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Figure 1. PhysAnimator is a novel framework that combines physics principles with video diffusion models to generate high-quality

animations from static anime illustrations, allowing users to specify external forces or rigging points for custom effects.

Abstract

Creating hand-drawn animation sequences is labor-

intensive and demands professional expertise. We intro-

duce PhysAnimator, a novel approach for generating phys-

ically plausible meanwhile anime-stylized animation from

static anime illustrations. Our method seamlessly inte-

grates physics-based simulations with data-driven gener-

ative models to produce dynamic and visually compelling

animations. To capture the fluidity and exaggeration char-

acteristic of anime, we perform image-space deformable

body simulations on extracted mesh geometries. We en-

hance artistic control by introducing customizable energy

strokes and incorporating rigging point support, enabling

* Work done during the internship at Netflix.

† Corresponding author.

the creation of tailored animation effects such as wind inter-

actions. Finally, we extract and warp sketches from the sim-

ulation sequence, generating a texture-agnostic representa-

tion, and employ a sketch-guided video diffusion model to

synthesize high-quality animation frames. The resulting an-

imations exhibit temporal consistency and visual plausibil-

ity, demonstrating the effectiveness of our method in creat-

ing dynamic anime-style animations. See our project page

for more demos: https://xpandora.github.io/

PhysAnimator/.

1. Introduction

Dynamic visual effects are essential to the immersive qual-

ity of 2D animation. From the subtle sway of a charac-

ter’s hair to the fluid motion of garments in response to

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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wind, realistic and pleasing dynamics create a captivating

visual experience. Traditionally, these effects are achieved

through meticulous, hand-drawn techniques, where anima-

tors painstakingly draw each frame to bring these dynamic

elements to life. This process is labor-intensive and requires

not only artistic skill but also a deep understanding of natu-

ral forces and environmental interactions.

To alleviate the challenges of manual animation, re-

searchers have explored both traditional and data-driven ap-

proaches. Traditional animation tools [31, 58] provide in-

teractive systems that assist artists in creating animated il-

lustrations based on established principles of 2D animation.

These methods often rely on user-provided stroke inputs to

specify motion trajectories and utilize geometry constraints

to produce deformation-based animation. However, such

approaches typically assume simple inputs like lineart or

drawings with separated layers, limiting their applicability

to more complex, in-the-wild anime illustrations that fea-

ture intricate textures and details. In contrast, data-driven

video generative models [2, 46, 71] offer a promising alter-

native by leveraging neural synthesis to generate dynamic

effects directly from images, bypassing the need for manual

sketching or layered inputs. Recent methods even enable

interactive motion design, allowing users to specify object

trajectories via drag-based inputs [49, 55, 67]. These ap-

proaches typically rely on predicting a sequence of optical

flow fields to drive the desired motion and warp the frames

accordingly. However, the quality of the generated results is

often limited by inaccuracies in the predicted optical flow,

which frequently exhibits artifacts due to a lack of geomet-

ric understanding and physical constraints. As a result, im-

precise motion estimation can lead to noticeable distortions

and unsatisfactory visual quality.

Recognizing the limitations of both traditional and

purely data-driven methods, we introduce PhysAnimator,

a novel framework that integrates physics-based animation

with data-driven generative models to synthesize visually

compelling dynamic animations driven by environmental

forces such as wind or rigging from static anime illustra-

tions. Our approach combines the physical consistency of

simulation-based methods with the flexibility and expres-

siveness of generative models, overcoming the drawbacks

of previous approaches. To achieve this, we model ob-

jects of interest in the anime illustration as deformable bod-

ies, capturing the fluidity and exaggerated motion charac-

teristic of anime. We solve the motion equations to com-

pute a sequence of optical flow fields that represent consis-

tent dynamics. Users can enhance these animations with

customized energy strokes, defining the effects of external

forces such as wind. To render the motion dynamics as

high-quality frames, we first extract and warp the sketch

using the optical flow fields to generate a texture-agnostic

video sequence. We then apply a sketch-guided video diffu-

sion model to colorize the sketch sequence based on the ref-

erence illustration, ensuring stylistic coherence. Finally, to

incorporate dynamic effects that cannot be easily captured

by physical simulation, we employ a data-driven cartoon

interpolation model, enriching the results with complemen-

tary, expressive dynamics. In summary, our contributions

are as follows:

• We introduce a novel framework that combines physics-

based simulations with data-driven generative models,

specifically targeting animations driven by environmen-

tal forces and rigging controls, achieving both physical

consistency and stylistic expressiveness.

