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Figure 1. Overview. (Left) Blurry-Edges representation parametrically models an image patch’s color, boundary positions, and boundary
smoothness. Object depths can be analytically calculated from the smoothness of corresponding boundaries in a pair of differently defo-
cused images. (Right) Compared to a variety of state-of-the-art depth from defocus algorithms [8, 23, 32, 38, 44, 47], our method generates
sparse or dense depth maps with the lowest depth estimation errors from photon-limited, noisy images.

Abstract

Extracting depth information from photon-limited, defo-
cused images is challenging because depth from defocus
(DfD) relies on accurate estimation of defocus blur, which is
fundamentally sensitive to image noise. We present a novel
approach to robustly measure object depths from photon-
limited images along the defocused boundaries. It is based
on a new image patch representation, Blurry-Edges, that
explicitly stores and visualizes a rich set of low-level patch
information, including boundaries, color, and smoothness.
We develop a deep neural network architecture that predicts
the Blurry-Edges representation from a pair of differently
defocused images, from which depth can be calculated us-
ing a closed-form DfD relation we derive. The experimen-
tal results on synthetic and real data show that our method
achieves the highest depth estimation accuracy on photon-
limited images compared to a broad range of state-of-the-
art DfD methods.

1. Introduction
Depth from defocus (DfD) generates physically accurate
depth maps without additional, active illumination like
time-of-flight or structured light [14–16, 26], and has a
monocular and compact form factor compared to stereo [13,

18]. These advantages make DfD suitable for spatially con-
strained artificial platforms, such as AR/VR, smartphones
and watches, miniature robots, and drones.

However, DfD relies on accurately estimating spatial
derivatives in the captured images, a proxy of defocus level,
as the depth cue, which is highly susceptible to the image
noise [1, 2, 35]. To our knowledge, existing DfD solutions
typically avoid this issue by assuming low noise levels in the
input image (Tab. 1). Considering DfD’s potential applica-
tions, which inevitably include dark environments, there is a
pressing need for a DfD algorithm robust to photon-limited,
noisy images.

In light of this, we propose a method that robustly es-
timates object depth along the blurry boundaries from a
pair of differently defocused noisy images. It leverages a
novel patch structure representation named Blurry-Edges.
Blurry-Edges models an image patch as a stack of partially
occluded wedges. As shown in Fig. 2, each wedge is pa-
rameterized by its vertex, color, and boundary blurriness.
We develop a deep neural network to predict the optimal
Blurry-Edges parameters that describe each patch and are
consistent with neighboring patches’ representation regard-
ing boundary location, smoothness, and color.

To perform depth estimation, our method utilizes a cam-
era with a deformable lens to capture a pair of images of a
static scene with varied focal lengths. The images share the

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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same structure but have different smoothness at the bound-
aries due to the difference in defocus. By estimating the
smoothness of the corresponding boundaries using Blurry-
Edges, we can calculate the depth along the boundary from
a closed-form DfD equation.

We observe several critical advantages of the proposed
DfD algorithm. First, it can be trained using naive, synthe-
sized images with basic geometries and effectively estimate
depths on real-world captured images without fine-tuning.
Second, the Blurry-Edges representation is multifunctional.
Besides the depth prediction, Blurry-Edges simultaneously
generates a boundary map including edges of all smooth-
ness and a noiseless color map. Last and most importantly,
the proposed method demonstrates the unprecedented ro-
bustness of estimating depth from photon-limited images.
The proposed method shows the highest accuracy in depth
prediction using noisy, photon-limited input images com-
pared to state-of-the-art DfD algorithms in both simulation
and real-world experiments.

