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Figure 1. Test-time visual in-context tuning (VICT) on six representative vision tasks under distribution shifts. We benchmark
the robustness of VICL with 15 common corruptions adopted in [23, 31], and report the averaged performance across all corruptions.
Existing VICL models like Painter exhibit poor generalization capability to unseen new domains when the task prompts come from the
training distribution (i.e., zero-shot). Performances are even worse when given task prompts from the test distribution (i.e., one-shot). By
performing VICT at test time, we can significantly improve Painter in both zero-shot and one-shot manners.

Abstract

Visual in-context learning (VICL), as a new paradigm in
computer vision, allows the model to rapidly adapt to var-
ious tasks with only a handful of prompts and examples.
While effective, the existing VICL paradigm exhibits poor
generalizability under distribution shifts. In this work,
we propose test-time Visual In-Context Tuning (VICT), a
method that can adapt VICL models on the fly with a sin-
gle test sample. Specifically, we flip the role between the
task prompts and the test sample and use a cycle consis-
tency loss to reconstruct the original task prompt output.
Our key insight is that a model should be aware of a new
test distribution if it can successfully recover the original
task prompts. Extensive experiments on six representative
vision tasks ranging from high-level visual understanding to
low-level image processing, with 15 common corruptions,
demonstrate that our VICT can improve the generalizabil-
ity of VICL to unseen new domains. In addition, we show
the potential of applying VICT for unseen tasks at test time.
Code: https://github.com/Jiahao000/VICT.

1. Introduction

Following the success of in-context learning (ICL) [2, 7, 21]
in natural language processing (NLP), visual in-context
learning (VICL) [5, 52] has shown promising performance
in developing generalist models for vision tasks. Inspired

by prompting in NLP that defines tasks using language se-
quences as a general interface, existing VICL works [5, 52]
use images themselves as a natural interface for general-
purpose visual perception. They formulate VICL as an im-
age inpainting task, i.e., given an input-output example de-
scribing a specific task (i.e., the prompt) as well as an in-
put image, they are assembled in a grid and the problem is
casted as inpainting the missing part of the grid (i.e., the pre-
diction) consistently with the given task prompts. This en-
ables adapting a pre-trained vision model to various down-
stream tasks with only a handful of prompts and examples.

By default, current VICL models are frozen during de-
ployment. However, their performance might suffer in real-
world deployment as the test distribution usually changes
and deviates from the training one. This naturally raises a
question: what is the generalizability of VICL models un-
der distribution shifts? In this work, we investigate this as-
pect focusing on controllable shifts due to image corrup-
tions. We observe that the existing VICL paradigm like
Painter [52] exhibits poor generalizability to unseen new
domains when the task prompt comes from the training dis-
tribution, as shown in Figure 1. Surprisingly, performances
are even worse when given input-output task prompts be-
longing to the same distribution as the test input.

Driven by this observation, we propose to rely on test-
time visual in-context tuning (VICT) to adapt VICL mod-
els on the fly to unseen distributions using only the given
test sample. The motivation is that each test input offers a
hint about the test distribution. Thus, we modify the VICL
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model at test time to make full use of this hint by setting up
a one-sample learning problem. Specifically, given input-
output task prompts and the test input, we first use the VICL
model to inpaint the output image. We then flip the role be-
tween the task prompts and the test sample, i.e., we treat the
predicted test output as the prompt to the model and recon-
struct the original output of task prompts. This allows us to
tune the parameters of the whole model in a self-supervised
manner that can be applied to arbitrary tasks. Our key in-
sight is that a model should be aware of a new test distribu-
tion if it can successfully recover the original task prompts
conditioned on its in-context inference. Such a cycle con-
sistency supervision signal naturally exists in the context of
VICL without requiring any additional training data or an-
notations, thus making it an appealing self-supervisory task
for test-time visual in-context training.

