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Abstract

Contrastive Language-Image Pre-training (CLIP) [37] has

emerged as a pivotal model in computer vision and multi-

modal learning, achieving state-of-the-art performance at

aligning visual and textual representations through con-

trastive learning. However, CLIP struggles with potential

information misalignment in many image-text datasets and

suffers from entangled representation. On the one hand,

short captions for a single image in datasets like MSCOCO

may describe disjoint regions in the image, leaving the

model uncertain about which visual features to retain or

disregard. On the other hand, directly aligning long cap-

tions with images can lead to the retention of entangled

details, preventing the model from learning disentangled,

atomic concepts – ultimately limiting its generalization on

certain downstream tasks involving short prompts.

In this paper, we establish theoretical conditions that

enable flexible alignment between textual and visual rep-

resentations across varying levels of granularity. Specif-

ically, our framework ensures that a model can not only

preserve cross-modal semantic information in its entirety

but also disentangle visual representations to capture fine-

grained textual concepts. Building on this foundation, we

introduce SmartCLIP, a novel approach that identifies and

aligns the most relevant visual and textual representations

in a modular manner. Superior performance across var-

ious tasks demonstrates its capability to handle informa-

tion misalignment and supports our identification theory.

The code is available at https://github.com/Mid-

Push/SmartCLIP.

1. Introduction

Contrastive Language-Image Pre-training (CLIP) [37] has

been the cornerstone for many computer vision and ma-

chine learning tasks, such as text-to-image retrieval [2], im-

COCO:
A very cute teddy bear holding a pen.

A stuffed bear that is sitting in a chair.
A brown bear wearing a sweater next to a pen 

and paper.
A brown teddy bear in a dark sweater sits on 

a black striped chair while holding a pen.

ShareGPT4v:

In the center of the image, a light brown teddy bear is seated on a black 
chair with white stripes. The teddy bear, dressed in a green sweater 
adorned with a yellow flower, holds a blue pen in its paw, as if ready to 

sign a document. The chair is positioned on a gray carpeted floor. To the 
right of the chair, there's a stack of papers neatly arranged on the floor. The 
scene creates an atmosphere of anticipation, as if the teddy bear is about to 
make a significant decision.

Figure 1. Depiction of two primary challenges for CLIP. (1)

Information Misalignment: An image can be paired with multi-

ple captions that describe disparate aspects - the first caption con-

tains concepts “bear” and “pen” whereas the second only mentions

“bear” and “paper”. Aligning the image with both captions leads

to the loss of key concepts “pen” and “paper” not shared across

the captions. (2) Entangled Representations: Long, detailed cap-

tions involving multiple concepts (e.g., “chair”, “pen”, “flower”,

“floor”) encourage the model to form entangled representations,

hindering independent understanding of each individual concept.

age and video understanding [6, 16, 39, 42, 46, 58], and

generative models [28, 38, 40]. It aligns the representa-

tions from different modalities with a contrastive learning

loss [8, 35]. Specifically, each image-caption pair in the

dataset is treated as a positive pair, while negative pairs are

created by matching images with captions randomly drawn

from the dataset. The image and text encoders are trained

with a symmetric cross-entropy loss that draws the image

and text representations in each positive pair together while

pulling the negative pairs’ representations apart.

Training CLIP requires vast amounts of image-text pairs,

making it challenging to maintain dataset quality at such

a large scale. In particular, the quality of text captions

has been a key concern, prompting the development of

various methods to enhance both their diversity and accu-
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racy. ALIGN [15] shows that scaling up the dataset size

can compensate for the noisy text supervision. BLIP mod-

els [23, 24] improve captions by incorporating additional

captioning and filtering mechanisms. VE-CLIP [21] intro-

duces a visual-enriched captioning approach to further re-

fine caption quality. Similarly, LaCLIP [10] leverages lan-

guage models to rewrite captions, while RecapCLIP [25]

uses LLaMA-3 [29] to generate captions for 1.3 billion

images. Despite these efforts, recent findings reveal that

longer and seemingly higher-quality captions do not nec-

essarily yield improved performance on many downstream

tasks [20]. Li et al. [25] find that the text-to-image retrieval

accuracy on Flickr30K drops from 84.2 to 74.1 when re-

placing the original captions with longer captions.

A key issue contributing to the observed performance

degradation is the information misalignment between im-

ages and their captions, a problem that becomes more pro-

nounced when multiple captions are paired with a single

image. On one hand, an image may be paired with several

captions, each capturing only a partial aspect of the image.