The contribution of the paper includes:
1. A parametrized representation, Blurry-Edges, that si-

multaneously models the color, boundary, and blurriness
of a noisy image patch;

2. A closed-form DfD equation that associates the smooth-
ness of the corresponding boundaries in a pair of differ-
ently defocused images to the depth;

3. A deep neural network architecture that robustly esti-
mates object depth along boundaries from a pair of de-
focused images, handling 4× higher noise level (in stan-
dard deviations) than previous DfD algorithms (Tab. 1);

4. A comprehensive simulation and real-world analysis that
proves the robustness of the proposed method’s depth
estimation under limited photons and its generalizability
in training.

All data and code of this work can be found in
https://blurry-edges.qiguo.org/.

2. Related Work
Depth from defocus (DfD) was first proposed decades
ago [28], and it has undergone rapid progress in the past
decade thanks to the maturation and accessibility of var-
ious optical technologies, such as diffractive optical ele-
ments [12], deformable lenses [8], and metasurfaces [9].
There are currently two complementary lines of research in
DfD. The first utilizes analytical, non-learning-based solu-
tions that estimate partially dense depth maps with minimal
computational resources, and the second exploits learning-
based models to produce high-quality, dense depth maps
with a higher computational cost.

Analytical DfD algorithms leverage the physical rela-
tionship between the image derivatives [11, 22, 24, 39, 42]
or local spatial frequency spectrum [10, 17, 45] and the
depth. Theoretically, at least two images of the same scene

captured with different focal planes are required to mea-
sure an object’s depth without ambiguity [36]. Recently,
a special family of DfD algorithms, depth from differen-
tial defocus, demonstrates unprecedentedly low computa-
tional cost by leveraging simple, mathematical relation-
ships between the differential change of image defocus
and the object depth and is validated by real-world proto-
types [1, 8, 9, 21]. Despite being computationally efficient,
a fundamental drawback of these analytical DfD algorithms
is the degeneracy, i.e., unreliable depth estimations at tex-
tureless regions of the images due to the lack of defocus
cues [1, 38]. Fortunately, it is possible to predict where the
degeneracies will happen given an image and the unreliable
depth estimations in such areas can be removed from the
final depth estimation [8, 9, 21, 38].

Learning-based DfD algorithms utilize deep neural
network architectures to learn the mapping from the de-
focused images to the depth values from data [5, 23, 47].
Compared to the analytical solutions, this class of methods
achieves higher-quality, dense depth maps at higher com-
putational costs. For example, a recent analytical DfD algo-
rithm costs fewer than 1k floating point operations (FLOPs)
per pixel [9], while a U-Net-based DfD algorithm uses 300k
FLOPs per pixel [44]. The learning-based DfD algorithms
bypass the degeneracy issue by implicitly learning to fill
depth values in textureless regions based on neighboring
depth estimations. Thanks to recent advances in optical
technologies, people have also incorporated the design of
the blur kernel into the learning process so that the optical
design and the DfD algorithm are optimized in an end-to-
end fashion [3, 12, 37, 44]. The jointly-optimized systems
typically demonstrate more accurate depth estimation than
systems with pre-determined, fixed optics.

The sensitivity to image noise is a fundamentally chal-
lenging problem in DfD. This is because the defocus infor-
mation needs to be extracted from the spatial gradients of
the images, which becomes increasingly sensitive to noise
when the image defocus is significant [31]. As shown in
Tab. 1, past DfD algorithms typically assume a relatively
low noise level in their experiments. When necessary, these
methods simply suppress the noise by averaging multiple
frames [1] or binning pixels [8], and some use specially
designed filters to locally attenuate the perturbation of the
noise [35, 41].