We explore VICT in two settings: (i) zero-shot setting,
where the task prompts are from the training distribution
(i.e., clean images), and (ii) one-shot setting, where the task
prompts are from the test distribution (i.e., corrupted im-
ages). Without loss of generality, we consider Painter [52]
as our VICL model, for its simplicity in design and its wide
applicability. As shown in Figure 1, our simple method
leads to substantial improvements across 15 common cor-
ruptions [23, 31] on six representative vision tasks rang-
ing from high-level visual understanding to low-level im-
age processing, including depth estimation on NYUv2 [40],
semantic segmentation on ADE20K [63], panoptic segmen-
tation on COCO [27], image denoising on SIDD [1], image
deraining on the merged deraining dataset [57], and low-
light image enhancement on LoL [53].

Our main contributions are summarized as follows:
1) We propose a new cycle consistency task for test-time

visual in-context tuning. To the best of our knowledge, we
are the first to perform test-time training for VICL.

2) We contribute the first study on the generalizability of
VICL under distribution shifts. We observe that the exist-
ing VICL paradigm exhibits poor generalizability to unseen
new domains. Such a phenomenon can hardly be recovered
even given input-output task prompts with the same distri-
bution as the test input.

3) We conduct extensive experiments on six representa-
tive vision tasks across 15 common corruptions. VICT sig-
nificantly improves Painter in both zero-shot and one-shot
manners. Our zero-shot or one-shot VICT can even out-
perform Painter trained with more few-shot corrupted ex-
amples. We also explore the potential of applying VICT for
unseen tasks at test time, further demonstrating its promise.

2. Related Work
In-context learning. In-context learning has been exten-
sively explored in the NLP literature after the introduc-
tion of large language models. Seminal works in the field

like GPT-3 [7] go as far as claiming that language mod-
els are indeed few-shot learners. All recent language mod-
els like [13, 46, 47] have the ability to adapt their behav-
ior based on few-shot examples provided in their context
window or directly to follow simple user instructions [10].
Similar concepts have been extended to multimodal models
with seminal works like Flamingo [2] showing few-shot ca-
pabilities by providing examples as interleaved text and im-
ages in the context window. Some of these capabilities are
now available for extremely large commercial multimodal
large language models [35, 42, 43].

Apart from using languages as the general interface, a re-
cent line of work introduces purely visual in-context learn-
ing (VICL) by training vision generalist models that can
perform arbitrary visual tasks following one or few visual
examples provided at inference time. Two representative
works developed in parallel are: (i) MAE-VQGAN [5],
which trains a variant of MAE [22] on a dataset of figures
extracted from academic papers, and (ii) Painter [52], which
uses a similar idea but trains its model on a set of standard
academic benchmark datasets. More recently, this strategy
has been expanded in LVM [3], where even more visual
datasets are collected to train an autoregressive generative
model. We base our work on Painter [52] due to its sim-
plicity in design and its wide applicability. It is the one that
provides both the available code and model weights, and has
already been extensively evaluated across several standard
benchmarks.
Generalization under distribution shifts. Machine learn-
ing models suffer from performance drops when tested on
a data distribution different from the one they are trained
on [17, 49, 50, 61]. The lower the drop, the more we de-
fine a model robust or able to generalize to distribution
shifts. Common strategies to increase model robustness
include using heavy data augmentations [11, 23, 44, 62]
or extremely large training distributions going up to web
scale [33, 37, 59]. Nevertheless, most of the experiments
are done in a classification setting. To the best of our knowl-
edge, there is no previous work exploring the robustness of
VICL models. We are the first to counteract performance
drops in VICL under distribution shifts.
Test-time training. An alternative way of counteracting
performance drops due to distribution shifts is test-time
training [6, 8, 16, 28, 41, 48, 51]. This accounts to un-
freezing the model at test time and fine-tuning it on the
target distribution (or a single sample from it) through
self-supervision. Early works propose this paradigm us-
ing self-supervised pretext tasks (e.g., rotation predic-
tion [18]) to explicitly improve generalization under image
corruptions [41] or improve in specific tasks where self-
supervised losses can be clearly defined like depth estima-
tion [26, 36, 45], reinforcement learning [20, 32], track-
ing [15, 38], and NLP [4, 56]. More recently, the field
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Figure 2. Overview of our VICT pipeline. Given a pair of task prompts (x, y) and a test input image xt, we first construct a four-cell
grid-like image canvas I = (x, y, xt,∅), with an empty cell at the bottom right. We then feed I into the VICL model (e.g., Painter) to
predict the test output ŷt. Afterward, we flip the role between input-output task prompts and input-output test samples, i.e., we provide the
predicted ŷt as the prompt to the model, recreating a new four-cell grid-like image canvas I ′ = (x,∅, xt, ŷt), with an empty cell at the top
right. The new I ′ is fed into the same model to predict the task prompt output ŷ. We finally optimize the model by minimizing the distance
between ŷ and y via a standard regression loss.