• We develop an image-space deformable body simula-

tion technique that models anime objects as deformable

meshes, capturing fluid and exaggerated dynamics.

• We leverage a sketch-guided video diffusion model to

render simulation dynamics as high-quality frames, com-

bined with a cartoon interpolation model to introduce ad-

ditional dynamic effects beyond physical laws.

2. Related Work

2.1. Video Diffusion Models

Building on the success of image diffusion models [10,

53], recent work has introduced video diffusion models

to streamline video synthesis from text prompts or im-

ages, significantly reducing labor and time costs compared

to traditional commercial video editing and creation tools

[23, 72]. These approaches either extend pre-trained image

diffusion models by incorporating temporal mixing layers

in various forms [3, 11, 13, 56] or train video diffusion

models with temporal layers from scratch on large-scale

text-video paired datasets [20, 79]. However, using text

prompts or a single image as input provides limited con-

trol over fine-grained aspects of video generation, making

it challenging to define complex structural attributes such

as spatial layouts, poses, and shapes [17, 74]. To allow

for more detailed control over object motion and camera

movements, additional guidance in the form of motion tra-

jectories [6, 28, 55, 74], pose [77], depth [21], and optical

flow [17] has been integrated into video diffusion models

to produce more controllable videos. These powerful video

diffusion models have also been applied to various down-

stream tasks, such as video editing [16, 35], image anima-

tion [12, 66, 71], video understanding [38, 54, 61], video

interpolation [27, 70] and 3D reconstruction and genera-

tion [8, 18, 36, 43, 60]. Nevertheless, these data-driven

approaches usually produce artifacts due to a lack of geo-

metric understanding and physical constraints.

2.2. Physics­based Animation

Researchers have explored various methods for animation

authoring. Xing et al. [68] extend local similarity tech-
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niques to global similarity, enabling automatic sketch com-

pletion based on previous frames. Building on this, Peng

et al. [51] propose a keyframe-based sculpting system that

autocompletes user edits using an intuitive brushing inter-

face. Willett et al. [65] tackle the challenge of textured

anime images by segmenting the illustration into layers for

different objects and allowing users to provide scribbles as

trajectory guides. Leveraging animation principles, some

works [31, 45] use geometry-based deformations to create

stylized animation effects such as “squash” and “stretch”.

Similarly, Xing et al. [69] employ physics-based simula-

tions and introduce energy brushes to generate elemental

dynamics [15], such as smoke and fire. Other approaches

[1, 9, 29] incorporate physical laws like gravity, collision,

and elasticity to animate deformable characters, enabling

the efficient creation of complex scenes. For instance, Jones

et al. [30] introduces an example-based plasticity model

based on linear blend skinning for animating the failure of

near-rigid, man-made materials. Coros et al. [9] exploit two

rest-pose adaptation strategies using only internal energy to

animate curve, shell, and solid-based characters. Physics-

based modeling has also proven effective in adding sec-

ondary dynamics [64, 75] to enhance details in rigged an-

imations. Despite their effectiveness, these 2D animation

methods typically assume simple inputs, such as sketches,

or require layered separation, which limits their applicabil-

ity for animating complex, in-the-wild anime illustrations.