In recent years, a series of works have utilized a novel
patch representation, field-of-junction (FoJ), to regular-
ize boundary detection from images [29, 40, 46]. FoJ
demonstrates extraordinary robustness in detecting bound-
ary structures from images at an extremely low signal-to-
noise ratio, as restricting the variety of local patch struc-
tures can effectively attenuate the impact of noise in image
restoration [25]. However, FoJ does not model boundary
smoothness, and the boundary structures it can represent

433



Method Venue’Year
Noise SD
(LSB) ↑

Illuminance
(lux) ↓

Focal Flow [1] ECCV’2016 0.09–0.63 67,832–3,323,680
Tang et al. [38] CVPR’2017 1.50–3.75 1,916–11,967
Focal Track [8] ICCV’2017 0.30–2.00 6,732–299,133
PhaseCam3D [44] ICCP’2019 2.55 4,142
Guo et al. [9] PNAS’2019 0.70 54,944
DefocusNet [23] CVPR’2020 1.00–4.00 1,684–26,923
DEReD [32] CVPR’2023 1.00–4.00 1,684–26,923
Ours - 18.21–19.22 74–83

Table 1. Image noise of previous DfD work. We convert the noise
levels reported by each paper into the standard deviation (SD) in
the unit of least significant bit (LSB) for 8-bit images. Images
used in this work have at least 4× more significant noise. We also
convert the Noise SD to the illuminance under common camera
parameters, with calculation details in the supplementary. Images
used in this work roughly correspond to photos taken under the
twilight or a very dark day [43].

are limited to lines, edges, and junctions. If a more gen-
eral patch representation incorporating boundary smooth-
ness and more sophisticated boundary structures can be de-
veloped, it could be utilized to detect the defocus along
boundaries robustly in the presence of significant noise.

3. Methods
3.1. Depth from Defocus

Consider a wide-aperture lens imaging a front parallel tar-
get. Under paraxial approximation, the captured image on
the photosensor is mathematically the convolution of the
point spread function (PSF) k(x) and the pinhole image
Q(x):

I (x) = Q (x) ∗ k (x, σ (z)) . (1)

where x is the 2D position on the photosensor. Assum-
ing the PSF has a Gaussian intensity profile and the defocus
process follows the thin lens law, the PSF k(x) can be math-
ematically expressed as:

k (x, σ (z)) =
1

2π (σ (z))
2 exp

(
− ∥x∥2

2 (σ (z))
2

)
, (2)

where the defocus level σ (z) is determined by the target’s
depth z and constant parameters of the optical system [8]:

σ (z) = Σ

[(
1

z
− ρ

)
s+ 1

]
. (3)

where Σ represents the standard deviation of the Gaussian
aperture function, ρ is the dioptric power of the lens, and s
is the separation between the photosensor and the lens.

Now we consider the textures in the pinhole image Q(x).
To approximate the textures of different sharpness, we

model each small patch P of the pinhole image Q(x) as
the convolution of a Gaussian kernel k(x; ξ) with standard
deviation ξ and a piecewise 2D step function Q̄(x):

Q (x) = Q̄ (x) ∗ k (x, ξ) ,x ∈ P. (4)

For sharp textures, the Gaussian kernel has a relatively
small standard deviation ξ, and vice versa. Combining
Eq. (4) with Eq. (1), the captured image I(x) can be rep-
resented as:

I(x) = Q̄(x) ∗ k
(
x,
√
σ(z)2 + ξ2

)
, (5)

where the term
√

σ(z)2 + ξ2 indicates the smoothness
value of the boundaries in the patch P .

Consider a deformable lens that can dynamically vary its
optical power, with a visualization provided in the supple-
mentary . The system can sequentially capture two images
of a static scene, I+ and I−, with different optical powers,
ρ+ and ρ−. By estimating the smoothness value of a corre-
sponding boundary in a patch P , η+ and η−, we have the
mathematical relationships:√

η2± − ξ2 = Σ

[(
1

z
− ρ±

)
s+ 1

]
. (6)

By combining both equations to cancel out ξ, we obtain the
following equation to calculate the depth of the boundary
given a pair of estimated smoothness η+ and η−:

z(η+,η−)=
2Σ2s2(ρ−−ρ+)

η2+−η2− −Σ2s2(ρ+−ρ−)(ρ++ρ− −2)
. (7)