has realized that MAE [22] provides a very strong self-
supervised pretext task and has therefore been employed
in the context of test-time training [16]. Finally, some
recent works [14, 24, 30, 39, 58] also employ the test-
time training paradigm for vision-language models to im-
prove their generalization. To the best of our knowledge,
ours is the first work to explore test-time training applied
to VICL models, where previous self-supervised pretext
tasks [9, 12, 18, 22, 25, 34, 54, 55, 60] cannot be employed
due to their constraints on the single-image context.

3. Methodology
Our visual in-context tuning (VICT) is a simple yet effec-
tive test-time training approach to adapt visual in-context
learning (VICL) models on the fly. In this section, we first
introduce some preliminaries on VICL in Section 3.1. We
then detail our VICT pipeline in Section 3.2.

3.1. Visual In-Context Learning
In-context learning is a new paradigm originating from
large language models such as GPT-3 [7] in NLP. Unlike
traditional learning paradigms, in-context learning formu-
lates different NLP tasks as text completion tasks and makes
predictions conditioned on one or many support examples
provided to the model in the context window. Extending
this paradigm to tasks requiring a dense visual output in the
form of images is nontrivial and has not been addressed in
the literature for a long time. Recently, [5, 52] formulate
VICL as an image inpainting task by combining images and
labels into a grid-like new image and using masked image
modeling for pre-training, granting the models with the in-
context learning ability.

Formally, let S = {(xi, yi)}Ni=1 denote the set of support
input-output examples (a.k.a., task prompts) where x is an
image and y is its visual label (e.g., a segmentation mask).1

Given S and a new test image xt as input, VICL can be
formulated as follows:

yt = fθ(S, xt), (1)

where fθ (∗) is the VICL model parametrized with θ, yt is
the corresponding output label of xt. Usually, we assume S
and xt are drawn from the same distribution. However, this
is rarely the case for real-world deployment. Therefore, in
this work, we mainly consider the scenario where a distri-
bution shift like an image corruption occurs for xt.

In the experiment section, we will show how the pres-
ence of such distribution shifts significantly degrades the
performance of the VICL models. Moreover, we will ad-
ditionally show how simple solutions like providing in-
context examples from the target (corrupted) distribution
would not fix the problem due to the limited generalization
ability of the current VICL models.

3.2. Test-Time Visual In-Context Tuning
In this work, we propose to leverage test-time training [41]
to counteract the distribution shifts between training and
testing data, with the goal of making VICL models more ro-
bust. We argue that VICL models are particularly amenable
to be optimized at test time on arbitrary tasks thanks to the
availability of the N shots provided as context. The core
intuition of our method is to use the provided in-context ex-
amples to define a self-supervised loss that can be used at

1Following previous works, we set N = 1 in practice.
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Algorithm 1 Pseudocode of VICT in a PyTorch-like style.

