , ISR

t−1, I
SR
t , ISR

t+1, . . . } (ISR
t ∈

RsH×sW×3), which should be close to the ground-truth
sequence IGT = {. . . , IGT

t−1, I
GT
t , IGT

t+1, . . . } (IGT
t ∈

RsH×sW×3). T , H , and W are the frame number, height,
and width, respectively. s is the upscaling factor.

Because the event streams are not convenient for obser-
vation and processing by convolutional neural networks, we
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convert forward and backward event streams as voxel grids
V f,b ∈ R(T−1)×H×W×Bin via the temporal bilinear inter-
polation scheme

V (i) =
∑
k

pkmax

(
0, 1−

∣∣∣∣(i−1)− tk−t0
tNe−t0

(Bin−1)

∣∣∣∣) , (5)

where i ∈ {1, · · · , Bin} represents the i-th time bin. In our
experiments, consistent with previous studies [32, 33], we
also set Bin = 5. Furthermore, to mitigate the impact of
hot pixels, we follow the study [32, 33] and normalize the
voxel grid V as

V̂ (i) = min((V (i), η))/η, (6)

where η is the 98-th percentile value in the non-zero val-
ues of V . In this way, we obtain the normalized voxel grid
V̂ ∈ RH×W×Bin, which contains rich high-frequency tex-
tural information. We represent V f,b using this voxel grid
representation for further processing.

Figure 2 shows an overview of the proposed MamEVSR.
MamEVSR employs bidirectional recurrent cells For(·)
and Back(·) akin to the scheme proposed in [9]. How-
ever, it introduces novel elements, such as extra inputs and
specialized modules to harness event streams, which sets it
apart from prior approaches. The event voxels and the LR
frames are first converted into the feature domain using the
feature encoders (fV

En and f I
En, consisting of N1 residual

blocks), following which they are fed to the bidirectional
recurrent cells. These cells consist of the iMamba block
and the cMamba block. This step aims to utilize temporal
correspondence from adjacent frames and aggregate cross-
modal information from the event stream. As shown in Fig-
ure 3, using timestamp t as an example, the process can be
expressed as

F cM
t,f , FE,cM

t,f = For(ILR
t−1, I

LR
t , F f

t ), (7)

F cM
t,b , FE,cM

t,b = Back(ILR
t+1, I

LR
t , F b

t ). (8)

Specifically, using the forward recurrent cell as an ex-
ample, at time t, FLR

t−1 and FLR
t are fed to the iMamba

block for efficient feature fusion and propagation across
adjacent frames, resulting in FLR

′

t,f . Next, FLR
′

t,f and ILR
t

are concatenated along the channel dimension, followed by
the residual of FLR

t to enhance the representation capacity.
The resulting features F iM

t,f , along with F f
t , are fed to the

cMamba block, which facilitates further interaction and ag-
gregation in a cross-modality manner. The outputs of the
cMamba block, F cM

t,f and FE,cM
t,f , are used for further re-

construction. The backward cell operates similarly.
To generate the super-resolved output ISR

t at timestamp
t, features F cM

t,f , F cM
t,b , FE,cM

t,f , FE,cM
t,b , along with ILR

t

and FLR
t , are fed to the reconstructor, which consists of

an iMamba block, N2 residual blocks, and a pixel-shuffling
operation. The process can be expressed as

ISR
t = R(F cM

t,f , F cM
t,b , FE,cM

t,f , FE,cM
t,b , ILR

t , FLR
t ). (9)

3.3. Interleaved Mamba Block

Effective inter-frame modeling is essential for VSR [9, 75,
86]. Conventional methods [75] rely on convolutional lay-
ers and attention mechanisms to capture temporal depen-
dencies, offering fast inference but struggling with lim-
ited receptive fields. More advanced approaches, such
as SemanticLens [68], introduce semantic-aware alignment
strategies to enhance feature correspondence, but at the cost
of increased computational complexity. To achieve a bet-
ter balance between efficiency and effectiveness, we ex-
plore Mamba [21], an SSM, for inter-frame modeling. By
leveraging its long-range dependency modeling and selec-
tive state updates, Mamba enables robust temporal feature
fusion while maintaining computational efficiency, making
it well-suited for VSR.