In Figure 1, aligning the image with the first caption, “A

very cute teddy bear holding a pen”, risks forcing the model

to discard other important concepts like “chair” and “pa-

per”, which are required to align with the second and third

captions in the pink text box. This misalignment between

image and text introduces conflicts during standard CLIP

training, leading to the loss of key visual concepts.

On the other hand, training CLIP with long, detailed cap-

tions, as seen in recent approaches [10, 21, 25], encour-

ages the model to learn entangled representations of mul-

tiple concepts bundled together in a single caption. Thus,

it remains challenging to explicitly extract object/concept-

centric representations from CLIP’s visual representation.

This entanglement is particularly problematic for tasks that

require individual, atomic concepts or novel combinations

of them, as empirically observed on short-text-to-image re-

trieval tasks [54]. In Figure 1, the long caption generated

by ShareGPT4V [7] contains an exhaustive set of concepts

such as “chair”, “pen”, “flower”, and “floor”. This aggre-

gation can hinder the model’s performance on tasks that de-

mand the understanding of each concept individually.

In this paper, we propose a refined approach to represen-

tation alignment in vision-language models like CLIP [37].

We frame the alignment challenge as a latent-variable iden-

tification problem and develop theoretical conditions that

enable flexible alignment between textual and visual repre-

sentations at different levels of granularity. Our framework

enables the model to preserve the complete cross-modal in-

formation while also disentangling representations to cap-

ture fine-grained concepts, effectively addressing the mis-

alignment and disentanglement issues discussed earlier.

Building on these theoretical insights, we introduce

SmartCLIP, a novel method that identifies and aligns vi-

sual and textual concepts in a modular manner. Specifically,

we design a mask network that selects a subset of dimen-

sions from the full representations, corresponding to only

the concepts present in each specific caption. This allows

the model to perform text-image alignment over the most

relevant concepts modules, rather than the entire representa-

tion. We empirically demonstrate that SmartCLIP outper-

forms state-of-the-art models across a range of downstream

tasks, showcasing its effectiveness in addressing alignment

challenges. In particular, SmartCLIP significantly im-

proves retrieval performance across text lengths, achieving

98.7% accuracy (up from 78.2%) on the ShareGPT4V long

text-to-image retrieval tasks, while boosting short text-to-

image retrieval R1 from 56.1% to 66.0%.

Our main contributions are summarized as follows.

i We identify critical issues of information misalignment

and entangled representations within the CLIP frame-

work. To overcome these challenges, we propose a

latent-variable formulation and establish theoretical con-

ditions that guarantee the recovery of the latent variables.

ii Building upon our theoretical findings, we propose

SmartCLIP, featuring adaptive masking and a modular

contrastive learning objective that facilitates the learning

of disentangled, modular representations.

iii We perform extensive experiments on a variety of tasks,

including long and short text-to-image retrieval, zero-

shot classification, and text-to-image generation. Smart-

CLIP consistently outperforms or matches state-of-the-

art models across these benchmarks, demonstrating its

efficacy and validating our theoretical contributions.

2. Related Work

Vision-language models. The breakthrough of CLIP [37]

has attracted significant attention from the community.

SLIP [33] and DECLIP [26] propose to incorporate self-

supervised learning techniques to improve the learned rep-

resentation. Coca [51] introduces a decoder in addition to

the contrastive learning branch. LiT [52] locks the image

encoder and only finetunes the text encoder. SigLIP [53]

adopts a simple sigmoid loss to handle large training batch

sizes. LoTLIP [48] inserts corner tokens after the classifica-

tion token to support long-text understanding. TULIP [34]

replaces the absolute position embedding with the rela-

tive position embedding to support longer text understand-

ing. ALIGN [15] demonstrates that increasing dataset size

can mitigate the impact of noisy text supervision. Recent

methods have been focusing on generating better captions

[20, 21, 23–25, 59]. CLIP-MOE [56] introduces mixture-

of-experts to CLIP. LLM2CLIP [12] augments CLIP with

large language models. LongCLIP [54] extends the token

constraint of CLIP from 77 to 248 and applies PCA to per-

form short text-to-image contrastive learning to preserve its

short text capability. Llip [22] learns a text-dependent vi-
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sual representation by mixing a set of learnable tokens with

a cross-attention module. In contrast, SmartCLIP directly

learns a single global representation that encodes all disen-

tangled, interpretable concepts through masking.

Latent variable identification. Learning high-level, se-

mantic information from low-level observational data (e.g.,

images and text) can often be formulated as latent-variable

identification problems. Though appealing, such tasks are

accompanied by substantial difficulties, especially for com-

plex real-world data distributions involving nonlinear gen-

erating functions. Recently, a wealth of papers [1, 5, 9, 11,

14, 17, 31, 32, 41, 44, 49, 55, 57] propose to overcome

such obstacles by leveraging auxiliary information, such

as temporal information, multiple domains, and multiple

views/modalities. Especially related to our work are those

that tap into the paired multi-view data to identify the shared

information across available views [9, 11, 31, 32, 43, 49].