# f: VICL model (e.g., Painter)
# theta_0: pre-trained model weights
# x: task prompt input
# y: task prompt output
# mask_token: mask token for the empty cell
# steps: number of test-time optimization steps

for x_t in loader: # load a test sample x_t
f.params = theta_0 # initialize
# test-time optimization
for t in range(steps):

# predict the test sample output
y_t_pred = f((x, y, x_t, mask_token))
# predict the task prompt output
y_pred = f((x, mask_token, x_t, y_t_pred))

# regression loss
loss = SmoothL1Loss(y_pred, y)

# update model
loss.backward()
update(f.params)

# inference with the updated model
y_t_pred = f((x, y, x_t, mask_token))

test time to train any VICL models on the fly on any task.
The overall pipeline of our VICT is illustrated in Figure 2.

Specifically, given a pair of task prompts (x, y) from
S and a test input xt, we construct a grid-like image can-
vas with four cells, denoted by an ordered quadruple2 I =
(x, y, xt,∅), where ∅ is an empty cell. We then feed I into
the VICL model fθ to predict the test output ŷt:

ŷt = fθ (I) = fθ ((x, y, xt,∅)) . (2)

Afterward, with the obtained test output, we flip the role be-
tween input-output task prompts and input-output test sam-
ples, creating a new four-cell grid-like image canvas with
the order of I ′ = (x,∅, xt, ŷt). The new I ′ is fed into fθ
again to predict the task prompt output ŷ:

ŷ = fθ (I
′) = fθ ((x,∅, xt, ŷt)) . (3)

We then use a simple regression loss in pixel space to opti-
mize the model by minimizing the distance between ŷ and
y:

θxt = arg min
θ

L (ŷ, y) (4)

In practice, we follow [52] to use smooth-ℓ1 [19] loss. Us-
ing this loss we can optimize the parameters θ of the model
for a small numbers of steps for each xt and, eventually,
make a prediction on xt as fθxt

((x, y, xt,∅)).
In our formulation, the gradient-based optimization for

Equation 4 always starts from the initial pre-trained model
weights θ0 for each test input. When a new test input ar-
rives, we discard θxt

and reset the weights to θ0. We follow

2The image order is top left, top right, bottom left, and bottom right,
respectively.

this strategy to not have any assumption on the test inputs
and treat them independently at test time, i.e., we do not
assume that they come from the same distribution. Our
generic formulation is completely agnostic on the VICL
models considered, on the type of tasks being solved, and
on the type of in-context samples provided to it.

The pseudo-code of VICT is in Algorithm 1.

4. Experiments

4.1. Implementation Details

Tasks and datasets. Following [52], we evaluate the model
performance on six representative vision tasks ranging from
high-level visual understanding to low-level image process-
ing, which includes depth estimation on NYUv2 [40], se-
mantic segmentation on ADE20K [63], panoptic segmenta-
tion on COCO [27], image denoising on SIDD [1], image
draining on the merged draining datasets [57], and low-light
image enhancement on LoL [53]. To evaluate the robust-
ness to distribution shifts of the model on these datasets,
we follow the setup in [23, 31] to corrupt the aforemen-
tioned datasets and simulate hard distribution shifts. The
corrupted datasets contain 15 types of corruptions, cover-
ing noise (gaussian noise, impulse noise, shot noise), blur
(defocus blur, glass blur, motion blur, zoom blur), weather
(fog, frost, snow), and digital (brightness, contrast, elas-
tic transform, jpeg compression, pixelate) categories. Each
type of corruption has five levels of severity. We denote
the corrupted datasets as NYUv2-C, ADE20K-C, COCO-
C, SIDD-C, Rain-C, and LoL-C, respectively. Due to the
space constraints, the results in the main text are limited to
the most severe level (i.e., level 5) that corresponds to the
strongest distribution shift. We provide the results on the
other four levels in the supplementary material.
Baselines. Without loss of generality, we consider
Painter [52] as our VICL model for its simplicity in design
and its wide applicability. We study VICT in two settings:
(i) zero-shot setting, where the task prompts are from the
training distribution (i.e., clean images), and (ii) one-shot
setting, where the task prompts are from the test distribu-
tion (i.e., corrupted images). For the one-shot setting, apart
from comparing with the frozen Painter using one-shot cor-
rupted examples as task prompts, we also consider a base-
line that further trains Painter with the one-shot corrupted
samples using the same pre-training objective as in [52]. We
also consider training Painter with more few-shot examples
using the same settings to examine to what extent VICT
can outperform a larger number of few-shot fine-tuning of
Painter.
Training details. In all experiments, we use the pre-trained
Painter based on ViT-Large provided by the authors of [52].
We perform VICT using an AdamW [29] optimizer, with
betas as (0.9, 0.999), a weight decay of 0, a batch size of 1,
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Table 1. System-level comparison on six representative vision tasks across 15 corruptions. Results are on corruption level 5. We
consider two settings: (i) zero-shot setting, where the task prompts are from the training distribution (i.e., clean images), and (ii) one-
shot setting, where the task prompts are from the test distribution (i.e., corrupted images). “avg” denotes the averaged results over 15
corruptions.

method brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom avg

(a) depth estimation NYUv2-C (A.Rel ↓)

zero-shot setting:
Painter 0.129 0.215 0.712 0.109 0.129 0.536 0.200 0.612 0.189 0.386 0.167 0.187 0.142 1.951 0.209 0.392
VICT 0.108 0.216 0.631 0.108 0.133 0.576 0.191 0.541 0.181 0.310 0.139 0.134 0.140 1.856 0.210 0.365

one-shot setting:
Painter 0.126 0.285 0.743 0.109 0.132 0.853 0.901 0.622 0.901 0.392 0.174 0.194 0.440 1.964 0.212 0.537
VICT 0.097 0.193 0.180 0.107 0.128 0.227 0.241 0.210 0.278 0.159 0.121 0.114 0.150 0.662 0.214 0.205

(b) semantic segmentation ADE20K-C (mIoU ↑)

zero-shot setting:
Painter 40.4 11.7 27.9 31.2 35.0 23.3 24.8 25.6 26.1 38.6 31.8 40.4 25.9 9.4 13.1 27.0
VICT 40.9 12.7 28.2 31.7 36.4 23.7 25.5 26.3 27.4 38.8 31.9 40.9 28.0 17.3 13.6 28.2

one-shot setting:
Painter 40.9 11.7 27.5 31.3 35.0 22.1 19.7 25.8 20.3 38.5 31.3 40.3 23.2 6.5 13.3 25.8
VICT 41.7 21.0 28.8 32.2 37.0 24.7 24.4 27.0 25.2 39.7 32.8 41.5 26.6 21.7 14.9 29.3

(c) panoptic segmentation COCO-C (PQ ↑)

zero-shot setting:
Painter 38.1 15.5 25.5 30.0 33.3 26.0 24.9 23.8 25.5 31.9 27.6 34.9 26.3 19.8 12.5 26.4
VICT 38.7 15.7 25.8 30.3 33.9 26.7 25.3 24.3 25.9 32.4 27.7 35.4 26.7 21.9 12.7 26.9

one-shot setting:
Painter 38.1 14.2 24.8 30.0 33.1 25.2 21.5 23.7 22.0 31.5 27.5 34.6 23.8 17.2 12.1 25.3
VICT 38.6 16.9 25.4 30.4 33.8 26.6 24.0 24.6 24.5 32.3 27.4 35.0 25.2 24.9 12.4 26.8

(d) denoising SIDD-C (PSNR ↑)

zero-shot setting:
Painter 8.72 25.49 32.48 33.20 16.86 8.79 17.50 33.18 17.50 23.18 29.47 34.84 25.27 9.86 29.80 23.08
VICT 8.86 25.65 32.91 32.96 17.00 8.84 17.58 33.00 17.50 24.86 29.68 34.76 25.21 9.75 29.67 23.22

one-shot setting:
Painter 9.12 25.16 31.99 33.23 16.68 9.24 17.99 33.14 18.33 22.73 29.30 34.87 24.69 10.50 29.76 23.12
VICT 13.94 25.32 32.41 34.45 16.45 11.15 20.13 32.96 19.93 26.80 30.11 35.01 24.93 14.90 29.95 24.56