3.2. Blurry-Edges Representation

Blurry-Edges represents an image patch as the alpha clip-
ping of l vertically-stacked, constant-color wedges with
smooth boundaries. As illustrated in Fig. 2a, each patch
is modeled by a set of parameters,

Ψ = ({pi,θi, ci, ηi, i = 1, 2, · · · , l}, c0) . (8)

The tuple (pi,θi, ci, ηi) parameterize the ith wedge in the
patch, with pi = (xi, yi) representing the vertex, θi =
(θi1, θi2) denoting the starting and ending angle, ci indi-
cating the RGB color, and ηi recording the smoothness of
the boundary. The wedge with a large index is in the front.
The vector c0 represents the RGB color of the background.
As shown in Fig. 2b, this representation can model various
boundary structures and smoothness.

Given a Blurry-Edges representation of a patch Ψ, sev-
eral types of auxiliary visualizations can be generated. First,
the boundary center map b (x;Ψ, δ) highlights the center of
each unoccluded boundary in the patch (Fig. 3b.) It is com-
puted via:

b (x;Ψ, δ) = exp

[
− (u (x;Ψ))

2

δ2

]
, (9)
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Background

1 st wedge

2 nd wedge(a)

(b)

Figure 2. Blurry-Edges representation with the number of wedges
l = 2. (a) The ith wedge is parameterized by the vertex posi-
tion (xi, yi), the starting and ending angle (θi1, θi2), the color ci,
and the boundary smoothness ηi. The rendering of the patch is
through the α-clipping of the wedges. (b) Blurry-Edges can repre-
sent a variety of boundary structures. In particular, it can represent
structures with various boundary smoothness.

where δ is a hyperparameter that controls the stroke of the
visualized boundaries and u (x;Ψ) is an unsigned distance
map to the nearest unoccluded boundary center for each
pixel. The exact calculation of the distance map can be
found in the supplementary. Figure 3a shows the distance
map to generate Fig. 3b.

0

+
0

+

-

0

1
(a) (b) (c)

(d) (e) (f) 0

+

Figure 3. Visualizations from a sample Blurry-Edges represen-
tation. (a) The unsigned distance map to the nearest unoccluded
boundary, u (x;Ψ). (b) The corresponding boundary center map,
b (x;Ψ, δ). (c) The signed distance map of the bottom wedge,
d1 (x;Ψ). (d) The α-map of the bottom wedge, α1 (x;Ψ). (e)
The color map of the patch, c (x;Ψ). (f) The magnitude of color
derivative map of the patch, c′ (x;Ψ).

Second, the color map c (x;Ψ) is the rendering of
the stacked, colored wedges according to their boundary
smoothness and occlusion. It can be computed via α-

clipping:

c (x;Ψ) =

l∑
i=0

ciαl→i (x;Ψ) , (10)

where αl→i (x;Ψ) is the collective α-map from the lth to
the ith wedge:

αl→i (x;Ψ) = αi (x;Ψ)

l∏
j=i+1

(1− αj (x;Ψ)) . (11)

The term αi (x;Ψ) is the α-map of the ith wedge:

αi (x;Ψ) =
1

2

[
1 + erf

(
di (x;Ψ)√

2ηi

)]
, (12)

where erf(·) indicates the Gausian error function, di (x;Ψ)
denotes the signed distance map of the ith wedge (Fig. 3c),
and ηi is the boundary smoothness of the wedge. Figure 3e
shows a sample color map that corresponds to the boundary
center map in Fig. 3b.

Besides the boundary center map and the color map,
Blurry-Edges also enables a color derivative map c′ (x;Ψ)
that highlights the boundary smoothness. We compute the
color derivative map as the color map’s response to the So-
bel operator [34]:

c′ (x;Ψ)=

√
(c (x;Ψ) ∗Gx)

2
+(c (x;Ψ) ∗Gy)

2
, (13)

where Gx and Gy are the Sobel kernels in x and y direc-
tions. A sample color derivative map is visualized in Fig. 3f.