2.3. Generative Image Dynamics

With the advancement of generative models, there is grow-

ing interest in leveraging these powerful techniques to syn-

thesize dynamic animations from static images, guided by

motion features extracted from various user inputs. These

inputs can be sparse, such as text prompts [7, 41, 71], trajec-

tories [42, 55, 62, 67, 78], or camera movements [62, 73],

or dense, like reference videos [28, 63, 80]. To achieve

controllable dynamics, prior works often incorporate Con-

trolNet [76] into image or video generative models during

the decoding stage, utilizing motion features such as Canny

edges, depth maps [17], 2D Gaussian maps [67], and op-

tical flow maps [55]. In addition, several methods employ

specialized motion fusion modules [41, 62, 78], spatial or

temporal attention mechanisms [28, 63, 73], and feature in-

jection strategies [42] to guide the generation of control-

lable dynamics. However, these approaches typically lack

physics-based supervision, which can result in animations

that violate physical laws or fail to align with user inten-

tions [47]. Recently, PhysGen [44] integrated a rigid-body

physics simulator to generate physics-consistent dynamics

for foreground objects in a given image. While effective,

PhysGen is limited to 2D rigid-body motions, making it

unsuitable for the fluid, elastic effects commonly seen in

anime, such as the waving of cloth or hair, which do not

conform to rigid-body dynamics. In this work, we address

these limitations by leveraging deformable-body dynamics

and a sketch-guided video diffusion model to create high-

quality, physically consistent animation sequences that cap-

ture the fluidity and elasticity characteristic of anime.

3. Method

Given a reference anime illustration I0, our goal is to gen-

erate a sequence of stylized video frames tÎ1, Î2, ..., ÎT u
with natural, user-guided motions. To achieve this, we in-

troduce PhysAnimator, a novel framework that combines

video diffusion models with physics-based animation. We

start by segmenting the objects of interest in a given anime

illustration and creating a 2D triangulated mesh represen-

tation. Using this geometry, we obtain dynamics through

image-space deformable body simulation, generating a se-

quence of optical flow fields tF0Ñ1,F0Ñ2, ...,F0ÑT u. To

offer user control, we enable interactive inputs through cus-

tomizable energy strokes for defining external forces and

rigging points for specifying desired trajectories. To ren-

der dynamics as high-quality frames, we extract the sketch

from the input illustration and warp it using the computed

optical flow fields, yielding a sequence of dynamic sketch

frames tS1, S2, ..., ST u. These sketches, together with the

input illustration, are fed into a video diffusion model with

a sketch-guided ControlNet [76], synthesizing a vivid ani-

mated sequence. Finally, an optional data-driven cartoon in-

terpolation model [70] can be applied to enhance the anime

style dynamics of the results by selecting keyframes from

the animated sequence as input, yielding the final output

frames tÎ1, Î2, ..., ÎT u. An overview of our proposed frame-

work is shown in Fig. 2.

3.1. Preliminaries

Latent Video Diffusion Model Most video diffusion

models build on the latent diffusion model (LDM) frame-

work [53], which uses Variational Autoencoder [32] (VAE)

to map input images into a latent space. In this space, data

is transformed into Gaussian noise via a forward diffusion

process, which the model learns to reverse through denois-

ing. In the forward diffusion process, the latent code z0 is

perturbed as:

zt “
?
ᾱtz0 `

?
1 ´ ᾱtϵ, ϵ „ N p0, Iq, (1)

where ᾱt “
t

ś

i“1

p1 ´ βtq with βt controlling the noise

strength coefficient at step t. The denoising model ϵθ is

trained to recover zt by minimizing the objective function:

Lϵ “ }ϵ ´ ϵθpzt; c, tq}2
2
, (2)

where θ denotes the learnable network parameters and c

represents conditioning input (e.g. text prompts or images).
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Figure 2. Method Overview. We begin by segmenting the object and creating a triangulated deformable mesh. Physics-based simulations

are then used to generate dynamic optical flow fields, with users given the option to guide the motion through customizable energy

strokes(shown as orange arrows) and rigging points(shown as red dots). The extracted sketch is warped using the computed optical

flow and refined with a sketch-guided video diffusion model, producing a smooth, stylized animation sequence. Optionally, a cartoon

interpolation model can further be applied to enhance the animation with expressive dynamics.

After denoising, the VAE decoder reconstructs the latent

code back into the image space. The latent video diffusion

model (LVDM) extends the image LDM to videos by in-

corporating temporal modules to maintain temporal consis-

tency.