(e) deraining Rain-C (PSNR ↑)

zero-shot setting:
Painter 10.74 14.15 19.54 20.10 13.91 12.49 19.85 19.80 20.16 24.86 18.52 22.81 20.11 11.89 17.93 17.79
VICT 10.89 14.24 19.58 20.31 13.94 12.62 20.42 19.83 20.67 24.97 18.56 23.05 20.47 12.05 17.98 17.97

one-shot setting:
Painter 11.04 13.95 19.61 20.15 13.82 12.87 19.51 19.87 19.58 24.85 18.62 22.88 19.68 12.16 17.95 17.77
VICT 17.38 14.69 20.36 21.44 14.67 17.69 22.33 20.48 22.24 25.31 19.05 23.92 21.37 19.53 18.28 19.92

(f) low-light enhancement LoL-C (PSNR ↑)

zero-shot setting:
Painter 16.26 13.43 18.80 19.83 11.24 11.62 12.50 18.82 12.91 15.87 18.01 21.12 17.75 13.77 16.60 15.90
VICT 16.39 13.57 19.24 19.84 11.37 11.64 12.51 19.23 13.00 16.00 18.11 21.20 19.16 13.92 17.06 16.15

one-shot setting:
Painter 16.74 13.50 18.85 19.83 11.02 11.76 13.14 18.95 13.74 15.84 18.15 21.12 16.54 13.19 16.59 15.93
VICT 18.19 15.03 18.99 19.88 11.76 12.01 14.95 19.22 14.99 16.12 18.23 21.09 19.84 16.96 16.91 16.94
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Figure 3. Comparison with few-shot Painter on six vision tasks with corruptions. We randomly corrupt a certain number of images in
the training set, using 1, 2, 4, 8, 16, 32, and 64 shots for training and deploying the model in the full corrupted test sets. We report the final
results averaged across 15 corruptions. Our zero-shot or one-shot VICT can outperform Painter trained with more few-shot examples.

and a fixed learning rate of 1e-6. Unless otherwise speci-
fied, we train each test sample for 60 steps. The choice of
60 steps is purely computational and more steps are likely
to further improve performance, judging from the positive
trend observed in Figure 4. Note that we do not apply any
data augmentations for VICT as many data augmentations
are in fact distribution shifts in our evaluation benchmarks.
Training with them is analogous to training on the test distri-
butions. Therefore, to solely study the generalization ability
to new test distributions, we purposely choose not to use any
data augmentations, even though they could improve our re-
sults at face value. Every iteration of VICT is performed
on the same concatenated grid-like image, with each sub-
image resized as 448 × 448, which is the same as what we
later use for in-context inference. During VICT, we only
optimize the encoder weights. We have experimented with
training both the encoder and the decoder and found that the
difference is negligible, which is also consistent with the ob-
servations in [16, 41]. A detailed comparison is provided in
the experiment section.

4.2. Main Results
System-level comparison. We compare VICT with Painter
under 15 common corruptions as introduced in Section 4.1.
We perform experiments on six representative vision tasks
covering high-level visual understanding and low-level
image processing, which includes depth estimation on
NYUv2-C, semantic segmentation on ADE20K-C, panop-

tic segmentation on COCO-C, image denoising on SIDD-C,
image draining on Rain-C, and low-light image enhance-
ment on LoL-C.

Table 1 reports the results. First of all, we observe that
Painter exhibits poor generalization ability under common
corruptions. For example, on ADE20K-C semantic seg-
mentation, Painter only achieves an average performance
of 27.0 mIoU, which is 22.9 mIoU lower than that on the
clean validation set (49.9 mIoU as reported in Figure 1).
Nevertheless, our VICT outperforms Painter by clear mar-
gins in both zero-shot and one-shot settings across differ-
ent tasks. When it comes to the zero-shot setting, VICT
achieves an average of -0.027 A.Rel on NYUv2-C depth
estimation, +1.2 mIoU on ADE20K-C semantic segmenta-
tion, +0.5 PQ on COCO-C panoptic segmentation, +0.14
PSNR on SIDD-C image denosing, +0.18 PSNR on Rain-C
image draining, and +0.25 PSNR on LoL-C low-light en-
hancement, respectively.