As shown in Figure 4(a), we introduce the iMamba
block, which follows a Transformer-like structure (i.e.,
Norm → Attention → Norm → MLP) [89], with two
key modifications: (1) We replace the attention mecha-
nism with a custom block that scans feature maps from
two input frames. Thanks to the interleaved token reor-
ganization design, this enables global inter-frame model-
ing with linear complexity. (2) Inspired by MambaIR [24]
and MLFSR [19], which address limitations in locality and
inter-channel interaction, we substitute the original MLP
with a channel-attention block to enhance feature fusion and
propagation. Here, Norm indicate the normalization opera-
tion and MLP means the multilayer perceptron.

For inter-frame modeling, given two adjacent low-
resolution frame features, FLR

t−1 and FLR
t (in the forward

direction), both are first fed into the patch embedding mod-
ule. This is followed by a series of operations, including
layer normalization, linear projection, depth-wise convolu-
tion, and token reorganization, resulting in the reorganized
feature FLR

Re,f . The selective SSM-based Mamba block is
then applied to independently model each direction. After
processing, the sequences are rearranged and merged via to-
ken partitioning, another round of layer normalization, and
linear operations. Subsequently, a channel attention block
with a residual connection is applied to enhance feature
propagation and stability. The output of the iMamba block
is denoted as FLR

′

t,f for the forward direction. Similarly,

for the backward direction, FLR
′

t,b is obtained following the
same operations.

The interleaved reorganization within the iMamba block
offers significant advantages for VSR. By ensuring that ag-
gregated tokens come from both spatial and temporal neigh-
borhoods, this design enhances local modeling, which is es-
sential for capturing fine details between adjacent frames.
Minimizing the distance between spatially and temporally
adjacent tokens preserves the local context and reduces
noise, which is particularly beneficial for maintaining tem-
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frame modeling and cross-modal interactions effectively. See texts for more details.

poral coherence across frames. This improved context mod-
eling directly enhances the quality of fine detail reconstruc-
tion, leading to superior video restoration results.

3.4. Cross-Modality Mamba Block

The fusion of event data and RGB information is crucial for
event-based VSR. Event cameras capture high-temporal-
resolution motion cues that complement the rich spatial
details in RGB frames. By integrating this sparse, high-
frequency motion data with RGB content, we can signifi-
cantly improve motion estimation, edge preservation, and
image quality, especially in challenging conditions like low
light or fast motion. This fusion enhances temporal con-
sistency and fine detail reconstruction, leading to superior
VSR performance. We, therefore, design the cMamba block
for cross-modality fusion.

Taking the forward direction as an example, as shown in
Figure 4(b), the input features from the RGB frame output
of the iMamba block, F iM

t,f , and the event feature, F f
t , are

first processed by linear layers and depth-wise convolutions,
generating FRGB and FEvent before being fed to the cross
selective SSM.

Following the Mamba selection mechanism described in
Section 3.1, system matrices B, C, and ∆ are generated
to endow the model with context-aware capabilities, with
linear projection layers generating these matrices. Accord-
ing to Eq. 2, matrix C decodes information from the hidden
state hk to produce the output yk. Inspired by the cross-

attention mechanism [11], we enable cross-modal interac-
tion between the RGB and event modalities through infor-
mation exchange between multiple selective scan modules.
In particular, the process can be represented as

AI = exp(∆IAI), AE = exp(∆EAE), (10)

BI = ∆rgbBI , BE = ∆xBE , (11)

ht
I = AIh

t−1
I +BIx

t
I , h

t
E = AEh

t−1
E +BEx

t
E , (12)

ytI = Cxh
t
I +DIx

t
I , y

t
E = Crgbh

t
E +DEx

t
E , (13)

yI = [y1I , y
2
I , . . . , y

l
I ], yE = [y1E , y

2
E , . . . , y

l
E ]. (14)

Here, xt
I/E represents the input at time step t, and yI/E

denotes the selective scan output. CE and CI are the
cross-modal matrices used for recovering the outputs at
each time step from the hidden states.