Deformable Body Dynamics Mathematically, the dy-

namics of a continuum deformable body is described by a

time-dependent continuous deformation map x “ ϕpX, tq,

which maps the undeformed material space Ω0 to the de-

formed world space Ωt at time t. The deformation gradient

F “ Bϕ
BX encodes the local deformation such as scaling, ro-

tation, and shearing. In the context of a discretized setting,

e.g. 2D meshes, the deformation map for each triangle can

be expressed as

ϕipXq “ FiX ` bi, (3)

where bi P R
2 accounts for translation of i-th triangle, and

the deformation gradient Fi P R
2ˆ2 is assumed to be con-

stant [40]. Undergoing deformation, the deformed body

aims to recover its rest shape via resisting forces. Contin-

uum mechanics model this behavior by first defining an en-

ergy density function ΨpF pxqq, which measures the strain

energy per unit undeformed volume. The total potential en-

ergy for a deformable body is then obtained as

Epxq “
N
ÿ

i“1

ΨpFiqVi, (4)

where Vi denotes volume of i-th triangle. The internal re-

sisting force is then defined as the negative gradient of the

potential energy with respect to the vertex position

fintpxq “ ´BEpxq
Bx . (5)

The deformable body dynamics is governed by Newton’s

Second Law as

d2x

dt2
“ M´1pfintpxq ` fextpxqq, (6)

which can be solved numerically. Here M is the mass ma-

trix that represents the masses of all vertices and fext refers

to external forces, such as gravity.

3.2. Physics­based Animation

To generate dynamic animations from a single illustration,

a straightforward approach is to use existing controllable

video diffusion models [55, 67]. However, these purely

data-driven methods often struggle due to a lack of physical

understanding, leading to unrealistic results. To overcome

this limitation, we incorporate physics-based animation to

generate physically consistent and plausible motions.

Geometry Registration The first step to animate objects

of interest in a given illustration is to establish a geo-

metric basis. While previous works [24, 59] have ex-

plored predicting 3D geometry from single-view images,

these methods are typically constrained to reconstructing

real-world objects and do not generalize to in-the-wild

anime images, since characters and objects in anime of-

ten lack an inherent 3D representation due to their styl-

ized and flat nature. As shown in prior works on cartoon
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animation [31, 69], leveraging 2D animation techniques

proves effective for generating anime-style dynamic effects.

Inspired by this,

we focus on ex-

tracting 2D meshes

for the objects of

interest. To achieve

this, we first uti-

lize the Segment

Anything Model

(SAM) [33, 52] to

obtain segmentation masks for each target object, guided

by user-specified query points. Along the contours of

each segmentation mask, we uniformly sample boundary

points, defining the outline of the intended mesh. We then

employ conforming Delaunay triangulation [37] with these

boundary constraints to generate well-structured triangular

meshes, creating a simulation-ready format for subsequent

animation.

Deformable Body Model Anime scenes often feature dy-

namic environmental effects such as external forces that in-

teract with characters’ clothing, hair, or other elements. Ad-

ditionally, techniques like “squash” and “stretch” are com-

monly used to convey motion and energy, adding expres-

siveness to animated objects. Motivated by these stylized

dynamics, we model anime objects as deformable bodies,

allowing them to capture the fluidity and exaggerated mo-

tion characteristic of anime. A key property of deformable

bodies is their ability to change shape in response to exter-

nal forces and attempt to return to their original rest shape

upon deformation. To represent this physical behavior, we

employ the Fixed Corotated constitutive model [57], which

defines the energy density as:

ΨpF q “ µ}F ´ R}2F ` λ

2
pdetpF q ´ 1q2, (7)

where µ, λ are the Lamé parameters, and R is the rotational

part of F computed via polar decomposition. The first term

models the stretching and compression resistance for the in-

dividual spatial directions and the second term describes re-

sistance to volume change. The resulting internal forces fint

can then be derived via Eq. (5).

Interactive Animation While fint governs the inherent

physical behavior, fext allows for user-defined interactions.

Inspired by the concept of energy strokes [15, 69], we intro-

duce customizable energy strokes that carry flow particles.

These particles move along the user-specified strokes, prop-

agating external forces to nearby vertices of the deformable

mesh. This enables the creation of tailored animation ef-

fects, such as simulating wind interactions. Additionally,

we incorporate rigging point support, allowing animators to

anchor specific regions or guide them along predefined tra-

jectories, offering enhanced control and flexibility. Using

the specified energy strokes and deformable modeling, we

solve the motion equation (Eq. (6)) to evolve the dynamics.

