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Abstract

We introduce LLaVA-Critic, the first open-source large mul-
timodal model (LMM) designed as a generalist evalua-
tor to assess performance across a wide range of multi-
modal tasks. LLaVA-Critic is trained using a high-quality
critic instruction-following dataset that incorporates di-
verse evaluation criteria and scenarios. Our experiments
demonstrate the model’s effectiveness in two key areas:
(i) LMM-as-a-Judge, where LLaVA-Critic provides reliable
evaluation scores, performing on par with or surpassing
GPT models on multiple evaluation benchmarks; and (ii)
Preference Learning, where it generates reward signals for
preference learning, enhancing model alignment capabil-
ities. This work underscores the potential of open-source
LMMs in self-critique and evaluation, setting the stage for
future research into scalable, superhuman alignment feed-
back mechanisms for LMMs.

1. Introduction
The ability of learning to evaluate is increasingly taking
on a pivotal role in the development of modern large mul-
timodal models (LMMs), as pre-training on existing web
data reaches maturity and the focus is shifting towards
post-training with AI-enhanced synthetic data, which shows
growing potential. Reliable AI evaluation is essential, not
only for offering scalable solutions to reduce human labor
in complex task assessments, but also for generating effec-
tive reward signals in reinforcement learning and guiding
inference-time search [31, 33, 36].

Existing LMMs have made tremendous progress in re-
cent research community [17], primarily on improving the
performance of various real-world vision tasks in single-
image [3, 8, 24], multi-image [13, 19] and video scenar-
ios [16, 22, 41]. It remains unexplored to develop open
LMMs to play the role of a judge and evaluate the perfor-
mance of multimodal models. For instance, a model can
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follow a well-designed, itemized evaluation criterion to pro-
vide a score between 1 and 10 for rating different model re-
sponses in a visual chat task [24]. Along with the score, it
would also offer the associated reasoning behind the eval-
uation, ensuring transparency and consistency in assessing
model performance. In this paper, we present the first at-
tempt to curate the instruction-following data particularly
for evaluation, based on which we develop a LMM, LLaVA-
Critic. Two primary scenarios/goals of building LLaVA-
Critic are highlighted:

• Scenario 1: LMM-as-a-Judge. Open-source LMMs that
can deliver reliable evaluation scores, comparable to or
surpassing proprietary models like GPT-4V [30]/-4o [32].
These models offer a free alternative to replace commer-
cial GPT models in various evaluation benchmarks.

• Scenario 2: Preference Learning. A scalable solution
for generating effective reward signals, reducing the need
for costly human feedback collection. This approach en-
hances preference alignment with AI-generated feedback.

Our experimental results demonstrate that: (i) As a
judge model, the evaluation scores and rankings pro-
vided by LLaVA-Critic show a high correlation with com-
mercial GPT models, making it a cost-effective alter-
native for model developers in resource-constrained set-
tings; (ii) In preference learning, LLaVA-Critic offers AI-
generated feedback in iterative Direct Preference Optimiza-
tion (DPO) [35], outperforming the preference signals pro-
vided by the reward model in LLaVA-RLHF [38], which
relies on human feedback for training the reward model.

In summary, our contributions are as follows:
• Critic Instruction-Following Data: We present a high-

quality dataset tailored to follow instructions in complex
evaluation setting to provide quantitative judgment and
the corresponding reasoning process. It consists of 46k
images with 113k evaluation instruction samples, includ-
ing both pointwise and pairwise evaluation settings.

• Large Multimodal Models: We develop LLaVA-Critic,
LMMs that expand the capabilities of open models to act
as critic, providing effective evaluation and feedback.
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• Open-Source: In an effort to support the development
of general-purpose visual assistants, we release our critic
instruction data, codebase, model checkpoints, and the
trained visual chat demo to the public.

2. Related Work

LMM-as-a-judge. Strong proprietary LMMs such as
GPT-4V/-4o have been demonstrated to serve as general-
ist evaluators for vision-language tasks [11, 50]. Specif-
ically, for complex scenarios related to human judgment,
such as visual chat and detailed captioning, LMMs have
been utilized in evaluation benchmarks to judge the model
responses, in both pointwise [15, 24, 38, 46, 48, 49] and
pairwise settings [28, 45]. Our LLaVA-Critic are employed
in the these evaluation scenarios as open-source alterna-
tive, with advantages in cheap and customized evaluation.
For open-source models, Prometheus-Vision [14] is the first
VLM trained as an evaluator for specific user-designed scor-
ing criteria. While sharing the same open-source spirit,
LLaVA-Critic stands out as the first open generalist evalua-
tor. Note that GPT is also utilized to extract answers from
LMM responses for subsequent evaluation in some bench-
marks [12, 27, 43]. This extractive functionality for evalua-
tion is out of the scope of this paper.