The performance gains of VICT over Painter are further
increased when we shift from the zero-shot setting to the
one-shot counterpart. Specifically, VICT achieves an aver-
age of -0.332 A.Rel on NYUv2-C depth estimation, +3.5
mIoU on ADE20K-C semantic segmentation, +1.5 PQ on
COCO-C panoptic segmentation, +1.44 PSNR on SIDD-
C image denoising, +2.15 PSNR on Rain-C image drain-
ing, and +1.01 PSNR on LoL-C low-light enhancement,
respectively. Besides, for the Painter baseline, using the
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Table 2. Test-time optimization on different modules. We use semantic segmentation on ADE20K-C for the ablation. Training only the
encoder performs similarly to training both the encoder and decoder, regardless of the zero-shot and one-shot settings.

module brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom avg

zero-shot setting:
Encoder 40.9 12.7 28.2 31.7 36.4 23.7 25.5 26.3 27.4 38.8 31.9 40.9 28.0 17.3 13.6 28.2
Both 40.9 12.5 28.2 31.7 36.4 23.8 25.7 26.5 27.4 38.8 31.9 41.0 27.9 16.9 13.5 28.2

one-shot setting:
Encoder 41.7 21.0 28.8 32.2 37.0 24.7 24.4 27.0 25.2 39.7 32.8 41.5 26.6 21.7 14.9 29.3
Both 41.7 21.0 28.7 32.1 36.9 24.4 24.4 27.0 25.3 39.6 33.0 41.6 26.8 21.5 15.1 29.3

one-shot setting does not always perform better than the
zero-shot setting. The average performances are even de-
graded in most cases, e.g., depth estimation on NYUv2-C
(0.392 A.Rel vs. 0.537 A.Rel), semantic segmentation on
ADE20K-C (27.0 mIoU vs. 25.8 mIoU), panoptic segmen-
tation on COCO-C (26.4 PQ vs. 25.3 PQ), image draining
on Rain-C (17.79 PSNR vs. 17.77 PSNR). In contrast, for
VICT, using the one-shot setting usually performs better
than the zero-shot setting. It is worth mentioning that our
zero-shot VICT can even outperform the one-shot Painter,
further demonstrating the effectiveness of VICT.
Comparison with few-shot Painter. In previous experi-
ments, we mainly compare with a frozen Painter using ei-
ther clean or corrupted examples as the task prompts. Here,
we further consider a scenario where more few-shot exam-
ples from the test distribution are available. Specifically, we
randomly corrupt a certain number of images in the training
set, using 1, 2, 4, 8, 16, 32, and 64 shots to train Painter
respectively and deploying the model in the full corrupted
test sets.

The results are shown in Figure 3. Both our zero-shot
VICT and one-shot VICT can consistently outperform the
one-shot Painter. When more few-shot examples are avail-
able for training, our VICT can still outperform Painter
below a certain threshold. We observe such a threshold
varies for different tasks, with high-level visual understand-
ing tasks having a higher threshold. It is worth noting that
in high-level visual understanding tasks like ADE20K-C se-
mantic segmentation and COCO-C panoptic segmentation,
both our zero-shot and one-shot variants of VICT nearly
match or even outperform the 64-shot Painter. In other
words, with only one or simply no labeled test sample(s),
VICT can achieve similar performances as models that use
significantly more labeled test samples to train. This phe-
nomenon is rather appealing as in practice it is rare to know
test distribution in advance, let alone obtaining a large num-
ber of labeled test samples.