3.3. Depth estimation

Figure 4 shows our DfD algorithm based on the Blurry-
Edges representation. The input is a pair of differently de-
focused images of a static scene, I+, I− ∈ RH×W×k. For
simplicity of notation, we use I± to represent the pair of
images throughout the paper. The model first estimates the
Blurry-Edges representation of the images in two stages and
then generates the depth map from it.

First, our method divides the images into uniform-size,
overlapping patches and independently predicts the Blurry-
Edges representation of each patch using a convolutional
neural network (CNN) based architecture. Given a patch,
P ∈ Rh×w×k, the CNN predicts a part of its Blurry-Edges
representation, including the vertex locations {pi}, the an-
gles {θi}, and the boundary smoothness {ηi}. Then, it
computes the color information {ci} using these predicted
parameters and the patch P via ridge regression:c0...

cl

=(A⊤A+λI(l+1)×(l+1)

)−1

αl→0(x)·P (x)
...

αl→l(x)·P (x)

, (14)
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Figure 4. Framework of the proposed model. There are two stages. The local stage consists of residual blocks and predicts the Blurry-Edges
representation for each patch locally. The global stage consists of a Transformer Encoder and refines the Blurry-Edges representation for
all patches globally. Finally, the framework combines all the per-patch representations and outputs the global boundary map, color map,
and depth map.

where αl→0 (x) is the collective α-map described in
Eq. (11) and αl→i (x) ·P (x) indicate the channel-wise dot
product between the collective α-map and the patch, and the
matrix A =

[
αl→0(x) · · ·αl→l(x)

]
.

The first stage estimates Blurry-Edges representation of
each patch purely based on the local information. Thus,
we refer to it as the local stage. For notation purposes, we
denote a patch cropped from one of the two images, I±, as
Pm
± . The subscript ± represents the image from which it

is cropped, and the superscript m = (m,n) indicates the
center position of the patch from the original image. Its
Blurry-Edges representation predicted by the local stage is
denoted as Ψm

± , as shown in Fig. 4.
In the second or the global stage, the model leverages a

Transformer Encoder to take in all Blurry-Edges represen-
tations,

{
Ψm

± ,∀m
}

and refine them according to several
consistency constraints. First, for each pair of patches cor-
responding to the center position m in the pair of images,
the global stage outputs a regularized Blurry-Edges repre-
sentation, Ψm =

(
Ωm,ηm

+ ,ηm
−
)
:

Ωm = {pi,θi, ci, c0, i = 1, · · · , l} ,
ηm
+ = {ηi,+, i = 1, · · · , l} ,

ηm
− = {ηi,−, i = 1, · · · , l} .

(15)

This regularized Blurry-Edges representation enforces the
defocus consistency, i.e., the pair of patches share the same
wedge positions and colors, Ωm, but different boundary
smoothness as specified by ηm

+ and ηm
− . Then, using the

DfD equation (Eq. (7)), the depth value of each wedge can
be solved from the two corresponding smoothness values
ηi,+, ηi,−:

zmi = z (ηi,+, ηi,−) . (16)

The Transformer Encoder is trained to also promote con-
sistency among neighboring patches in terms of boundary

center maps, color maps, and color derivative maps. The
loss functions to be used to promote these consistencies will
be discussed in Sec. 3.4. More details of the network archi-
tecture can be found in the supplementary.

Finally, the model calculates a global boundary center
map, a global color map, and a global depth image by ag-
gregating all patchwise Blurry-Edges representations. The
global boundary center map B (x) is computed by averag-
ing all per-patch boundary maps:

B (x) =
1∣∣Pm

± ∋ x
∣∣ ∑
Pm

± ∋x

b (x−m;Ωm, δ) , (17)

where Pm
± ∋ x indicates all patches centered at m that

contain pixel x and
∣∣Pm

± ∋ x
∣∣ denotes the number of such

patches. The global color map C (x) is computed similarly
by averaging the local color maps, but it can be augmented
with different smoothness values for each wedge:

C (x) =
1∣∣Pm

± ∋ x
∣∣ ∑
Pm

± ∋x

c (x−m; {Ωm,ηm}) . (18)

The parameter ηm denotes the smoothness values for all
wedges in the patch. When setting the smoothness value
ηm = ηm

± , the generated color maps correspond to the in-
put image pairs I±, which are C± (x). Furthermore, the
model can generate a refocused or sharpened color map
by setting ηm to different values. Examples are shown in
Fig. 5e. From the global color map C(x), we can also cal-
culate the global color-derivative map C ′(x) by performing
the Sobel filtering as in Eq. (13).

The global sparse depth map Z (x) visualizes the depth
values along the boundary centers:

Z(x)=

∑
Pm

± ∋x

∑l
i=1H(bi(x−m;Ωm,δ)−τ)·zmi∑

Pm
± ∋xH(b(x−m;Ωm,δ)−τ)

, (19)
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where H (·) is the Heaviside step function, bi (x;Ωm, δ) =
b (x;Ωm, δ) ·Mi (x) is the unoccluded boundary center of
the ith wedge (Mi (x) is the mask for the unoccluded ith
wedge, whose calculation is in the supplementary), τ is a
hyperparameter to control the coverage of the depth value,
zmi is the estimated depth value of the ith wedge in patch
Pm
± according to Eq. (16). The model also outputs a global

confidence map that predicts and filters unreliable boundary
and depth estimations. It is calculated via:

F (x)=
1∣∣Pm

± ∋x
∣∣ ∑
Pm

± ∋x

H (b (x−m;Ωm, δ)− τ) . (20)

Figure 5 visualizes the global maps generated from our DfD
algorithm of a sample synthesized scene.

(a)

(b)

(c)

(d)

(e)

(f)

Sharpened

Refocused

0

1

-

+

Figure 5. Examples of inputs and global outputs. (a) Noisy input
image pair I± with different optical power ρ±. (b) Global bound-
ary center map B (x). (c) Global color map C (x). (d) Global
sparse depth map Z (x). (e) Sharpened and refocused color maps.
(f) Global confidence map F (x).

3.4. Training

We design a modular learning scheme that trains the local
and global stages of our model independently. First, we
optimize the parameters of the CNN in the local stage using
the following loss function:

Llocal =

3∑
i=1

βiEm (li) , (21)

where Em denotes the expectation over all patches in an
image. The loss function consists of three terms, li, that
comprehensively penalize the color error, smoothness error,
and boundary localization error. After the local stage con-
verges, we train the Transformer Encoder in the global stage
with a fixed local stage using a comprehensive loss function
that consists of seven terms:

Lglobal =

7∑
i=1

γiEI±,m (gi) , (22)

where EI±,m denotes the expectation over all image pairs
I± in the training set and all corresponding patches of
each image pair. The seven loss terms, gi, compre-
hensively penalize the prediction error and inconsistency
among neighboring patches regarding colors, boundary lo-
cations, boundary smoothness, and depth. The exact deriva-
tion is shown in the supplementary. During the training of
the two stages, we observe that dynamically changing the
coefficients βi, γi helps with the convergence, which is also
discussed in the supplementary. We will describe other de-
tails of the training configurations in Sec. 4.1.

4. Experimental Results
4.1. Training Configurations

We fix the number of wedges l = 2 throughout the experi-
ments, providing the optimal balance between accuracy and
computational complexity from our experience. The frame-
work is implemented in PyTorch [27]. We use the AdamW
optimizer [20] and the ReduceLROnPlateau scheduler for
training both stages. The initial learning rates are 6× 10−5

and 1 × 10−4 for local and global stages. The two stages
are trained with batch sizes of 64 and 8 for 1000 and 350
epochs, respectively. We provide a more detailed descrip-
tion of the training parameters in the supplementary. The
training and testing are performed on an NVIDIA GeForce
RTX A5000 graphics card with 24 GB of memory.