We employ the semi-implicit Euler method to compute the

deformation map ϕipX, tq at each time step t for every tri-

angle. For each pixel Xp in the reference image, if it lies

within a triangle Ti, we assign the displacement vector as

dppq “ ϕipXp, tq ´ Xp; otherwise, we assign a zero vec-

tor. Collecting displacement vector dppq of all pixels yields

the optical flow F0Ñt, which defines the displacement fields

for the reference illustration I0 at time t.

3.3. Generative Rendering

In this section, we describe how to render the video se-

quence tÎ1, Î2, ..., ÎT u given the reference image I0 and the

optical flow sequence tF0Ñ1,F0Ñ2, . . . ,F0ÑT u derived

from simulation.

Sketch-Guided Rendering While the video sequence

can be directly generated by warping the reference image

I0 using optical flow fields, the resulting frames often ex-

hibit black hole artifacts caused by occlusions. To address

this problem, we extract the sketch of I0, denoted as S0, and

obtain the sketch at time t as follows:

St “ WpS0,F0Ñt, w0Ñtq, (8)

where W represents the forward-warping operator, and

w0Ñt denotes the warping weights for each pixel in I0.

In forward warping, multiple pixels may map to the same

2D location in the output frame [48], potentially leading to

artifacts or distortions if the weights w0Ñt are not prop-

erly defined. Inspired by [42], we set the pixel weight

as w0Ñtppq “ }F0Ñtppq}2, giving higher importance to

pixels with larger motion, typically corresponding to fore-

ground objects.

Next, we leverage a video diffusion model to gener-

ate the rendered frames tIr
1
, Ir

2
, ..., IrT u using the obtained

sketch sequence tS1, S2, ..., ST u. The diffusion model uses

the reference image I0 as an input, and we employ a Con-

trolNet [76] with the sketches as control signals, guiding the

generation process to ensure that the results align with the

sketch inputs. We observed that during the inference time,

due to segmentation inaccuracies, the optical flow warping

may introduce unintended distortions, or miss parts of the

object contour, generating imperfect sketches. To address

this, we apply Gaussian blur to the input sketches at both

training and inference time, which smooths out inconsisten-

cies. The video diffusion model is then capable of refining

the results, leveraging its generative capabilities to handle

imperfections and produce coherent outputs.

Complementary Dynamics Unlike motions in the real

world, dynamic effects in animation do not strictly adhere to
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physical laws and can not be fully captured by 2D animation

methods. In the industrial animation pipeline, artists typi-

cally begin by creating a series of keyframes that define the

primary motion trajectory, followed by drawing in-between

frames to ensure smooth and fluid transitions. Inspired by

this workflow, we leverage a data-driven module to enhance

the physics-based animated results. Specifically, we select

keyframes from the sketch-guided rendering results, form-

ing the keyframe sequence tIr
0
, Irn, I

r
2n, ..., I

r
inu, where n

denotes the gap between keyframes. We then employ a car-

toon interpolation video diffusion model [70], which syn-

thesizes intermediate frames tÎin`1, Îin`2, ..., Îipn`1q´1u
between each adjacent keyframe pair pIrin, Iripn`1qq. For

keyframes, we simply assign Îin “ Irin. This approach

allows us to introduce expressive, data-driven complemen-

tary dynamics that go beyond what can be achieved through

physics-based animation alone.

4. Experiments

In this section, we conduct a comprehensive comparison

of our method against existing video diffusion models and

demonstrate that our approach generates high-quality and

physically plausible animations.

Implementation Details We implement our deformable

body simulator using Taichi [25]. During interactive ani-

mation, users can adjust the Lamé parameters µ and λ to

control the characteristics of the objects based on their spe-

cific needs. For generative rendering, we follow LVCD [26]

to train a sketch-guided ControlNet for the stable video dif-

fusion model [4], using blurred sketches as control signals

to address potential imperfections in the predicted sketch

sequence. When utilizing ToonCrafter [70] for generating

in-between frames, similar to its original implementation,

we also train an additional sketch-guided ControlNet, but

set the control scale to 0.1 during inference. We also set

n “ 15 for the in-betweening step. This configuration helps

the generated frames follow the rough motion indicated by

the sketches while introducing extra stylized animation de-

tails.

Dataset We build our training dataset using the Sakuga-

42M Dataset [50], which consists of 1.4 million animation

video clips. To ensure high-quality training samples, we fil-

ter out clips with fewer than 24 frames and dynamics scores

outside the range of 0.05 to 0.7. Next, we extract sketches

from the selected clips using the method from [5], resulting

in a final dataset of 380,000 pairs of sketches and corre-

sponding video sequences.