Preference learning for LMMs. Reinforcement learn-
ing from human feedback (RLHF) is a proven method to
align large language models (LLMs) with human intentions.
DPO [35] introduces a new parameterization of the reward
model in RLHF, enabling direct optimization using pairwise
preference datasets. CriticGPT [29] trains “critic” models
to evaluate model-generated code, providing feedback sig-
nals to enhance code LLMs. The concept of preference
learning has recently expanded from language models to
the multimodal space. LLaVA-RLHF [38], the first open-
source study in this area, improves visual chat abilities of
LMMs using human-scored rankings. BPO [34] constructs
preference data by introducing negative responses gener-
ated by the model itself, using distorted images or text-
based LLMs to inject errors. Wang et al. [40] proposes
mDPO, which uses conditional preference optimization to
emphasize image information. Other works apply prefer-
ence alignment to reduce hallucinations and enhance the
overall capabilities of vision-language models (VLMs), ei-
ther through human feedback (e.g., RLHF-V [44]) or AI
feedback (e.g., Silkie: VLFeedback [20]). Several ap-
proaches use self-rewarding mechanisms to minimize de-
pendence on external preference pairs, such as divide-and-
conquer strategies [45] (RLAIF-V), sentence-level beam
search [56], deliberate hallucination injection [55], or
metric-based self-critic prompts [42]. As a generalist evalu-
ator, LLaVA-Critic can provide valuable feedback for LMM
alignment, paving the way for self-improving AI models.

3. Data Collection

We now introduce the data collection process for the
LLaVA-Critic training dataset. The use of GPT-4/4V as a
generalist evaluator for LMMs can be broadly categorized
into two settings: (i) Pointwise scoring: GPT assigns a
score to an individual candidate response, either by directly
evaluating it based on predefined criteria or by scoring it
relative to a fixed reference answer. This setting can be re-
garded as a combination of the single-answer grading and
reference grading methods discussed in Zheng et al. [54].
(ii) Pairwise ranking: GPT compares two candidate re-
sponses to determine their relative quality (or declares a tie).
To equip LLaVA-Critic with a generalized evaluation ca-
pacity as with GPT-4V, we design a GPT-assisted pipeline
to curate our training dataset for both settings. An example
of LLaVA-Critic training data is shown in Table 1.

3.1. Pointwise Data
To train a generalist critic model for the evaluation of in-
dividual LMM responses, each pointwise training data in-
stance consists of the following components: a multimodal
instruction (i.e., a question-image pair), a model response,
an optional reference answer (depending on the evaluation
prompt), an evaluation prompt, a judgment score, and the
corresponding justification for the score. By organizing
them in a sequence, the training sample is:

(Image, Question, Response, Reference,
Evaluation Criteria, Score, Reason)

where green parts are treated as model output to com-
pute the auto-regressive loss, the order of Score and
Reason is specified by the evaluation prompt. We se-
lect multimodal instructions from 8 multimodal instruc-
tion tuning datasets, spanning across a wide range of
tasks including: (1) general visual conversation, detailed
captioning and reasoning (LLaVA-Instruction-150k [24],
SVIT [53]); (2) more challenging tasks such as com-
plex reasoning (ComVint [10]), text-rich understanding
(LLaVAR [51]) and robustness-oriented instructions (LRV-
Instruction [23]); and (3) various specific domains such as
academic question answering (M3IT [21]), medical image
understanding (LLaVA-Med [18]) and embodied decision-
making (PCA-EVAL [7]). For each multimodal instruc-
tion, we select one or more model responses from VLFeed-
back [20], which collects multiple responses from 12 off-
the-shelf LMMs. Additionally, we generate responses us-
ing GPT-4o, a leading commercial LMM, to serve as high-
quality reference answers.

To equip LLaVA-Critic with general evaluation ca-
pacities across various tasks, we construct an evalua-
tion prompt pool from 7 widely used multimodal bench-
marks that utilize GPT-as-a-judge, including LLaVA-in-the-
Wild [24], LLaVA-Wilder [15], Image Detailed Caption-
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Multimodal Input for LMM:
Question: What are the specifics visible in the image?

Setting 1: Pointwise Scoring
Response: The image shows a small train with four red cars, traveling on
a track. The train is located in a park setting, and there are potted plants nearby.
Evaluation Prompt: From 0 to 100, how much do you rate for this Text Caption in terms of the correct and comprehensive description
of the image? Do not dominate the rating by a single attribute such as recognition correctness, but a overall rating on the object/scene
appearance, position, pose, action, shape, etc., and contents in the background. Do not consider the appropriateness or sensitive
descriptors, such as “middle-aged western man”, judge based on if it has correct specifications of the object and scenes in image.
Provide a few lines for explanation and the rate number at last after “Final Score:”.
LLaVA-Critic: The text caption provides a generally accurate description of the image. It correctly identifies the small train with four
red cars and mentions the park setting and the presence of potted plants. However, there are a few details that could be improved for a
more comprehensive description. For instance, the caption could mention that the train is stationary rather than traveling, and it could
describe the surrounding structures, such as the building and the wooden fence, to give a fuller picture of the scene. Final Score: 85.