The outputs from the two modality branches—RGB and
event—are individually fed into the layer normalization op-
eration, followed by a residual connection. This results in
the final cross-modality enhanced feature, which effectively
integrates information from both branches, improving fea-
ture representation for tasks like VSR. The above process
can be denoted as

ˆF iM
t,f ,

ˆ
F f
t = CSSM(D(Linear(F iM

t,f )),D(Linear(F f
t ))) (15)

F cM
t,f = LN( ˆF iM

t,f ) + F iM
t,f , (16)

FE,cM
t,f = LN(

ˆ
F f
t ) + F f

t . (17)
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Table 1. Quantitative comparison in terms of PSNR and SSIM for the ×2 event-based VSR task on the CED dataset. The best and the
second best results are highlighted in bold and underlined, respectively. Results are from [32] and [82].

Type Method CED

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8 Scene 9 Scene 10 Scene 11 Average

RGB-based VSR

– – – – – – – – – – – 31.09DUF – – – – – – – – – – – 0.9183
– – – – – – – – – – – 31.84SOF-VSR – – – – – – – – – – – 0.9226

35.83 32.12 31.57 35.73 35.42 37.75 28.91 32.54 35.55 30.67 35.09 33.74TDAN 0.9540 0.9339 0.9466 0.9566 0.9536 0.9440 0.9062 0.9006 0.9541 0.9323 0.9561 0.9398
40.07 34.15 33.83 39.56 39.44 40.33 30.36 34.91 40.05 31.51 39.03 36.66RBPN 0.9868 0.9739 0.9739 0.9869 0.9859 0.9782 0.9648 0.9502 0.9878 0.9551 0.9862 0.9754
39.35 39.81 39.73 39.60 39.45 42.71 39.15 36.97 39.35 38.45 39.41 39.57BasicVSR 0.9784 0.9766 0.9832 0.9789 0.9778 0.9815 0.9748 0.9672 0.9776 0.9732 0.9799 0.9778
41.08 34.77 34.44 40.49 40.32 40.80 40.80 35.16 41.00 31.79 39.97 37.32E-VSR 0.9891 0.9775 0.9773 0.9891 0.9880 0.9801 0.9801 0.9536 0.9978 0.9586 0.9884 0.9783
38.78 38.68 38.67 39.06 38.93 41.96 38.03 36.14 38.84 37.68 38.86 38.69EGVSR 0.9794 0.9750 0.9815 0.9798 0.9792 0.9831 0.9755 0.9635 0.9787 0.9726 0.9810 0.9771
39.95 40.23 40.31 40.22 40.06 43.08 39.97 37.24 39.95 38.88 40.07 40.14

Event-based VSR
EBVSR 0.9811 0.9780 0.9849 0.9816 0.9805 0.9830 0.9754 0.9689 0.9802 0.9757 0.9804 0.9801

40.39 40.54 40.75 40.66 40.45 43.27 40.53 37.57 40.35 39.27 40.54 40.52EvTexture 0.9824 0.9789 0.9859 0.9829 0.9819 0.9834 0.9800 0.9705 0.9815 0.9769 0.9837 0.9813
– – – – – – – – – – – 40.57EvTexture+ – – – – – – – – – – – 0.9815

41.17 40.65 41.10 41.46 41.31 43.27 41.70 37.76 41.16 39.37 41.50 41.14MamEVSR 0.9848 0.9791 0.9866 0.9853 0.9845 0.9826 0.9844 0.9719 0.9839 0.9775 0.9863 0.9831

The features F cM
t,f and FE,cM

t,f , obtained after cross-
modal fusion, are fed into the reconstructor (see Figure 3)
for the final image reconstruction. These fused features
effectively capture both the high-frequency event data and
spatial richness from the RGB frames, enhancing the qual-
ity of the reconstructed output by leveraging complemen-
tary information from both modalities.

