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Abstract

Establishing correspondences across images is a funda-
mental challenge in computer vision, underpinning tasks
like Structure-from-Motion, image editing, and point track-
ing. Traditional methods are often specialized for specific
correspondence types, geometric, semantic, or temporal,
whereas humans naturally identify alignments across these
domains. Inspired by this flexibility, we propose MATCHA,
a unified feature model designed to ”rule them all”, es-
tablishing robust correspondences across diverse matching
tasks. Building on insights that diffusion model features can
encode multiple correspondence types, MATCHA augments
this capacity by dynamically fusing high-level semantic and
low-level geometric features through an attention-based
module, creating expressive, versatile, and robust features.
Additionally, MATCHA integrates object-level features from
DINOv2 to further boost generalization, enabling a single
feature capable of matching anything. Extensive experi-
ments validate that MATCHA consistently surpasses state-
of-the-art methods across geometric, semantic, and tempo-
ral matching tasks, setting a new foundation for a unified
approach for the fundamental correspondence problem in
computer vision. To the best of our knowledge, MATCHA
is the first approach that is able to effectively tackle diverse
matching tasks with a single unified feature. Project page:
https://github.com/feixue94/matcha.

1. Introduction
“In computer vision, there is only one problem: correspon-
dence, correspondence, correspondence.” –Takeo Kanade

Establishing correspondences between images is a fun-
damental problem in computer vision, integral to a variety
of applications such as mapping and localization [44, 58],
image editing [45], object pose estimation [70] and point
tracking [13, 22]. Correspondence is typically categorized
by type: geometric [11, 38, 49, 56], semantic [29, 73, 74]
and temporal [7, 27, 55, 61] correspondences, as shown in
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Figure 1. MATCHA for matching anything. We visualize ge-
ometric, semantic and temporal correspondences established by
MATCHA, using a single feature descriptor.

Fig. 1. Geometric correspondences identify 2D points in
images of static scenes that represent the same physical 3D
point, with challenges in diverse illumination and viewpoint
variations. They are typically used to eestimate geometric
camera transformations e.g., for structure-from-motion ap-
plications. Semantic correspondences connect similar ob-
ject parts across distinct instances within a category, de-
manding high-level abstraction across different instances.
Temporal correspondences, in contrast, match points of the
same instance across video frames, require to handle both
static and dynamic elements, occlusions, deformations and
viewpoint changes stemming from complex motions.

Addressing these distinct challenges usually requires
specialized models [11, 34, 40, 47, 64, 74]. However, hu-
mans can align points flexibly across different scenarios,
e.g., across static scenes, dynamic objects of different in-
stances under various viewpoints, prompting the question:
Do we really need a separate feature for each type of cor-
respondence problem? DIFT [61] offers a step toward this,
revealing that correspondence patterns can emerge naturally
from diffusion models [12, 54]. However, DIFT still re-
lies on distinct feature descriptors for different tasks, po-
tentially limiting its utility when the matching type is un-
known. More importantly, the unsupervised correspon-
dences learned by DIFT fall short of fully supervised meth-
ods in matching accuracy (cf . Sec. 4.1 and Sec. 4.2).

In this work, we introduce MATCHA, a foundation fea-
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ture model for matching anything. Unlike DIFT, MATCHA
learns a single descriptor for geometric, semantic, and tem-
poral matching, incorporating explicit supervision while
leveraging the rich knowledge of foundation models. Our
experiments confirm that combining the knowledge of foun-
dation models with targeted supervision is key to accu-
rate and generalized matching (cf . Tab. 3 and Tab. 4).
While adding correspondence-level supervision is straight-
forward, annotated datasets for supervision are limited,
compared to the scale of data a foundation model is usually
trained on, especially for semantic and temporal matching
tasks where human annotations are required for real-world
data. Thus, the main challenge we need to address is to
find a proper way to inject accurate correspondence supervi-
sion from only a limited amount of annotated data, without
destroying the rich information and generalization of fea-
tures learned by foundation models. To achieve this, we
leverage an attention-based dynamic feature fusion mod-
ule that learns to extract mutually supportive knowledge
from two domains, i.e., semantic and geometric, to enhance
themselves for improved matching performance. Guided by
correspondence-level supervision, our attention-based fu-
sion enhances diffusion features without losing generaliza-
tion. Supported by the fusion process, we are able to com-
bine the enhanced diffusion features with the complemen-
tary semantic knowledge from DINOv2, which captures ro-
bust, single-object correspondences (as shown in Fig. 2).
The result is a unified, high-quality feature that achieves
strong matching performance across different tasks.