Setting 2: Pairwise Ranking
Response A: The image shows a small train on a track, with a total of six cars attached to it. The train is traveling on a small track, and
there are potted plants nearby. The scene appears to be set in a park or a similar outdoor area.
Response B: The image shows a small train with four red cars, traveling on a track. The train is located in a park setting, and there are
potted plants nearby.
Evaluation Prompt: “Given an image and a corresponding question, please serve as an unbiased and fair judge to evaluate the quality
of the answers provided by a Large Multimodal Model (LMM). Determine which answer is better and explain your reasoning with
specific details. Your task is provided as follows:
Question: []\n Response A: []\n Response B: []\n ASSISTANT:\n”
LLaVA-Critic: Response B is better than response A because it provides a more accurate description of the objects and their attributes
in the image. Response B correctly identifies the train as having four red cars, whereas Response A inaccurately states that there are
six cars. Both responses mention the potted plants and the park setting, but Response B’s accuracy in the number of train cars makes
it more precise. Additionally, Response B avoids unnecessary repetition and provides a clearer depiction of the scene, making it more
helpful and accurate overall.

Table 1. An example of LLaVA-Critic training data. The top block shows pointwise scoring, where LLaVA-Critic predicts a score
to evaluate a single response’s quality; the bottom block illustrates pairwise ranking, where it rank response pairs. In both settings,
LLaVA-Critic learns to provide reasons for its judgments.

ing [15], MMHal-Bench [38], MMVet [47], WildVision-
Bench [28] and RefoMB [45]. 1 Prompts that require ad-
ditional textual context—since they use text-only GPT-4 as
the evaluator—are adjusted to focus on the input image, bet-
ter aligning with the LMM evaluator setting. To construct
training data based on each evaluation prompt, we select
multimodal instructions and model responses according to
the specified evaluation scenario, and include reference an-
swers from GPT-4o when necessary. These components are
then assembled into the evaluation prompt and used as in-
put for GPT-4o (as-a-judge) to provide high-quality judg-
ment scores and detailed justifications for model responses.
Finally, our pointwise training dataset comprises a total of
18,915 question-image pairs and 72,782 critic data samples.

3.2. Pairwise Data
The pairwise data consists of responses with known pref-
erence relationships. We collect pairwise data from three
datasets: VLFeedback [20], RLHF [38], and RLHF-V [44].
In the VLFeedback dataset, each (question, response) pair
is rated across three different dimensions by GPT-4V. For

1Although RefoMB and WildVision-Bench use pairwise evaluation
prompts, only one response is evaluated, with the other from a fixed ref-
erence model (GPT-4V and Claude-3-Sonnet, respectively), making them
pointwise evaluations.

the same question, responses generated by different LMMs
can form multiple response pairs for that question. We ran-
domly select 20k pairs where the average score gap between
responses is greater than 0.6. Besides, to ensure diversity in
the preferences, we randomly sample 5k pairs where the
two responses had identical scores across all three dimen-
sions to serve as “Tie” training data. In the RLHF dataset,
each question is annotated with preference relationships be-
tween different responses by human evaluators. In con-
trast, the RLHF-V dataset consists of responses generated
by LMM, which have been manually refined to produce im-
proved responses. From these two datasets, we collect 9.4k
(RLHF) and 5.7k (RLHF-V) response pairs, each annotated
with human preferences. This results in a total of 40.1k
pairwise data samples.

To enable LLaVA-Critic to provide useful detailed feed-
back in addition to the preference relation, we utilize GPT-
4o to generate reasons behind the given preference judg-
ment. The training sample for pairwise data is structured in
the following sequence:

(Image, Question, Response 1&2, Evaluation)

(Criteria, Preference, Reason)

where the evaluation criteria is from carefully designed
prompt templates. To allow LLaVA-Critic to handle diverse
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LLaVA-Critic
Training Data

113k

Pairwise

Pointwise

Setting Prompt source Data source Data size

LLaVA-in-the-Wild LLaVA, SVIT, LLaVAR, LLaVAMed, ComVint 17.5k
LLaVA-Wilder SVIT, LLaVAR, LLaVAMed, ComVint, M3IT, PCAEval 16.6k
WildVision-Bench VLFeedback 14.0k

Pointwise MMVet LLaVAR, LLaVAMed, M3IT, PCAEval 9.3k
MMHal-Bench LRV-Instruction 7.6k
ImageDC SVIT-detail 5.3k
RefoMB VLFeedback 2.5k

Pairwise 30 manually crafted
prompt templates

VLFeedback 20.0k
LLaVA-RLHF 9.4k

VLFeedback (Tie) 5.0k
RLHF-V 5.7k

Figure 1. Data statistic of LLaVA-Critic-113k training dataset. In the pointwise setting, we categorize datasets by instruction sources
and select data based on the task type corresponding to each evaluation prompt. Note that all our training data is sourced from public
instruction-following training sets and does not overlap with with any evaluation benchmarks.

pairwise ranking, we develop a set of 30 evaluation prompt
templates (see Appendix B.1). Each preference pair is ran-
domly assigned a template from this set to form the final
training data.
Data statistics. Our training dataset comprises a total of
46k images and 113k data samples. As shown in Figure 1,
we curate our training set with diverse instruction-response
pairs, spanning multiple evaluation tasks and domains.