Recent work [11, 31, 32] relies on specific forms of la-

tent variable distributions (e.g., independence or exponen-

tial family). These constraints restrict their applicability for

distributions entailing complex interactions among latent

variables. Prior work [9, 43] adopt more flexible assump-

tions on the underlying distribution and identify blocks of

latent variables directly shared by two views arising from

data augmentations, which is extended to a multi-view set-

ting [49]. The problem under investigation can be viewed as

a form of this multi-view setting where the paired image and

text captions are considered as views sharing the semantic

latent variable. Existing works [9, 43, 49] assume that views

are grouped over all the data pairs and this grouping infor-

mation is known so that one can learn a designated encoder

for each view group. However, this view grouping infor-

mation is inaccessible for our problems – for any two text

captions of different images, we cannot judge whether they

belong to the same view group. In our theory section, we

show that by properly utilizing the data-generating process,

we can learn such information directly and further achieve

the desired identification results, thus generalizing existing

multi-view latent variable identification results.

3. Problem Formulation

As motivated previously, we aim to 1) preserve all the se-

mantic information shared across modalities, and 2) learn a

disentangled representation that corresponds to textual con-

cepts at diverse granularity levels. To this end, we pro-

pose the following data-generating process underlying the

visual-language data distribution.

Notations. We indicate the dimensionality of a vector with

d(·). We denote a subset of dimensions of a vector z with

[z]B with the index set B. We define the set of indices

whose corresponding values are nonzero in a vector m with

B(m) := {i ∈ d(m) : [m]i ̸= 0}.

Data-generating processes. We depict the data-generating

process in Figure 2 and in (1).

zT := zI ⊙m; i := gI(zI, ϵI); t := gT(zT, ϵT). (1)

We assume that each pair of image i ∈ I ⊂ R
d(i) and

text caption t ∈ T ⊂ R
d(t) originate from semantic infor-

mation zI ∈ ZI ⊂ R
d(zI), together with modality-specific

variations ϵI and ϵT (e.g., illumination for images, tenses

for text), through generating functions gI : (zI, ϵI) 7→ i and

gT : (zT, ϵT) 7→ t respectively. We treat the text caption as

continuous variables, as each word can be represented with

a continuous word embedding vector in practice [3, 30].

As demonstrated in Figure 1, text captions of the same

image often convey partial information of the entire im-

age semantics. Thus, we associate each text caption’s rep-

resentation zT := m ⊙ zI with a binary random mask

m ∈ M ⊂ {0, 1}d(zI) that eliminates information absent

in the specific caption t.

i t

ϵI ϵTzI zT

m

Figure 2. The data-generating process. The text representation zT

contains partial information of the vision representation zI, as indicated

by masking m. Modal-specific information is represented as ϵI and ϵT.

Dashed edges indicate potential statistical dependence.

Goals. Our two goals can be formalized as follows.

a Preserving cross-modal information: identifying the

complete latent representation zI.

b Disentangling concepts: identifying concepts zT associ-

ated with a given textual description t at different granu-

larity levels potentially unseen during training.

Examples. In Figure 1, the image i contains concepts

“bear”, “chair”, and “pen”, which we assume correspond to

three components in the representation zI, say [zI]1, [zI]2,

and [zI]3. The first two COCO captions t(1) and t
(2) men-

tion only a subset of these concepts, i.e., (“bear”, “pen”)

and (“bear”, “chair”) separately. Thus, the masks for these

captions are m(1) = [1, 0, 1] and m
(2) = [1, 1, 0]. The vari-

ables ϵI and ϵT represent modality-specific nuance factors

such as illumination conditions in the image i and syntax

in the text t. For Goal a, we seek to preserve the complete

information zI. This involves retaining all relevant textual

concepts present in the captions, namely “bear”, “chair”,

and “pen” from captions t
(1) and t

(2). For Goal b, we

intend to disentangle the representation zI into finer con-

cept blocks potentially unseen in the training. This includes

identifying individual concepts such as “bear” in the dimen-
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sion [zI]1, even if the training captions only include “bear”

in combination with other concepts.

4. Identification Theory

In this section, we present the theoretical results towards

Goal a and Goal b. We show that under a suitable learning

objective (2), the learned variables (ẑI, ẑT) can be identified

with the corresponding true quantities (zI, zT) up to certain

equivalent classes. In particular, we resort to the block-

wise identifiability [18, 19, 43, 49] throughout this work.