We summarize the contributions of this work as follows:
We (i) systematically analyze common feature models for
matching, informing the design of MATCHA, a novel fea-
ture model that learns to dynamically fuse geometric and se-
mantic information to improve representational robustness
without loss of generality. MATCHA demonstrates that (ii)
static fusion of features can offset the limitations of indi-
vidual descriptors, enabling a single feature to address a
range of correspondence tasks effectively. Comprehensive
evaluations show (iii) MATCHA surpasses state-of-the-art
on most benchmarks, significantly outperforming unsuper-
vised methods in semantic and geometric matching, high-
lighting the importance of correspondence supervision for
precision. For the first time, we show that (iv) a single
feature is able to achieve the new state-of-the-art across all
three types of common correspondence problems. (iiv) As a
contribution to the community, we re-purpose the TAP-Vid
point tracking benchmark [13] for temporal matching evalu-
ation, establishing common feature baselines to support fu-
ture research on unified feature learning for matching.

2. Related Work
Geometric Correspondence. Geometric matching refers
to searching physically correspondent point pairs between

Source image DINOv2 DIFT (sem) DIFT (geo) MACHA

DINOv2 DIFT (Geo) MATCHADIFT (Sem)Source Image

Figure 2. Heatmap of features from DINOv2, DIFT, and
MATCHA. Given a query point from the source image (1st col-
umn), DINOv2 features give more accurate correspondences on
single object (1st and 2nd row) but struggle when multiple in-
stances of the same class (3rd row) or similar structures (4th row)
exist. Both geometric and semantic features of DIFT perform re-
versely. By unifying knowledge in the three foundation features,
MATCHA produces more accurate and reliable correspondences.

two images captured in the same scene. Geometric cor-
respondences are commonly established by detecting, de-
scribing, and matching local features. An abundant of lo-
cal feature detection and description methods have been de-
veloped starting from hand-crafted local features such as
SURF [2] and SIFT [38] and then evolving towards learned
ones [11, 15, 41, 49, 62, 64, 71, 72]. Benefiting from mas-
sive training data, the learned features show better discrim-
inative ability to viewpoint and illumination changes than
handcrafted ones. However, as most of these learned fea-
tures are trained with purely geometric ground-truth corre-
spondences mainly from static objects, despite their promis-
ing accuracy on geometric matching, they have poor perfor-
mance especially on semantic matching (cf . Sec. 4.1 and
Sec. 4.2). Geometric correspondences can be obtained with
nearest neighbor matching [43] based on descriptor dis-
tance. Although more powerful learned sparse [26, 36, 56]
and dense [4, 16, 18, 19, 52, 60, 75] matchers are proposed,
in this paper, we focus mainly on the feature itself and use
nearest neighbor matching to find correspondences.

Semantic Correspondence. Semantic matching aims to
match points with similar semantic meaning across dif-
ferent instances of the same category, e.g., matching the
eyes of a cat in one image to another cat in the other im-
age. Semantic matching methods focus on extracting fea-
ture descriptors [8, 29] to capture semantic information. Re-
cent works [23, 34, 40, 61, 73, 74] leverage features ex-
tracted from foundation models [3, 12, 46, 48, 54] due to
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their rich semantic knowledge which is hard to learn from
a limited amount of annotated semantic matching training
data. These methods, e.g., DIFT [61] and SD+DINO [74]
use the foundation model features directly for semantic
matching. However, their performance is not comparable
to those finetuned with supervision, e.g., DHF [40] and
SD4Match [34]. Some works also build semantic matchers
for matching from the perspective of customized matching
functions [28, 32, 37], correspondence networks [50, 51] or
semantic flow [5, 24, 30, 32, 52, 63]. These methods require
paired images as input rather than single images.
Temporal Correspondence. Temporal matching targets
at establishing correspondences of the same object across
video frames. It generalizes the geometric matching task
from static scenes to general natural scenes that contain
both static and dynamic content. Recently, temporal corre-
spondence has been largely investigated in its downstream
application task, i.e., tracking any point (TAP) [13]. The
point tracking work [6, 7, 13, 14, 22, 27, 55] focuses on oc-
clusion handling and exploring temporal priors, e.g., long-
term consistency, motion constraints, as well as leveraging
3D reconstruction [39, 59, 66, 67, 69]. Compared to these
works, we are interested in the general problem of estab-
lishing pair-wise correspondences of any two frames from
a video without leveraging any temporal constraints.
Vision Foundation Model. Modern vision foundation
models, e.g., DINO [3, 46], CLIP [25, 48], and diffusion
models [12, 54], exhibit strong generalization performance
across a variety of tasks or domains. Excitingly, their fea-
tures show promising accuracy for both geometric [18, 26]
and semantic [23, 34, 40, 50] correspondences, or even di-
rectly delivering emergent correspondences without an ex-
plicit supervision [61, 74]. DIFT [61] demonstrates that rich
semantic and geometric features have been learned by im-
age diffusion models and can be utilized to directly establish
semantic, geometric and temporal correspondences with-
out further supervision. SD+DINO [74] reveals that fea-
tures from different foundation models have different prop-
erties and demonstrates that the combination of SD feature
and DINO feature gives better semantic accuracy than ei-
ther of them. Inspired by these two works, we leverage SD
model and DINOv2 as our backbones to provide raw fea-
tures. However, essentially different with these two works,
we focus on how to obtain a single feature for all three types
of matching by involving the supervision signals.