4. LLaVA-Critic
4.1. Model
To train the LLaVA-Critic model, we fine-tune a pre-trained
LMM that already possesses strong capabilities in following
diverse instructions. This is crucial, as it ensures that the
model has already been equipped to handle a wide range
of vision tasks in the wild with high quality. The evalua-
tion ability is treated as an additional discriminative ability
closely tied to these scenarios. During training, LLaVA-
Critic takes an evaluation prompt—assembling the mul-
timodal instruction input, model response(s), and an op-
tional reference response—as input. It is trained to predict
quantitative pointwise scores or pairwise rankings based on
the criteria in the evaluation prompt, and provide detailed
justifications for the assigned judgments. Standard cross-
entropy loss is applied to both judgments and justifications.

In experiment, we start with the LLaVA-OneVision(OV)
7B/72B pretrained checkpoint and fine-tune it on the pro-
posed LLaVA-Critic-113k dataset for 1 epoch to develop
LLaVA-Critic. We apply a learning rate of 2e-6 and a batch
size of 32 for training, with other hyperparameters set to
the defaults from Li et al. [16]. We also curate a subset with
53k samples (42k pointwise, 11k pairwise) that cover fewer
instruction sources and domains. The model trained on this
reduced subset is referred to as LLaVA-Critic (v0.5).

4.2. Scenario 1: LMM-as-a-Judge
Evaluating complex tasks often requires human judges to
provide feedback, which can be labor-intensive. LLaVA-
Critic can serve as a general evaluator for LMM responses,

reducing labor costs by automating the evaluation process.
LLaVA-Critic consistently provides reliable judgments and
justifications aligned with GPT-4o or human evaluations
across a range of widely used multimodal benchmarks. This
consistency holds true for both instance-level scoring and
model-level ranking, as demonstrated in Sec. 5.1.

Specifically, we consider the following evaluation sce-
narios: (i) Visual Chat. This task involves handling daily-
life visual tasks through multimodal dialogue, requiring
evaluation of task completion quality in a conversation set-
ting. Examples include LLaVA-Bench [24] and LLaVA-
in-the-Wild [24], which focus on simpler scenarios, while
LLaVA-Wilder [15] addresses more challenging cases. (ii)
Integrated capabilities. Real-world tasks require integra-
tion of multiple basic abilities of LMMs. MM-Vet [47]
offers a comprehensive benchmark, evaluating core vision-
language capabilities including recognition, OCR, knowl-
edge integration, language generation, spatial awareness,
and math. The Multimodal Live-Bench tests the model’s
ability to generalize to new, unobserved knowledge by
leveraging continuously updated news and online forums.
(iii) Preferences. This task simulates real-world mul-
timodal interactions where models are expected to align
their behavior with human preferences. The WildVision-
Bench [28] is a prime example, replicating scenarios from
the online platform WildVision-Arena (WV-Arena) to eval-
uate preference-based interactions. (iv) Detailed Descrip-
tion. This task assesses models on their ability to pro-
vide comprehensive and detailed descriptions of images
and videos. Image Detailed Captioning [15] evaluates de-
tailed descriptions in images, while Video Detailed Cap-
tioning [52] extends these capabilities to video contexts.
(v) Hallucination: This task focuses on the model’s ability
to provide grounded responses based on the given context,
ensuring that it avoids generating inaccurate or fabricated
information, exemplified by MMHal-Bench [38].

4.3. Scenario 2: Preference Learning
Leveraging a generalist evaluator as a critic to generate re-
ward signals for reinforcement learning is a promising re-
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search direction. In this work, we employ LLaVA-Critic to
produce AI-generated feedback datasets for diverse tasks,
thereby improving the performance of supervised fine-
tuned LMMs through preference alignment. Notably, the
reward signals generated by our critic can be utilized in any
preference learning algorithms, including RLHF and DPO.
To quickly assess the effectiveness of the reward data, we
focus on how LLaVA-Critic is incorporated into the itera-
tive DPO training process.

• Step 1: Response generation. The iterative DPO process
begins with a pretrained LMM π0 as the initial checkpoint
and a set of multimodal instructions {(xk, vk)}Nk=1, where
each xk is a question and vk is the corresponding image.
For each question-image pair (x, v), the pretrained LMM
π0 randomly generates K responses {y1, y2, . . . , yK},
sampled independently from its distribution.

• Step 2: Scoring. To mitigate order-related variance in
LLaVA-Critic’s preferences, we form all possible ordered
pairs from these responses, resulting in K×(K−1) pairs.
For each response pair (yi, yj), we apply LLaVA-Critic
with an evaluation prompt to generate a relative score aij ,
which normalizes the score of yj based on yi.

• Step 3: Reward Preference. The overall reward score
ri for each response yi is calculated by aggregating these
preference scores: ri =

∑
k ̸=i aki −

∑
l ̸=i ail This calcu-

lation effectively measures how much better or worse yi
is compared to all other responses. We then select the re-
sponses with the highest and lowest reward scores as the
best and worst responses, denoted as y+ and y−, respec-
tively. These form the pairwise feedback data (y+, y−),
which is used for DPO training to enhance the LMM’s
alignment with LLaVA-Critic’s preferences.