This suffices for our purpose since often several dimensions

jointly (i.e., a block) comprise a meaningful concept while

a single dimension may not be interpretable.

Definition 4.1 (Block-wise Identifiability). The true vari-

able v is block-wise identifiable if it is related to its estimate

v̂ through an invertible map v 7→ v̂.

The learning objective. Our estimation model consists of

vision/text encoders (fI, fT) (smooth, invertible functions),

and a masking function m̂ : T → M that estimates the true

mask m underlying a given text caption t.

argmin
fI,fT,m̂

∥m̂(t)∥0
︸ ︷︷ ︸

Lsparsity

, subject to:

argmin
fI,fT,m̂

∥fI(i)⊙ m̂(t)− fT(t)∥

︸ ︷︷ ︸

Lalign

, ∀(i, t).
(2)

Our learning objective (2) consists of an alignment term

Lalign that draws the positive pairs across modalities. The

negative pairs in regular contrastive losses [8, 35, 37] can

be implemented through an entropy term at the sample

limit [47]. This serves the same role as the invertibil-

ity condition on the encoder models [43], which we di-

rectly assume for theoretical convenience. In Section 5,

we discuss practical considerations for constructing nega-

tive pairs. We enforce sparsity regularization Lsparsity on

the inferred mask m̂ to select the simplest representation.

We introduce our key conditions in Condition 4.2 and

theoretical results in Theorem 4.3.

Condition 4.2 (Identification Conditions).

i [Smoothness & invertibility]: Generating functions gI
and gT are smooth and have smooth inverses.

ii [Fully-supported p(zI,m)]: The joint distribution

over the semantic variable zI and the mask m is fully

supported: p(zI,m) > 0 for any (zI,m) ∈ ZI ×M.

Discussion. Condition 4.2-i ensures the generating func-

tions (gI, gT) preserve latent variables’ information, with-

out which the task of recovering such latent variables would

be ill-posed. Practically, the high dimensionality of image

data i offers sufficient capacity to hold all information, and

the text variable t only contains information filtered through

its mask m. This condition is widely employed in the latent-

variable identification literature [13, 17, 18, 43]. Condi-

tion 4.2-ii prescribes that the representation zI and the mask

m that marginally appear in the training distribution should

also be present jointly with non-zero probability density. In-

terpreting the mask m as a concept selector (e.g., selecting

”bear” and ”pen”), this condition ensures that each concept

retains its full range of variations (such as different shapes

of bears and lengths of pens) across various mask selections.

To satisfy this requirement, one can restrict the joint support

ZI×M to an appropriate subset, ensuring that only relevant

combinations of zI and m are present. Alternatively, one

can enrich the caption set for each image, thereby increas-

ing the diversity and coverage of concept combinations and

filling in the joint support. This aligns with recent caption-

augmentation techniques [21, 23–25, 54] as discussed in

Section 1, revealing the synergy between our framework

and existing efforts in the community.

Theorem 4.3 (Concept Representation Identification). We

assume the data-generating process in (1). Let (fI, fT, m̂)
be an optimum of (2). Under Condition 4.2, the true repre-

sentation [z]
B̃

is block-wise identifiable for any index set B̃

such that B̃ = ∪m∈VB(m) or B̃ = ∩m∈VB(m) over any

subset of masks V ⊂ M.

Concept preservation. Theorem 4.3 states that one can

recover the concept block [zI]B(m) associated with each in-

dividual text caption in the dataset M. 1 Furthermore, it

ensures that the union of concepts [zI]∪m∈VB(m) from any

subset of text captions V ⊂ M can be preserved. In the

running example of Figure 1, our formulation allows us to

preserve concepts (“bear”, “pen”, “chair”) in the image rep-

resentation by selectively matching them with the two cap-

tions, whereas existing models like CLIP may lose either

“pen” and “chair” since they are only mentioned in one cap-

tion. Therefore, Theorem 4.3 effectively addresses Goal a.

Concept disentanglement. The intersection operation in

Theorem 4.3 empowers us to disentangle representations

into potentially atomic concepts. In the example of Fig-

ure 1, we can identify the concept “bear” as the intersection

of the two text captions, despite the absence of a standalone

caption containing only “bear” in the dataset. Consequently,

this part of the statement tackles Goal b. Our results un-

derscore the importance of associating each image with a

diverse set of captions that share overlapping concepts.

Theoretical contribution. Theorem 4.3 extends existing

theoretical frameworks [9, 43, 49]. Notably, Yao et al.