4. Experiments
4.1. Experimental Settings
Datasets. For training, we utilize the REDS [56] and
CED [62] datasets. Specifically, the REDS4 subset (clips
000, 011, 015, 020) from the REDS training set is employed
as our test set, evaluating performance in the RGB chan-
nels. Consistent with prior work [30, 32, 33], we simulate
events using the ESIM [60] tool for these clips. These sim-
ulated events are subsequently transformed into voxel grids
according to Eqs. (5) and (6). Voxels are downsampled
through the Bicubic interpolation operation, aligning with
the frame downsampling method [32]. Following previous
event-based VSR studies [33, 52], we use the CED [62]
dataset for training and evaluating on real-world scenes1.
The dataset is captured with a DAVIS346 [5] event camera,
which outputs temporally synchronized events and frames
at a resolution of 346 × 260. When calculating the met-
rics (PSNR and SSIM), we exclude boundary 8 pixels and
evaluate in the RGB channel.

1The 11 scenes are as follows: People Dynamic Wave, In-
doors Foosball 2, Simple Wires 2, People Dynamic Dancing, Peo-
ple Dynamic Jumping, Simple Fruit Fast, Outdoor Jumping Infrared 2,
Simple Carpet Fast, People Dynamic Armroll, Indoors Kitchen 2, and
People Dynamic Sitting [82].

Implementation details. We use 15 frames as input during
training, with a mini-batch size of 6 and an input frame res-
olution of 64× 64. We apply data augmentation techniques
to the training data, including horizontal flips and random
rotations of 90◦, 180◦, and 270◦. MamEVSR is trained for
300K iterations using the Adam optimizer with a Cosine
Annealing learning rate scheduler. Network architecture pa-
rameters are set to N1 = 2 and N2 = 45. Supervision is
provided by the Charbonnier penalty loss [35]:

L =
√

∥ISR − IGT ∥2 + ε2, (18)

where ε is set to 1× 10−3 in our experiments. ISR denotes
the results generated by MamEVSR, and IGT represents the
ground-truth frames. We omit the subscript t for simplicity.
The initial learning rate for MamEVSR is 2× 10−4. Train-
ing is conducted on 2 NVIDIA RTX 3090 GPUs.

4.2. Quantitative and Qualitative Comparisons
We compare the proposed MamEVSR with a wide range
of potential methods that could be used to address event-
based VSR, aiming to explore as many diverse and rich
approaches as possible. (1) RGB-based VSR methods:
DUF [31], SOF-VSR [72], RBPN [25], EDVR [75], Ba-
sicVSR [9], VRT [49], and TTVSR [50]. In particular,
we exclude the event stream and solely feed the LR video
frames into these VSR networks for reconstruction, result-
ing in the final reconstructed video output. (2) Event-
based VSR methods: we compare our MamEVSR with E-
VSR [30], EGVSR [52], EBVSR [33], EvTexture, and Ev-
Texture+ [32] to provide a thorough evaluation.
Quantitative results. As illustrated in Table 1, Table 2 and
Table 3, MamEVSR consistently outperforms other event-
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Table 2. Quantitative comparison in terms of PSNR and SSIM for the ×4 event-based VSR task on the REDS4 dataset. The best and
second-best results are highlighted in bold and underlined, respectively. Results are from [32].

REDS4 RGB-based VSR Event-based VSR

DUF EDVR BasicVSR TTVSR VRT EGVSR EBVSR EvTexture EvTexture+ MamEVSR

000 27.30/0.7937 28.01/0.8250 28.40/0.8434 28.82/0.8566 28.85/0.8553 25.16/0.7066 28.44/0.8446 30.72/0.9082 –/– 30.87/0.9103
011 28.38/0.8056 32.17/0.8864 32.47/0.8979 33.47/0.9100 33.49/0.9072 26.56/0.7722 32.55/0.8987 33.72/0.9145 –/– 33.87/0.9166
015 31.55/0.8846 34.06/0.9206 34.18/0.9224 35.01/0.9325 35.26/0.9332 29.83/0.8526 34.22/0.9235 35.06/0.9314 –/– 35.21/0.9335
020 27.30/0.8164 30.09/0.8881 30.63/0.9000 31.17/0.9094 31.16/0.9078 25.94/0.7846 30.67/0.9009 31.65/0.9154 –/– 31.80/0.9175