4.3. Further Analysis
Effect of test-time optimization modules. We study the
effect of optimizing different modules at test time. We con-
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Zero-shot VICT
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Figure 4. Analysis on the trade-off between efficiency and ac-
curacy. We use semantic segmentation on ADE20K-C for the ab-
lation. VICT benefits from more training steps, while at the cost
of linearly increased training time.

sider two parameter groups: (i) the encoder, and (ii) both
the encoder and decoder. We use semantic segmentation on
ADE20K-C as an example task for analysis. The results are
shown in Table 2. Training only the encoder performs simi-
larly to training the entire model, regardless of the zero-shot
and one-shot settings. This makes sense since the encoder
acts as a feature extractor, which plays a key role in deter-
mining the representation quality. In contrast, the decoder
is only responsible for mapping the latent representation
back to its original resolution, which is more specialized
for reconstruction but less relevant for semantics. Thus, we
choose only to optimize the encoder at test time.
Effect of test-time optimization steps. We study the effect
of test-time optimization steps in Figure 4. VICT benefits
from more training steps, which keeps improving perfor-
mance even after 60 steps. However, it should be noted that
the runtime of our VICT is linearly increased with the num-
ber of training steps. For reference, it takes around 0.4 sec-
onds per step per test sample on a single A100 GPU. Thus,
in practice, one may decide the number of training steps
according to the pre-defined cost budget for deployment.
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Figure 5. Visualizations of test examples and predictions for
six main tasks with corruptions. We visualize both zero-shot
and one-shot settings for Painter and VICT. Zoom in for best view.

4.4. Qualitative Results
Results on main tasks. We visualize some test examples
and predictions from the validation set for different tasks
with corruptions, including depth estimation, semantic seg-
mentation, instance segmentation, image denoising, image
deraining, and low-light image enhancement. As shown in
Figure 5, VICT can make more accurate predictions than
Painter on all tasks.
Results on unseen tasks. In this work, we mainly con-
sider the distribution shifts with corruptions and conduct
experiments on the tasks that are seen in training. Here,
we further verify whether VICT can generalize to unseen
tasks. We explore this capability via visualizations. More
quantitative results are provided in the supplementary mate-
rial. Figure 6 provides examples of two unseen tasks includ-
ing foreground object segmentation and colorization. Both
Painter and our VICT can generalize to the foreground seg-
mentation task. This makes sense as similar segmentation
tasks (e.g., semantic segmentation and instance segmenta-
tion) have been seen during the training stage of Painter.
Nevertheless, our VICT further reduces noises and produces
finer masks. However, Painter cannot generalize to the col-
orization task that is totally unseen during training, produc-

Task prompts Test image Painter VICT Ground truth

Figure 6. Visualizations of test examples and predictions for
unseen tasks. The visualized tasks include foreground object seg-
mentation and colorization. Painter cannot generalize to totally
unseen tasks like colorization, whereas VICT can make decent
color predictions. Zoom in for best view.

ing only grayscale images or even wrong predictions from
other tasks (e.g., the last row). In contrast, our VICT can
produce decent colorful results. This further demonstrates
the potential of applying VICT for unseen tasks at test time.

5. Conclusion
Generalization under distribution shifts is the central theme
of deep learning. In this work, we have studied the ro-
bustness of VICL models and found that the existing VICL
paradigm exhibits poor generalization capability to unseen
new domains. Based on this observation, we proposed
a simple yet effective test-time visual in-context tuning
method to adapt VICL models to a single test sample on
the fly. We hope our explorations can pave the way for im-
proving the generalizability of VICL.
Limitations and future work. Our study has several lim-
itations: 1) Since we perform training for each test sam-
ple, our method is slower than the baseline applying a fixed
model at test time, which is a common limitation for test-
time training. Inference speed might be improved through
better architectural designs, training techniques, optimizers,
and hyper-parameters. However, it has not been the focus of
this paper. 2) Our proposed cycle consistency supervision
is a general self-supervised task. However, we cannot guar-
antee that it will produce useful gradients for every single
test distribution. We only focus on several representation
vision tasks and most popular corruption benchmarks for
distribution shifts. More tasks and benchmarks can be stud-
ied for future research. One possible extension of this work
is to apply similar test-time supervision in multi-modal in-
context learning, where cycle consistency supervision also
exists. We leave this exploration for future work.
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