4.2. Datasets

The training set we generate consists of images with only
basic geometries, i.e., squares, circles, and triangles. Each
object has a constant, random depth value ranging from 0.75
m to 1.18 m. We apply the Poisson-Gaussian noise to the
synthesized images [6]:

I (x) = Poisson (αI∗ (x)) + Gaussian
(
0, σ2

)
, (23)

where I (x) and I∗ (x) ∈ [0, 1] are the noisy and normal-
ized clean images, α ∈ [180, 200] is the photon level that
controls the maximum photon capacity for each pixel, and
σ = 2 is the standard deviation of the Gaussian read noise.
We synthesize two images for each scene with optical pow-
ers ρ− = 10.0 m−1 and ρ+ = 10.2 m−1.

The training and validation sets contain 8,000 and 2,000
randomly generated scenes, respectively. Sample images
and the corresponding depth map are shown in Fig. 6a. For
the local stage, we randomly cropped 16,000 and 4,000
patches from the training and the validation sets with sig-
nificant boundaries for training and validation. We use the
full images from these sets for the global stage. For the
testing set, we avoid commonly used RGBD datasets, such
as NYUDv2 [33], as realistically rendering a defocused
depth boundary requires the occluded background informa-
tion that these datasets do not provide. Instead, we inde-
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pendently select foreground and background images from
two image datasets. The background is randomly selected
from the Painting dataset [4], and the foreground uses im-
ages from the MS-COCO dataset [19]. We directly uti-
lize the segmentation mask in the MS-COCO to create a
foreground object with sophisticated textures and bound-
ary shapes. Both the foreground and the background can
have continuously changing depth values. We also follow
the rendering framework of Guo et al. [9], which uses inter-
polated PSFs to create a smoothly changing defocus and
alpha-clipping for realistic depth boundaries. We render
200 scenes for the testing set. Sample images and the cor-
responding depth maps are shown in Fig. 6b. The images in
our dataset have a resolution of 147× 147 pixels.

(a) (b) 75 cm

118 cm

Figure 6. Sample images of the synthetic dataset. Z∗ (x) indicates
the ground truth depth map. (a) The training and validation set
consists of basic geometries as objects. (b) The testing set contains
objects with realistic textures and boundaries.

4.3. Patch size

The patch size is a critical hyperparameter of Blurry-Edges
that impacts our algorithm’s accuracy. To analyze the ef-
fect of the patch size and determine the optimal value, we
train our model with three patch sizes, 11 × 11, 21 × 21,
and 31 × 31, and quantitatively and qualitatively compare
the depth prediction accuracy. As shown in Tab. 2, the
patch size 21 × 21 achieves the highest accuracy across
key metrics (δ1, RMSE, and AbsRel) on the testing set.
This can be intuitively explained from Fig. 7, where the
patch size 21 × 21 strikes a balance between containing
sufficient pixels for accurate depth estimation and retain-
ing detailed structures in the image. Although a smaller
patch size enables depth estimation along the tiny textures,
it also requires a smaller stride for consistency, which in-
creases memory usage. Therefore, we select the patch size
of 21 × 21 and the stride of 2 after balancing the accuracy
and computational efficiency throughout the experiment.

Patch size δ1 ↑ δ2 ↑ δ3 ↑ RMSE (cm)↓ AbsRel (cm)↓
11× 11 0.717 0.841 0.903 5.675 3.498
21× 21 0.720 0.840 0.895 5.281 3.295
31× 31 0.657 0.821 0.895 6.123 4.060

Table 2. Depth estimation accuracy for different patch sizes on the
synthesized testing set. We report metrics commonly used in prior
works [7, 32, 47]. Detailed calculations of these metrics are in the
supplementary.