[49] provide identification guarantees for shared represen-

tations over multiple views, generalizing earlier results con-

fined to two views [9, 43]. This multi-view formulation

1We refer to a text caption with its mask m to simplify the notation.
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is analogous to our setup when considering each group of

text captions t associated with the same mask m as a dis-

tinct view group. However, prior work [49] relies on ex-

plicit knowledge of these groupings to train view-specific

encoders. In contrast, our problem setting presents a greater

challenge since we have no access to this grouping infor-

mation. Specifically, given two captions of any different

images, it is unclear whether they stem from the same mask

(i.e., the same view group). Therefore, the identification

guarantees in prior studies do not apply to our setting. The-

orem 4.3 demonstrates that our estimation model, paired

with the learning objective (2), can automatically infer the

necessary grouping information (i.e., the masks). By doing

so, our approach relaxes the identification conditions in pre-

vious work, enabling effective representation identification

without explicit group knowledge.

5. SmartCLIP: Modular Vision-language

Alignment

Drawing on the theoretical framework in Section 4, we

present SmartCLIP, a modular alignment model designed

to achieve Goal a and Goal b. We discuss the implementa-

tion of the learning objective (2) and the model architecture.

Modular alignment through adaptive masking. The

masking function m̂(·) is instrumental in our modular align-

ment objective (2). SmartCLIP implements this function

with a transformer block that ingests a caption representa-

tion ẑT as its input and outputs a binary vector m̂(ẑT) via

a straight-through estimator [4].

Modular contrast construction. As discussed in Sec-

tion 4, the negative pairs in regular contrastive losses [8, 35]

serves a similar role as the invertibility assumption (Condi-

tion 4.2-i) [43, 47]. We denote generic image, text repre-

sentations as I, T, and positive, negative pairs with Ppos,

Pneg respectively. The canonical one-side contrastive loss

Lctr [37] is defined as:

Lctr

((

I
(i),T(i)

)

︸ ︷︷ ︸

Ppos

,
(

I
(i),T(j)

)

︸ ︷︷ ︸

Pneg

)

=−
1

N

N∑

i=1

log
exp

(
sim(I(i),T(i))

τ

)

∑N

j=1 exp
(

sim(I(i),T(j))
τ

) ,

(3)

where we denote the sample size, temperature, and cosine

similarity with N , τ , and sim(·) respectively.

Following the symmetric contrastive loss for CLIP [37],

our alignment loss consists of two contrastive loss terms

LctrI and LctrT that differ in the negative pairs:

LctrI := Lctr (Ppos,PnegI) , LctrT := Lctr (Ppos,PnegT) ,
(4)

with the positive and negative pairs defined as follows:

Ppos :=
(

ẑ
(i)
I ⊙ m̂(ẑ

(i)
T ), ẑ

(i)
T

)

, (5)

PnegI :=
(

ẑ
(i)
I ⊙ m̂(ẑ

(j)
T ), ẑ

(j)
T

)

, (6)

PnegT :=
(

ẑ
(j)
I ⊙ m̂(ẑ

(i)
T ), ẑ

(i)
T

)

. (7)

In particular, PnegI contrasts the image representation ẑ
(i)
I

in the positive pair with randomly sampled caption repre-

sentations ẑ
(j)
T (see the green region in Figure 3), whereas

PnegT contrasts the text representation ẑ
(i)
T in the positive

pair with randomly sampled image representations ẑ
(j)
I (see

the orange region in Figure 3).

Sparsity penalty. We implement Lsparsity in (2) with a ℓ1
term for its compatibility with deep-learning training:

Lsparsity = ∥m̂(t)∥1 . (8)

This term ensures that the textual concepts are encoded into

a minimal number of latent dimensions, promoting the dis-

entanglement of distinct concepts across text captions.

SmartCLIP training objective. In summary, the training

objective of SmartCLIP is a weighted sum of loss terms in

(4) and (8):

L = λalign · (LctrI + LctrT) + λsparsity · Lsparsity, (9)

where λalign and λsparsity denote the weighting coefficients.

6. Experiments

6.1. Setup

Implementation details. Following Long-CLIP [54], we

finetune the CLIP model [37] on ShareGPT4V [7], which

contains around 1 million image-text pairs. We employ

the position encoding in long-CLIP to handle 248 tokens

(c.f., the 77-token limit in the original CLIP). Compared to

the baseline CLIP model, we introduce a mask network m̂.