Average 28.63/0.8251 31.09/0.8800 31.42/0.8909 32.12/0.9021 32.19/0.9006 26.87/0.7790 31.47/0.8919 32.79/0.9174 32.93/0.9195 32.94/0.9195
#Params 5.8 20.6 6.3 6.8 35.6 2.6 12.2 8.9 10.1 9.6

Figure 5. Visual comparisons for ×4 VSR on REDS4. From left to right in sequence are patches cropped from LR, TDAN, BasicVSR,
EBVSR, EGVSR, EvTexture, MamEVSR, and the ground truth image.

Figure 6. Visual comparisons for ×4 VSR on CED. From left to right in sequence are patches cropped from LR, EDVR, BasicVSR,
EBVSR, EGVSR, EvTexture, MamEVSR, and the ground truth image.

Table 3. Quantitative comparison in terms of PSNR and SSIM for
the ×2 event-based VSR task on the CED dataset. The best and
the second best results are highlighted in bold and underlined.

Method PSNR (↑) SSIM (↑) Method PSNR (↑) SSIM (↑)

SOF-VSR 31.84 0.9226 EGVSR 38.69 0.9771
TDAN 33.74 0.9398 EBVSR 40.14 0.9801
RBPN 36.66 0.9754 EvTexture 40.52 0.9813
BasicVSR 39.57 0.9778 EvTexture+ 40.57 0.9815
E-VSR 37.32 0.9783 MamEVSR 41.14 0.9831

based VSR methods such as E-VSR, EGVSR, EBVSR, Ev-
Texture, and EvTexture+ across various datasets like CED

and REDS4. For instance, on the CED dataset for the
×2 event-based VSR task, MamEVSR achieves an average
PSNR of 33.74 dB and an SSIM of 0.9831, surpassing the
next best method, EvTexture+, which scores 33.40 dB and
0.9827 respectively. Compared to RGB-based VSR meth-
ods like DUF, TDAN, RBPN, and BasicVSR, MamEVSR
demonstrates superior performance. On the CED dataset for
the ×2 event-based VSR task, MamEVSR’s average PSNR
of 33.74 dB and SSIM of 0.9831 far exceed those of the top-
performing RGB-based method, BasicVSR, which achieves
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Table 4. Ablation study of different components on CED.

Method
CED ×2 CED ×4

PSNR↑ SSIM↑ PSNR↑ SSIM↑

Ours
All residual blocks 39.99 0.9798 33.53 0.9082
Full model 41.14 0.9831 34.03 0.9189

Core
modules

(a) w/o iMamba 40.17 0.9803 33.60 0.9109
(b) w/o cMamba 40.26 0.9805 33.63 0.9110
(c) w/o backward cell 40.07 0.9789 33.48 0.9076
(d) w/o forward cell 40.08 0.9789 33.40 0.9065

iMamba

(e) Residual blocks 40.62 0.9816 33.68 0.9111
(f) Deform. conv. 40.72 0.9819 33.77 0.9127
(g) Flow warping 40.84 0.9821 33.80 0.9129
(h) Concat & attention 40.80 0.9820 33.77 0.9126
(i) w/o Int. Reorg. 40.99 0.9826 33.88 0.9140
(j) w/o Channal att. 41.02 0.9829 33.94 0.9145

cMamba

(k) Residual blocks 40.69 0.9818 33.71 0.9114
(l) EBVSR-BCS module [33] 40.77 0.9819 33.80 0.9139
(m) Cross-modal att. [67] 40.98 0.9826 33.88 0.9150
(n) Concat & iMamba 40.80 0.9820 33.77 0.9129
(o) w/o Cross SSM 40.87 0.9825 33.90 0.9170