Iterative Improvement. After each round of DPO train-
ing, the updated LMM becomes the new starting check-
point. The process is then iterated for another M−1 rounds,
using LLaVA-Critic to progressively improve the model’s
performance based on its self-generated responses.

5. Experimental Results

5.1. LMM-as-a-Judge
To comprehensively assess LLaVA-Critic’s capacity in
evaluating LMM responses across different scenarios, we
consider two primary experimental settings: (1) In-domain
Judgments: where we measure LLaVA-Critic’s consis-
tency with GPT-4o or human evaluators on evaluation
tasks/prompts included in the LLaVA-Critic-113k dataset;
and (2) Out-of-domain Judgments: where we apply LLaVA-
Critic on tasks and prompts that are unseen during training.
For the second setting, we use the MLLM-as-a-Judge [6]
benchmark to assess the alignment between LLaVA-Critic
and human evaluators in generalized scenarios.

In-domain Pointwise Scoring To evaluate the consis-
tency between LLaVA-Critic and GPT-4o [32] in pointwise
scoring across different evaluation scenarios, as described
in Sec. 4.2, we select 7 popular multimodal benchmarks and
collect candidate responses from 13 commonly used LMMs
alongside their GPT-4o evaluations, resulting in a total of
14174 examples (see details in Appendix B.2). LLaVA-
Critic is then tasked with providing judgments on theses
samples. We report Pearson correlation to measure the de-
gree of alignment with GPT-4o in instance-level scoring.

We conduct experiments based on three different base-
line models: LLaVA-NeXT (LLaMA-8B) [15, 26], LLaVA-
OneVision-7B, and LLaVA-OneVision-72B. As shown in
Table 2, LLaVA-Critic variants significantly outperform
their corresponding baseline models across all models and
benchmarks. (i) Data scaling. By comparing the perfor-
mance between v0.5 and full data trained LLaVA-Critic-
7B, it concludes the necessity of larger size and diversity
of instruction in training data. (ii) Model scaling. The best
performance in terms of Pearson-r is achieved by LLaVA-
Critic-72B with an average score of 0.754, which signif-
icantly outperforms the LLaVA-OV-72B baseline (0.634).
This indicates that LLaVA-Critic-72B already possesses
pointwise scoring capabilities that are quite aligned with
GPT-4o. Despite a considerable reduction in model size,
LLaVA-Critic-7B retains very strong point-wise scoring ca-
pabilities. With a score of 0.732, its shows minimal perfor-
mance decline compared to LLaVA-Critic-72B, and signif-
icantly outperforms other advanced open-source LMMs of
similar size, such as Qwen2-VL (0.352) and LLaMA3.2-
Vision (0.359). This presents an advantage for deploying
and utilizing LLaVA-Critic in resource-constrained envi-
ronments. We also provide Kendall’s Tau results in Ap-
pendix C.2 to assess model-level ranking, which reveal sim-
ilar patterns and conclusions.

Figure 2 presents a qualitative comparison between
LLaVA-Critic and other LMM evaluators. While LLaVA-
OneVision often assigns fixed scores (e.g., “Tie” on
WildVision-Bench or “6” on MMHal-Bench), LLaVA-
Critic produces more diverse and balanced scores that
closely align with GPT-4o, leading to consistent rankings
of response models. Notably, even without training on
critic data, LLaVA-OneVision-72B demonstrates model-
level rankings that partially align with GPT-4o across four
multimodal benchmarks.

In-domain Pairwise Ranking To assess the consistency
between LLaVA-Critic and human evaluators in pairwise
ranking, we use the battle data from WildVision Arena [28],
which comprises 11k human-annotated preference relations
among LMM response pairs. Each relation includes a
question-image pair and two responses generated by differ-
ent models, accompanied by a human-annotated preference
(including ties). From this dataset, we randomly sample
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LMM Evaluator
Pearson-r (↑)

ImageDC MMVet WildVision LLaVA-B LLaVA-W L-Wilder MMHal Avg.

LLaVA-NeXT (LLaMA-8B) 0.262 0.317 0.147 0.211 0.345 0.156 0.472 0.273
LLaVA-Critic (LLaVA-NeXT) 0.673 0.706 0.580 0.529 0.820 0.936 0.748 0.713
Qwen2-VL-7B-Instruct 0.199 0.463 0.096 0.208 0.476 0.694 0.329 0.352
LLaMA3.2-11B-Vision-Instruct 0.069 0.450 0.224 0.356 0.499 0.531 0.387 0.359
LLaVA-OV-7B 0.056 0.349 0.251 0.335 0.533 0.592 0.433 0.364
LLaVA-Critic-7B (v0.5) 0.737 0.718 0.571 0.494 0.789 0.932 0.746 0.712
LLaVA-Critic-7B 0.735 0.733 0.616 0.510 0.843 0.940 0.748 0.732
LLaVA-OV-72B 0.718 0.680 0.446 0.436 0.716 0.824 0.620 0.634
LLaVA-Critic-72B 0.802 0.723 0.705 0.524 0.782 0.951 0.790 0.754

Table 2. Results on in-domain pointwise scoring. LLaVA-Critic consistently outperforms baselines across 7 multimodal benchmarks.
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Figure 2. (Top): Overall distribution of evaluation scores across 4 benchmarks. (Bottom): Calculated average evaluation score for each
response model on each benchmark. Each color represents a different LMM evaluator. Leveraging high-quality critic training data, LLaVA-
Critic closely aligns with GPT-4o in delivering balanced evaluation scores and accurately ranking response LMMs.