The masking network is designed as a single transformer

block, which takes the text sequence embedding ẑT from

the text encoder. Then we add an attention-pooling layer to

down-sample it to the same size as the CLIP representation,

e.g., 768 in ViT-L/14. We tested including more transformer

blocks in the mask network but did not observe significant

improvements. Therefore, we stick to one block for faster

training and inference. Unlike Long-CLIP [54] which pro-

cesses all the captions for each image at each gradient step,

we only sample one caption for each image, reducing our

overall training time by half. Specifically, on 8 H100 GPUs,

training a Vit-B/16 model for one epoch takes about 4 min-

utes with our model, whereas it takes around 7 minutes for

Long-CLIP. After the pooling layer, we apply sigmoid to
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𝓛𝒄𝒓𝒕𝑻

Positive

Negative

𝓛c𝒕𝒓𝑰
Positive

Negative

A very cute teddy 
bear holding a pen.

Image

Encoder

Text

Encoder

Mask

Network

Align

Mask

Network

Mask

Network

A very cute teddy 
bear holding a pen.

A stuffed bear that 
is sitting in a chair.

A brown bear wearing
a sweater next to a

pen and paper.

A very cute teddy 
bear holding a pen.

A dog is shopping.

Figure 3. The diagram of SmartCLIP. On the left, we introduce adaptive masking for alignment with different text prompts. The mask

network selects which part of the image representation to be used. On the right, we present our modular contrastive objectives (4).

Table 1. Results of short-caption text-image retrieval on the 5k COCO2017 validation set and the whole 30k Flickr30K dataset.

COCO Flickr30k

Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

B/16

CLIP 51.8 76.8 84.3 32.7 57.7 68.2 44.1 68.2 77.0 24.7 45.1 54.6

Direct Fine-tuning 37.4 62.3 72.1 21.8 43.4 54.5 25.7 45.8 55.4 17.9 34.5 43.1

Long-CLIP [54] 57.6 81.1 87.8 40.4 65.8 75.2 46.8 71.4 79.8 34.1 56.3 65.7

SmartCLIP (Ours) 61.9 83.3 89.7 42.4 68.2 77.8 55.6 78.2 85.0 36.3 58.8 67.8

L/14

CLIP 56.1 79.5 86.8 35.4 60.1 70.2 48.5 72.6 80.8 28.0 49.3 58.7

Direct Fine-tuning 37.9 63.1 72.2 23.1 45.1 55.9 26.0 46.3 55.6 17.9 34.9 43.5

Long-CLIP [54] 62.8 85.1 91.2 46.3 70.8 79.8 53.4 77.5 85.3 41.2 64.1 72.6

SmartCLIP (Ours) 66.0 86.2 92.6 48.5 73.1 81.7 63.9 84.4 90.2 43.8 66.5 74.8

restrict the output to the range (0, 1) and employ straight-

through estimation [4] to binarize the outputs. The training

batch size is 1024 and the learning rate is 10−6 for the CLIP

component and 10−3 for the mask network.

Evaluation. We evaluate the following datasets:

• Long text-to-image retrieval datasets: ShareGPT4V vali-

dation split [7] and Urban1k [54]. The captions for each

image are long and describe details about the image. Both

datasets contain 1000 text-to-image pairs.

• Short text-to-image retrieval datasets: COCO2017 vali-

dation split [27] and Flick30K [50]. Following Long-

CLIP [54], we use 30K Flickr training dataset.

• Zero-shot image classification datasets. We use bench-

mark datasets: Country211, Fer2013, Fgvc-aircraft, GT-

SRB, ImageNet, ImagetNet-V2, VOC2007, VOC2007-

Multi, and SUN397. 2

Baselines. In this paper, we benchmark our approach

against CLIP [37] and the recent state-of-the-art model

long-CLIP [54].

2https://github.com/LAION-AI/CLIP_benchmark

6.2. Comparison with CLIP Models

We present our experimental results across three key tasks:

long text-to-image retrieval, short text-to-image retrieval,

and zero-shot classification.

Long text-to-image retrieval. Table 2 showcases our

method’s performance on long text-to-image retrieval tasks.

SmartCLIP achieves substantial improvements over base-

line models, particularly the SOTA Long-CLIP, which is

designed to handle long text sequences. For example, on

the Urban1k dataset, SmartCLIP elevates the performance

from 78.9% to 90.0%, marking an impressive 14% boost.

Short text-to-image retrieval. Similarly, as illustrated in

Table 1, SmartCLIP significantly outperforms all base-

line models across various metrics and datasets in short

text-to-image retrieval tasks. The encouraging performance

gains show that SmartCLIP can capture detailed informa-

tion within images while simultaneously emphasizing the

main semantic content.

Zero-shot classification. To comprehensively evaluate our

model’s capabilities, we conduct zero-shot classification

benchmarks in Table 3. Both the standard CLIP model and

SmartCLIP demonstrate superior performance on differ-

ent datasets. Notably, SmartCLIP exhibits a slight perfor-
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Table 2. The R@1 of long-caption text-image retrieval on 1k

ShareGPT4V [2] validation set and Urban-1000 dataset. The best

results are bold. We cite the results from Long-CLIP [54].