Baseline We compare our method against two categories

of video generation approaches. The first category includes

state-of-the-art Image-to-Video (I2V) models, such as Cin-

emo [46] and DynamiCrafter [71], which take an input im-

age and use text prompts to guide the motion dynamics

of the generated videos. For these models, we generate

prompts describing the image content and expected motion

using ChatGPT-4V. The second category, including Motion-

I2V [55] and Drag Anything [67], usually trains an addi-

tional motion-control module for video generative models

such that, given a single image input, a user-specified tra-

jectory can be provided to control the movement of objects

in the generated frames. To ensure a fair comparison, we

extract trajectories from our animated results and use them

as input for these methods.

4.1. Quantitative Evaluation

Given the absence of established benchmarks for anime-

style image-to-video generation, we follow Motion-I2V

[55] and construct a test set comprising 20 anime images

with stylized dynamic elements such as swaying hair, cloth-

ing, and plants. For each method, we generate 10 video

samples per image, resulting in a total of 200 videos per

method. To quantitatively evaluate the generated results, we

use the Fréchet Inception Distance (FID) [22] to measure

the similarity between the generated frames and the ref-

erence images. Additionally, we employ VideoScore [19]

to assess multiple aspects of video quality, including visual

quality, temporal consistency, dynamic degree, and factual

consistency. The factual consistency evaluates the consis-

tency of the video content with common sense and factual

knowledge. We exclude the text alignment score as our

method and the trajectory-controlled approach do not in-

volve text input.

The quantitative evaluation results, presented in Tab. 1,

demonstrate that our method outperforms baseline ap-

proaches across most metrics, including visual quality, tem-

poral consistency, and factual consistency, demonstrating

the overall high quality of our generated videos. As shown

in Fig. 3, Cinema tends to generate static videos that closely

resemble the reference image, leading to better FID scores.

While the dynamic degree score for DragAnything is no-

tably higher than other methods, this is due to its tendency

to misinterpret motion control as camera movement, caus-

ing shifts in the entire image space and resulting in an in-

flated dynamics score. Although our method’s dynamic

degree score is slightly lower than that of DynamiCrafter

and Motion-I2V, these methods often exhibit implausible,

distorted motions that create an illusion of increased dy-

namics. In contrast, our approach produces geometry-

consistent motions and achieves high factual consistency,

demonstrating the realistic motion dynamics enabled by our

physics-based modeling. In addition, following [14, 34], we

conducted an user study adopting a two-alternative forced

choice (2AFC) protocol, where participants are asked to

choose the preferred video based on temporal consistency,

visual quality, motion plausibility, and overall feeling given
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“A scarecrow stands in a field, swaying slightly as 

a gentle breeze rustles through its clothes.”
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Figure 3. Qualitative Comparison. We compare our results against Cinemo [46], Drag Anything [67], DynamiCrafter [71] and Motion-

I2V [55]. Text prompts for Cinemo and DynamiCrafter are generated using ChatGPT-4V, while trajectories for Drag Anything and Motion-

I2V are extracted from our animated results.

two videos (one from our method and one from baselines).

The user preference results, presented in Tab. 2, show that

our proposed method consistently outperforms the baselines

across all evaluation criteria.

4.2. Qualitative Comparison

We present a qualitative comparison with baseline methods

in Fig. 3. Cinemo often produces static results with minimal

motion dynamics. Drag Anything frequently misinterprets

the motion trajectory as a camera movement, resulting in

unintended dynamic sequences. DynamiCrafter, while gen-

erating larger motions, struggles to maintain the geometry

of input objects, leading to noticeable distortions. Motion-

I2V has difficulty preserving the appearance of the input

content, often yielding unsatisfactory results. In contrast,

our physics-guided approach ensures both physically plau-

sible motions and high-quality rendering, preserving the ge-

ometry and visual consistency of the input.
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Table 1. Quantitative Comparisons. We report FID to evaluate

the similarity between the reference image and generated frames.

VSVQ, VSTC, VSDD, and VSFC represent scores for visual qual-

ity, temporal consistency, dynamic degree, and factual consistency,

respectively, as measured by VideoScore [19].