2k response pairs and assign them to evaluation prompts
from the pairwise ranking prompt template set mentioned
in Section 3.2, creating the in-domain evaluation dataset.
We report average accuracy, with and without ties, to as-
sess alignment with human evaluators at the instance level.
For model-level consistency, we calculate the Elo rating for
each response LMM and report Kendall’s Tau to measure
the overall ranking correlation with human preferences.

Experimental results are reported in Table 3. While ex-
isting open-source LMMs exhibit initial pairwise ranking
ability, there is a notable performance gap compared to
GPT-4V/4o. After training with critic data, LLaVA-Critic
achieves significant improvements. Specifically, LLaVA-
Critic-72B achieves an average accuracy of 73.6% in pair-
wise comparisons without tie, outperforming both GPT-4o
and GPT-4V. For pairwise accuracy with tie and model-level
ranking (Kendall’s Tau), LLaVA-Critic-72B shows only a
marginal gap compared to GPT-4V/4o, with an accuracy of
60.5% and a score of 0.779, respectively. Notably, despite a
substantial reduction in the number of parameters, LLaVA-
Critic-7B still achieves an average accuracy of 59.6% in

pairwise ranking with ties and 72.2% without ties, along-
side a Kendall’s tau of 0.763. These results underscore the
strong alignment between LLaVA-Critic and human evalu-
ators in pairwise ranking LMM responses.

MLLM-as-a-Judge MLLM-as-a-Judge [6] is a compre-
hensive benchmark to evaluate the degree of alignment
between model-based evaluation and human evaluation.
It collects approximately 17k image-instruction-response
triplets across 14 multimodal benchmarks and 6 LMM re-
sponse models. Human annotators are then employed to
assess model responses under scoring, pairwise compari-
son and batch ranking settings, resulting in 7756, 5719,
1469 examples respectively. In our experiments, we evalu-
ate LLaVA-Critic in both (pointwise) scoring and pair com-
parison settings to assess its general alignment with human
evaluators. We report the average Pearson correlation for
scoring and average accuracy for pairwise comparison, fol-
lowing the metrics used in the original benchmark.

We compare LLaVA-Critic with commercial models
(GPT-4V/4o, Gemini-Pro [39]), open-source LMMs, as
well as Prometheus-Vision [14], which trains a LLaVA
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Model Acc(w. Tie)↑ Acc(w.o. Tie)↑ Kendall’s τ ↑
GPT-4o 0.617 0.734 0.819
GPT-4V 0.620 0.733 0.787
LLaVA-NeXT (LLaMA-8B) 0.473 0.569 0.605
LLaVA-OV-7B 0.531 0.640 0.715
Qwen2-VL-7B-Instruct 0.550 0.678 0.699
LLaMA3.2-V (11B-Instruct) 0.513 0.673 0.737
LLaVA-OV-72B 0.594 0.708 0.763
LLaVA-Critic-7B (v0.5) 0.580 0.692 0.755
LLaVA-Critic (LLaVA-NeXT) 0.582 0.686 0.755
LLaVA-Critic-7B 0.596 0.722 0.763
LLaVA-Critic-72B 0.605 0.736 0.779

Table 3. Results on in-domain pairwise ranking. LLaVA-Critic is
comparable with GPT-4V in alignment with human evaluators.

model on a curated LMM-as-a-judge dataset comprising
15k GPT-generated rubrics and 150k GPT-4V feedback
data. As demonstrated in Table 4, LLaVA-Critic-7B sur-
passes all baselines of comparable model size by a substan-
tial margin. Built on a stronger base model, LLaVA-Critic-
72B further achieves the Pearson similarity with human
annotators from 0.314 to 0.393 in pointwise scoring. For
pairwise comparisons, it achieves accuracy rates of 57.8%
and 71.5% with and without ties, respectively, reaching a
level of alignment with human evaluators comparable to
GPT-4V/4o. We also compare different variants of LLaVA-
Critic and observe performance gains with both stronger
base models and larger training data, consistent with pre-
vious findings. This again highlights the critical role of
model and data scaling in building an effective and gen-
eralist open-source LMM evaluator. More comprehensive
results are provided in Appendix C.3.