ShareGPT4V Urban1k

I2T T2I I2T T2I

B/16

CLIP [37] 78.2 79.6 68.1 53.6

Direct Fine-tuning 94.1 93.6 - -

Long-CLIP [54] 94.6 93.3 78.9 79.5

SmartCLIP (Ours) 98.7 98.1 90.0 87.4

L/14

CLIP [37] 81.8 84.0 68.7 52.8

Direct Fine-tuning 95.3 95.4 - -

Long-CLIP [54] 95.8 95.6 82.7 86.1

SmartCLIP (Ours) 97.9 98.5 93.0 90.1

Table 3. Zero-shot classification performance on ViT-L/14

models. When the class name is very short, i.e., a single word

like ImageNet, CLIP model perform better. When the class

name is a combination of several words, our method achieves

better results, e.g., the road sign in GTSRB.

Dataset CLIP LongCLIP SmartCLIP

Country211 31.8 28.1 26.9

Fer2013 49.0 57.8 58.6

Fgvc-aircraft 31.7 30.6 30.4

GTSRB 50.2 48.9 52.4

ImageNet 75.3 72.9 72.5

ImageNet-V2 69.7 66.9 66.6

VOC2007 78.3 77.5 78.6

VOC2007-Multi 79.0 82.1 83.7

SUN397 67.5 72.5 72.1

This playful food sculpture transforms cucumbers into a fearsome T-Rex dinosaur.

The cucumbers form the main body, with whole cucumbers creating the legs and

tail, while sliced cucumbers make up the creature’s midsection. More cucumbers

are cleverly cut to shape the dinosaur’s head, and additional cucumbers are ar-

ranged to suggest muscular limbs. From its mouth erupts a dramatic spray of car-

rots, with finely julienned carrots creating the effect of fire. These bright orange

carrots provide a stunning contrast against the green vegetables. Shredded car-

rots cascade downward like flames, while more carrots are delicately cut to create

a flame-like texture. The carrots’ vibrant color makes the dinosaur appear truly

animated. Fresh celery leaves crown the creation, with celery fronds adding a dec-

orative touch around the body. More celery leaves create a natural backdrop,

while additional celery pieces add texture throughout. The celery’s feathered ap-

pearance provides an artistic flourish to the overall design.
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Figure 4. Example of Long-text-to-image generation. We replace the CLIP text encoder in SDXL with different finetuned CLIP models.

Given a very long text, CLIP [37] truncates the input to 77 tokens, resulting in information loss in the image. Our model learns to generate

details such as celery leaves on the back of the dinosaur while other models fail.

mance decline on ImageNet, which is expected since our

model is fine-tuned on the ShareGPT4V dataset featuring

long text captions, whereas ImageNet primarily consists of

short, often single-word class names. However, Smart-

CLIP excels on datasets with multi-word class names, such

as the GTSRB dataset, where it achieves the best perfor-

mance in accurately classifying road sign descriptions.

6.3. Ablation Studies

We analyze the three key components in our model: the

modular alignment module, the sparsity loss and the impact

of caption diversity in the data.

Modular alignment. After introducing the mask network,

we replace the standard contrastive learning with our se-

lective alignment module. As shown in Figure 5, this

change significantly improves performance. When using

standard contrastive learning instead of the modular con-

trastive module (indicated by the purple lines), performance

drops sharply. This happens because the mask information

allows the network to easily separate positive pairs from

negative ones, making the negative samples less informa-

tive. As a result, standard contrastive learning no longer

effectively helps the model learn meaningful information.

Alignment coefficient λalign. We test the impact of the

alignment coefficient λalign. The results in the right pan-

els of Figure 5 show that our method performs consistently

well across a wide range of λalign values, from 0.1 to 20.

This indicates that our approach is robust and does not re-

quire precise tuning of λalign to achieve good performance.

Sparsity coefficient λsparsity. We also examine the sparsity

coefficient λsparsity. The left panels of Figure 5 demonstrate

that adding sparsity to the mask network improves perfor-

mance. This supports our idea that promoting sparsity helps

the model focus on the most relevant concepts, enhancing

its ability to capture detailed information without being dis-

tracted by irrelevant details.