Methods FIDÓ VSVQÒ VSTCÒ VSDDÒ VSFCÒ

Cinemo [46] 49.5 2.85 2.80 2.42 2.58

DragAnything [67] 148.9 2.77 2.45 2.97 2.52

DynamiCrafter [71] 94.9 2.78 2.68 2.53 2.51

Motion-I2V [55] 121.8 2.70 2.50 2.66 2.39

Ours 90.4 2.89 2.86 2.48 2.64

Table 2. User Study. We show the user preference for our method

over the baseline methods in terms of visual quality (VQ), tempo-

ral consistency (TC), motion plausibility (MP), and overall feeling.

Methods VQ TC MP Overall

Cinemo [46] 86% 83% 82% 81%

DragAnything [67] 93% 91% 89% 91%

DynamiCrafter [71] 84% 78% 76% 81%

Motion-I2V [55] 95% 94% 97% 96%

Reference

Warp

Ours

Warp + Hard Inpaint

Warp + Soft Inpaint

Figure 4. Sketch-Guided Rendering. Applying warping and in-

painting introduces artifacts due to segmentation inaccuracy. Soft-

inpainting [39] reduces these issues but can alter the content.

Our sketch-guided rendering method produces high-quality results

while preserving image details.

4.3. Additional Qualitative Results

Sketch-Guided Rendering After physics-based anima-

tion in our proposed framework, we obtain a sequence of

optical flow tF0Ñ1,F0Ñ2, . . . ,F0ÑT u. A straightforward

approach would be to warp the input image I0 using these

optical flows and apply an inpainting algorithm to fill any

occluded areas. However, this often results in suboptimal

outputs. The main issue lies in segmentation inaccuracies,

which can cause unintended regions to be warped or leave

parts of the intended objects static, as shown in Fig. 4.

While introducing a soft mask [39] into the inpainting pro-

cess can help smooth the transition between the newly gen-

erated region and the original figure, it may also alter the

content, making it diverge from the appearance of the ref-

erence image. Additionally, applying inpainting frame by

Static Reference w/ Enhanced Dynamicsw/o Enhanced Dynamics

Figure 5. Complementary Dynamics Enhancement. While

physics-based animation maintains geometric consistency, it may

lack the fluidity and exaggeration commonly seen in anime. We

employ a data-driven interpolation module to enhance the motion

dynamics, creating more natural-looking animations that better re-

semble real anime.

frame may also cause temporal consistency issues. To ad-

dress this, our method employs a sketch-guided rendering

module. We first extract a sparse geometric representation

of the image and apply the animation dynamics directly to

this sketch-based structure. This sparse representation is

more robust to segmentation inaccuracies and helps pre-

serve the intended motion. Our subsequent rendering mod-

ule then synthesizes high-quality video sequences from the

animated sketches, maintaining both temporal consistency

and visual fidelity.

Complementary Dynamics Enhancement While our

physics-based animation ensures physically accurate and

geometry-consistent motion, it is inherently limited to 2D

representations and cannot fully capture 3D effects. More-

over, the exaggerated dynamics often seen in anime do not

always conform to strict physical laws. To address these

limitations, we incorporate a data-driven cartoon interpola-

tion module [70] to introduce complementary dynamics. As

illustrated in Fig. 5, this interpolation module enables fluid

contour deformations of clothing during motion, rather than

rigidly adhering to static geometry. It also dynamically gen-

erates new sketch lines, enhancing the expressiveness of the

animation and bringing it closer to the aesthetic of tradi-

tional hand-drawn anime.

5. Conclusion

We presented PhysAnimator, a novel framework for gen-

erating dynamic and stylized animations from static anime

illustrations by integrating physics-based simulations with

data-driven generative models. Our approach gener-

ates physically plausible, fluid and exaggerated anime-

styled motion through deformable body simulations, pro-

viding controllability to users through user-guided energy

strokes. A sketch-guided video diffusion model ensures

high-quality, temporally consistent frames, while a data-

driven anime frame interpolation model adds expressive,

non-physical dynamics. The experiments show that our pro-

posed method outperforms existing video diffusion meth-

ods, offering a powerful tool for creating visually com-

pelling and user-controllable anime-style animations.
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