Qualitative Comparison We present example compar-
isons of the evaluation scores and reasons generated by
LLaVA-Critic and other LMMs, with detailed examples
provided in Appendix D. The key findings are as fol-
lows: Compared to LLaVA-OneVision, LLaVA-Critic de-
livers more accurate judgments (Table 14), and provides
more concrete, image-grounded justifications (Table 15).
The latter is crucial for reliable AI [4], as offering well-
supported reasons for evaluations establishes LLaVA-Critic
as a transparent evaluator of LMM responses.

Critic training preserves original visual capacities. As
shown in Appendix C.4, LLaVA-Critic largely preserves
LLaVA-OV’s original ability in handling diverse visual
tasks and achieves modest gains in visual chat performance.

5.2. Preference Learning
We further evaluate LLaVA-Critic’s performance in provid-
ing reward signals for iterative DPO. LLaVA-OneVision’s
supervised fine-tuned checkpoint is used as the base policy
model, and question-image pairs from LLaVA-RLHF [38]
serve as the multimodal instructions. For each pair, K = 5
candidate responses are generated through random decod-

Model Score↑ Pair(w. Tie)↑ Pair (w.o. Tie)↑

GPT-4V* 0.490 0.636 0.773
GPT-4o† 0.439 0.577 0.736
GPT-4V† 0.424 0.538 0.717
Gemini-pro* 0.304 0.509 0.615
LLaVA-v1.5-7B 0.158 0.439 0.576
Prometheus-V (LLaVA-v1.5-7B) 0.213 – –
LLaVA-NeXT (LLaMA-8B) 0.198 0.461 0.586
LlaVA-OV-7B 0.151 0.426 0.550
Qwen2-VL-7B-Instruct 0.253 0.348 0.645
LLaMA3.2-V (11B-Instruct) 0.237 0.529 0.658
LlaVA-OV-72B 0.287 0.513 0.701
LLaVA-Critic (LLaVA-v1.5-7B) 0.228 0.528 0.656
LLaVA-Critic (LLaVA-NeXT) 0.272 0.547 0.677
LLaVA-Critic-7B (v0.5) 0.312 0.546 0.675
LLaVA-Critic-7B 0.314 0.556 0.689
LLaVA-Critic-72B 0.393 0.578 0.715

Table 4. Results on MLLM-as-a-Judge [6]. *: the results as re-
ported in the original paper [6]; †: results from our evaluation of
GPT-4V/4o based on their codebase. Note that Prometheus-Vision
cannot follow the pairwise evaluation prompt. LLaVA-Critic sig-
nificantly narrows the gap between open-source LMMs and GPT-
4V/4o in their ability to evaluate LMM responses across a wide
range of evaluation scenarios.

ing (with a temperature of 0.7 and top-p of 0.9) to ensure
response diversity. LLaVA-Critic is employed as described
in Sec. 4.3 to construct the pairwise feedback data, which
is then used for one epoch of DPO training. We perform
iterative DPO for M = 3 rounds in total.

To assess the effectiveness of LLaVA-Critic’s re-
ward signals, we evaluate the final LMM checkpoint
on 6 open-ended multimodal benchmarks: four image-
based tasks (LLaVA-in-the-Wild [24], LLaVA-Wilder [15],
WildVision-Bench [28] and LiveBench [48]), one video-
based task (Video Detailed Captioning [15]), and one hal-
lucination benchmark (MMHal-Bench [38]). We compare
LLaVA-Critic with two baselines: (1) reward model from
LLaVA-RLHF [38], which is trained on human preferences,
and (2) a naive baseline that replaces LLaVA-Critic with
LLaVA-OneVision as a zero-shot reward model.

As shown in Table 6, preferences provided by LLaVA-
Critic significantly improve LLaVA-OneVision’s visual
chat capacities and reduce hallucination across challenging
tasks. LLaVA-Critic consistently surpasses other baseline
reward models on 5 out of 6 benchmarks for the 7B base
model and all 6 benchmarks for the 72B base model. De-
spite the preference alignment conducted solely with im-
ages, LLaVA-Critic also enhances LLaVA-OneVision’s per-
formance in Video Detailed Captioning (+0.12 on OV-7B
and +0.26 on OV-7B), demonstrating its ability to general-
ize to both image and video contexts. Additionally, we ob-
serve that Critic-7B outperforms Critic-7B-v0.5 on 5 out of
6 benchmarks, highlighting the importance of stronger re-
ward models—trained on more diverse critic instructions—
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Method #Prompts LLaVA-W L-Wilder WildVision LiveBench MMHal* MMEP MMEC MMB-en MM-Vet MMStar

LLaVA-v1.5-7B – 63.4 54.2 20.4 45.6 1.94 1510.7 348.2 64.3 31.1 33.3
+ RLHF 9.4k 63.7 54.5 19.8 46.2 1.90 1508.2 360.2 60.4 31.1 33.0
+ SIMA 17k 66.1 52.3 17.6 47.9 1.81 1507.7 379.3 64.9 31.6 34.7
+ CSR 15k 71.1 55.9 20.0 45.0 1.96 1524.2 367.9 65.4 33.9 33.6
+ RLAIF-V 33.8k 72.7 56.4 19.2 50.4 3.04 1362.7 302.9 62.6 26.7 35.4
+ LLaVA-Critic 9.4k 73.5 57.2 29.2 50.0 2.07 1500.4 350.7 64.1 32.2 34.2

Table 5. Comparison with other preference learning algorithms on LLaVA-v1.5-7B. Apart from benchmarks in Table 6, we also report
the results on 4 comprehensive multimodal benchmarks for reference. The best and second best results are shown in bold and underlined
respectively. *OpenAI’s gpt-4-0613 is used for the MMhal-Bench evaluation due to the deprecation of the original API.