Caption diversity. We evaluate our model’s performance

under varying caption diversity conditions using the COCO

dataset [27]. As shown in Table 4, increasing the number of

captions per image enhances performance on the Flickr30K

dataset, though at the expense of degraded performance on

long-text-to-image retrieval tasks. Further improvements
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Figure 5. Ablation Studies on two proposed modules: selective alignment and sparsity. The baseline w.o. Modular means that we

replace our modular alignment module with standard contrastive learning alignment.
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Figure 6. Visualization of learned representations. Given an

image, we generate two captions (e.g., a zebra and a zebra and a

deer) and compute cosine similarities with the same image embed-

ding to perform binary classification for visualization using Score-

CAM [45]. Compared to baseline methods, our CLIP representa-

tions are more atomic and capture differences more effectively.

are achieved when we combine our training dataset with

COCO. These results highlight both the importance of cap-

tion diversity and our method’s capability to effectively han-

dle complex text-image datasets.

6.4. Additional Results

Visualization. While our quantitative results demonstrate

superior performance across various tasks, we also ex-

plore the qualitative aspects of our model by visualizing the

learned representations. The visualization results are shown

in Figure 6. We employ the ScoreCAM method [45] for

this purpose. For each image, we generate two distinct cap-

tions, such as “a zebra” and “a zebra and a deer”. We then

compute the cosine similarity between the image embed-

ding and each of the two text embeddings. These similarity

scores serve as logits for a classification task, which are then

input into the ScoreCAM algorithm. SmartCLIP success-

fully learns modular representations, accurately capturing

the relevant differences between captions.

Plug and play for text-to-image generation. One main

advantage of SmartCLIP over other CLIP models trained

from scratch is the low computational cost of finetuning.

Additionally, our fine-tuned text encoder can replace the

CLIP text encoders in large-scale models in a plug-and-play

manner. Specifically, we substitute the text encoder in the

SDXL [36] model with both Long-CLIP and SmartCLIP.

NumCapPerImg-COCO T2I I2T LongT2I LongI2T

1 53.6 39.3 85.3 89.3

3 53.6 40.9 85.3 88.6

5 56.4 41.2 85.2 86.5

Ours-ShareGPT 55.6 36.3 98.7 98.1

+COCO 57.0 38.4 97.8 98.5

Table 4. Retrieval results on Flickr30K [50] and ShareGPT-val [7]

with models trained with different caption counts per image (top)

and mixing long and short text-image datasets (bottom).

Table 5. Long text to image generation performance. We use

the long captions (usually around 200 tokens, beyond the hard con-

straint 77 of the original CLIP model) to generate images with

SDXL model [36], then we compare the generated images against

the real images in ShareGPT4V validation split.

Method KID ↓ Pr ↑ Re ↑ F1 ↑ DINO-L ↑

LongCLIP 1.05 0.238 0.768 0.363 0.401

SmartCLIP 1.02 0.258 0.791 0.389 0.414

As illustrated in Figure 4, our text encoder demonstrates a

superior understanding of the long text, generating detailed

elements such as celery leaves in the background. Further-

more, Table 5 presents quantitative results on image gen-

eration from long captions in the ShareGPT4V validation

split. Our method consistently achieves better performance

across various metrics, showcasing its effectiveness in han-

dling complex, long text inputs.

7. Conclusion and Limitation

In this work, we address the information misalignment

and representation entanglement issues in existing vision-

language models (e.g., CLIP). We establish theoretical con-

ditions for effectively connecting text representations to

atomic-level visual features and propose SmartCLIP, a

principled, refined vision-language model. Our experimen-

tal results validate both our theoretical results and the prac-

tical effectiveness of SmartCLIP in advancing multimodal

learning. Limitation. As discussed earlier, Condition 4.2-ii

could be violated for datasets in which a subset images are

paired with a limited number of captions compared to oth-

ers. In Section 4, we discuss practical strategies to mitigate

such issues. Devising alternative theoretical conditions may

provide additional insights into fully utilizing all pairing in-

formation, which we leave as future work.

29787



Acknowledgement

We would like to acknowledge the support from NSF Award

No. 2229881, AI Institute for Societal Decision Making

(AI-SDM), the National Institutes of Health (NIH) under

Contract R01HL159805, and grants from Quris AI, Florin

Court Capital, and MBZUAI-WIS Joint Program. The work

of L. Kong is supported in part by NSF DMS-2134080

through an award to Y. Chi.

References

[1] Kartik Ahuja, Divyat Mahajan, Yixin Wang, and Yoshua

Bengio. Interventional causal representation learning. In In-

ternational conference on machine learning, pages 372–407.

PMLR, 2023. 3

[2] Alberto Baldrati, Lorenzo Agnolucci, Marco Bertini, and Al-

berto Del Bimbo. Zero-shot composed image retrieval with

textual inversion. In Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pages 15338–15347,

2023. 1
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