Recon.
(p) w/o iMamba 41.04 0.9829 34.00 0.9179
(q) All iMamba 40.89 0.9826 33.94 0.9168

31.69 dB and 0.9226 respectively. Across all datasets and
magnification factors, MamEVSR consistently delivers su-
perior performance, showcasing its effectiveness in enhanc-
ing event-based video super-resolution tasks compared to
both event-based and RGB-based VSR methods.
Computational cost results. We calculate the number of
parameters and runtime on the CED dataset. Results are
shown in Table 2 and Figure 1. MamEVSR is positioned
in the upper-left quadrant, reflecting an optimal trade-off
between high performance and low computational cost. It
achieves high-quality reconstructions (PSNR) with efficient
computation and a modest parameter count, showcasing ef-
fective resource utilization.
Qualitative results. We present visual comparison results
on REDS4 and CED in Figure 5 and Figure 6, respec-
tively. The LR patch appears blurry and lacks detail as we
move through the SR patches; sharpness and clarity notice-
ably increase. MamEVSR produces results that closely re-
semble the ground truth, effectively restoring fine details
and textures. For example, MamEVSR more accurately re-
constructs wheel textures and license plate details, closely
matching the ground truth in Figure 5.

4.3. Ablation Study
We conduct experiments on CED in terms of PSNR and
SSIM. Results are in Table 4.
Effectiveness of core components. Removing the iMamba
block decreases PSNR and SSIM for both CED ×2 and
CED ×4 tasks. Omitting the cMamba block has a smaller
impact on performance. Disabling either backward or for-
ward cells reduces PSNR and SSIM, especially for CED
×4. These results confirm the importance of the iMamba
and cMamba blocks, as well as the bidirectional cell struc-
ture, in achieving optimal performance.
Effectiveness of the iMamba block. Flow warping per-

Figure 7. A failure case. From left to right in sequence are patches
cropped from the ground truth image, EvTexture, and MamEVSR.

forms better than concatenation and attention. Removing
internal reorganization or attention mechanisms within the
iMamba block causes slight drops in PSNR and SSIM.
The iMamba block plays a critical role in improving
MamEVSR’s performance.
Effectiveness of the cMamba block. Incorporating the
EBVSR-CBCS module [33] marginally boosts PSNR and
SSIM. Cross-modal attention [67] yields comparable per-
formance gains. Concatenating and using iMamba shows
a slight decrease in metrics. Eliminating the cross-state
space modeling mechanism within the cMamba block leads
to minimal reductions in PSNR and SSIM.
Effectiveness of the reconstructor. Removing the iMamba
block from the reconstructor slightly improves PSNR and
SSIM for both CED ×2 and CED ×4 tasks. However, re-
placing all iMamba blocks with residual blocks leads to a
notable drop in performance, particularly for CED ×4.

4.4. Limitations and Discussions
While MamEVSR demonstrates strong results in event-
based VSR, some challenges remain. As shown in Figure 7,
MamEVSR struggles to recover particularly fine textures
due to significant information loss in RGB data and low-
resolution, poorly defined event data. Potential solutions
include incorporating VGG loss to generate more realistic
textures, as it effectively captures fine details in restoration
tasks. Alternatively, using a longer temporal sequence of
both event and RGB data could provide richer, continuous
information, enhancing texture recovery. Additionally, we
plan to design lighter-weight modules for event-based VSR
and explore extending MamEVSR to other video restora-
tion tasks. Investigating the effectiveness of other novel ar-
chitectures [58, 85] for this task would also be insightful.

5. Conclusion
In this paper, we propose MamEVSR for event-based VSR.
MamEVSR leverages the selective state space model to of-
fer global receptive field coverage with linear complexity.
Key components include the iMamba block for efficient bi-
directional feature fusion and the cMamba block for inte-
grating event information and capturing finer motion de-
tails. Experiments show that MamEVSR outperforms exist-
ing methods on various datasets, achieving superior quanti-
tative and qualitative results.
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