Base Reward LLaVA-W L-Wilder WV-B Live-B V-DC MMHal

GPT-4V – 98.0 81.0 79.8 73.7 4.00 3.83

OV-7B

– 90.7 67.8 54.0 77.1 3.75 3.19
OV-7B 98.6 70.9 66.6 84.0 3.77 3.79
LLaVA-RLHF 97.5 70.3 64.1 83.1 3.84 4.01
Critic-7B (v0.5) 98.1 70.5 67.2 85.1 3.83 3.85
Critic-7B 100.3 71.6 67.3 84.5 3.87 3.91

OV-72B
– 93.5 72.0 51.7 81.5 3.60 3.61
LLaVA-RLHF 103.2 75.2 65.2 86.2 3.85 3.67
Critic-72B 104.4 75.9 70.0 88.5 3.86 3.77

Table 6. Comparison between LLaVA-Critic and baselines in pref-
erence alignment. “Base”: the initial LMM checkpoint for DPO.

to deliver more accurate reward signals and further enhance
preference learning. (See Appendix C.5 for additional re-
sults and Table 16 for a visual-chat example.) Notably,
while using OpenAI’s GPT-4o as a reward model for 3
rounds of iterative DPO would cost approximately $690,
LLaVA-Critic provides a reliable, cost-free alternative for
providing reward signals.

Comparison We take LLaVA-v.1.5-7B as the base policy
model, and compare LLaVA-Critic with 4 previous meth-
ods that apply preference optimization with self-generated
candidate responses. These methods primarily vary in
the source of reward signals: LLaVA-RLHF [38] lever-
ages a pretrained reward model based on human feed-
back; SIMA [42] develops an in-context self-critic prompt
for providing pairwise judgments; CSR [56] incorporates
sentence-level beam search with CLIP-score calibration;
and RLAIF-V [45] adopts a divide-and-conquer strategy to
calculate the overall reward score by combining sentence-
level judgments. For our method, we utilize the prompts
(question-image pairs) from the LLaVA-RLHF dataset and
perform DPO training for 3 epoches.

As illustrated in Table 5, with only 9.4k input prompts,
the reward signal provided by LLaVA-Critic substantially
improve the base model’s performance across various open-
ended visual chat benchmarks. It achieves the best im-
provements of +10.1 on LLaVA-W, +3.0 on LLaVA-Wilder,
+8.8 on WildVision-Bench, along with the second-highest
gains of + 4.4 on LiveBench and +0.13 on MMHal-Bench,
respectively. At the same time, the overall capacities of
LLaVA-v1.5-7B are largely preserved, as demonstrated on

Sampling LLaVA-W L-Wilder

Random 100.3 71.6
Best-of-5 (w. Critic-7B) 102.0 74.8

Table 7. Results of BoN sampling. Responses are generated by
the OV-7B checkpoint after 3-round iterative DPO training, with
LLaVA-Critic providing the reward scores.

other comprehensive benchmarks. This is superior to other
competing methods, which either result in smaller perfor-
mance gains or achieve improvements by compromising the
overall capabilities on other benchmarks.

Inference Time Search Applying LLaVA-Critic for best-
of-n sampling [37] further enhances LMM performance
during inference. For the LLaVA-OV-7B checkpoint after
iterative DPO training, we generate n = 5 responses for
each question with a temperature of 0.7 and top-p of 0.9,
then use LLaVA-Critic-7B to select the best responses. As
shown in Table 7, this results in additional gains of +1.7 on
LLaVA-W and +3.2 on LLaVA-Wilder.

6. Conclusions

We have presented LLaVA-Critic, an open-source LMM
that is trained to evaluate model performance in a wide
range of multimodal scenarios. To achieve this, we curated
a high-quality critic instruction-following dataset with di-
verse evaluation criteria. We demonstrated the effective-
ness of LLaVA-Critic in two key areas: (1) as a general-
ized evaluator, LLaVA-Critic provides pointwise scores and
pairwise rankings that closely align with human and GPT-
4o preferences across multiple evaluation tasks, presenting
a viable open-source alternative to commercial GPT models
for autonomous assessment of open-ended LMM responses;
(2) in preference learning, LLaVA-Critic functions as a re-
liable reward model, supplying preference signals that en-
hance the visual chat capabilities of LMMs, surpassing the
LLaVA-RLHF reward model built with human feedback.
This work represents an important step toward harnessing
the self-critique capabilities of open-source LMMs, and we
hope it will inspire further research into developing strong
LMMs with scalable and superhuman alignment feedback.
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