75
 c

m
11

8 
cmScene

Figure 7. Depth map generated with different patch sizes, with
patch sizes indicated by colored squares, 11 × 11, 21 × 21, and
31 × 31, respectively. Our method estimates depth values along
the boundaries. The patch size 21×21 results in the most accurate
depth estimation with fine structures preserved. 11×11 can detect
tiny structures but requires a smaller stride for consistency.

4.4. Results on Synthetic and Real Data

We compare our method with various state-of-the-art DfD
algorithms, including both analytical [8, 38] and learning-
based [23, 32, 44, 47]. These algorithms are not originally
designed for noisy images. We repurpose and retrain them
using the same training data described in Sec. 4.2 to per-
form on noisy images. Our method can also output dense
depth maps by assigning the depth values to wedges. Ad-
ditionally, a post-processing can be adopted as a densi-
fier. The notations Ours, Ours-W, and Ours-PP refer to the
sparse depth maps, dense depth maps from Blurry-Edges,
and dense depth maps generated from the sparse depth maps
using a U-Net [30] as post-processing, respectively. More
details about the densification of depth maps are in the sup-
plementary. The quantitative comparison on the testing set
is shown in Tab. 3 with sample depth maps shown in Fig. 8.
Our model clearly achieves the best performance on all met-
rics and visually, with Ours and Ours-PP outperforming
other methods on sparse and dense depth maps, respec-
tively. Besides images with standard 147 × 147 resolution,
our method can also handle larger images by dividing them
into 147 × 147 blocks to process individually. Additional
details on how we merge the results of each block can be
found in the supplementary. We show a sample result of
input images with 587× 587 resolution in Fig. 8b.

We also build a prototype camera with a deformable lens
similar to the one in Guo et al. [8], and use it to capture low-
light, differently defocused image pairs or stacks to test the
algorithms’ performance on real-world data. Figure 9 com-
pares the sample depth maps from different methods. Depth
maps from the proposed method demonstrate the highest vi-
sual quality. More details and results of the real-world ex-
periments are in the supplementary.
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Method Venue’Year # images δ1 ↑ δ2 ↑ δ3 ↑ RMSE (cm) ↓ AbsRel (cm) ↓
Sp

ar
se Focal Track [8] ICCV’2017 2 0.588 0.784 0.874 6.308 4.640

Tang et al. [38] CVPR’2017 2 0.663 0.790 0.878 6.737 4.346
Ours - 2 0.720 0.840 0.895 5.281 3.295

D
en

se

PhaseCam3D [44] ICCP’2019 2 0.405 0.646 0.775 9.883 8.053
DefocusNet [23] CVPR’2020 5 0.657 0.847 0.908 6.092 4.548
DFV-DFF [47] CVPR’2022 5 0.518 0.762 0.868 8.298 6.707
DEReD [32] CVPR’2023 5 0.536 0.778 0.874 7.779 5.977
Ours-W - 2 0.628 0.812 0.885 6.297 4.525
Ours-PP - 2 0.806 0.906 0.945 3.992 2.691

Table 3. Depth prediction accuracy on the synthetic testing set. The proposed algorithm has the best performance compared with the
state-of-the-art algorithms on all metrics, with Ours leading on sparse depth maps and Ours-PP leading on dense depth maps. Details of
the metrics are provided in the supplementary.
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Figure 8. Depth maps from the synthetic testing set. (a) Our method can robustly predict sparse depth maps along boundaries for noisy
input images. The sparse depth map can be effectively densified using two methods, i.e., Ours-W and Ours-PP. Ours-PP achieves the
highest visual quality and accuracy among all methods. A detailed explanation of the densification methods is in the supplementary. (b)
Sample results of larger input images. Our method can handle images with higher resolution. It divides the input images into 147 × 147
blocks and processes each block individually. A detailed description is in the supplementary.
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Figure 9. Depth maps on real-world images. Our method generates sparse depth maps of the highest visual quality and accuracy. The
reference depth map is generated from manual measurements. The inset numbers are calculated according to the reference depth map.
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