3. MATCHA
In this section, we present MATCHA, a novel feature model
that unifies knowledge from multiple foundation models [3,
12, 46, 54] and enhances features for accurate correspon-
dences through precise supervision, enabling a single fea-
ture descriptor for correspondence problems across differ-
ent domains, reaching the state-of-the-art performance.

3.1. Preliminary

Our method is inspired by previous work DIFT that extracts
features from a diffusion model for unsupervised match-
ing. We also build on top of DINOv2 [46], a powerful self-
supervised foundation model.
DIFT [61]. DIFT demonstrates that diffusion models
trained for image generation implicitly learn correspon-
dences. By extracting features from specific layers and
timestamps, DIFT identifies effective feature descriptors for
geometric, semantic, and temporal matching tasks. Given
an RGB image I ∈ RH×W×3, DIFT extracts a semantic de-
scriptor Fh ∈ RH/16×W/16×1280 and a geometric descrip-
tor Fl ∈ RH/8×W/8×640 from a pre-trained stable diffusion
model [53]. While Fh is used for semantic matching and
Fl for geometric and matching, DIFT requires manual se-
lection of descriptors per task, which limits flexibility and
generalization. Our approach eliminates the need for task-
specific descriptors, achieving greater accuracy across tasks
while maintaining a single, unified descriptor.
DINOv2 [46]. DINOv2 is trained on millions of images for
object- and patch-level discrimination, allowing its features
to capture rich semantic information for establishing object-
level correspondences, as shown in recent work [74]. In our
experiments, DINOv2 also exhibits robust handling of ex-
treme viewpoint changes and scale variations for individual
objects, excelling in temporal matching tasks (cf . Sec. 4.3).
While DINOv2 and DIFT (Fh) both provide semantic de-
scriptors, our results show complementary strengths be-
tween the two that enhance general matching capability (cf .
Tab. 3). However, DINOv2’s lack of spatial detail limits
its geometric matching performance. Our approach inte-
grates knowledge from stable diffusion and DINOv2, unify-
ing them into a powerful, single representation for matching
across diverse tasks. We denote the feature extracted from
DINOv2 as Fd ∈ RH/14×W/14×1024.

3.2. Architecture

Overview. As shown in Fig. 3, given an RGB image
I as input, MATCHA outputs a single feature descriptor
Fm ∈ RH/8×W/8×Dm (Dm is its channel size) for match-
ing, including geometric, semantic and temporal matching
tasks. (i) First, we build on top of the foundation feature
models, DIFT and DINOv2, by obtaining two semantic fea-
ture descriptors Fh and Fd and a geometric descriptor Fl

(cf . Sec. 3.1). (ii) We next enhance the DIFT geometric and
semantic features Fl and Fh by learning to extract support-
ive information from the other domain’s descriptor. Such
dynamic fusion is learned via correspondence-level joint su-
pervision on semantic and geometric matching. We show in
our later ablations that such a learned dynamic fusion is crit-
ical for a successful and balanced merging stage where each
descriptor can build on top of each other. (iii) Finally, we
directly merge the two enhance features and the DINOv2
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Figure 3. Architecture of MATCHA. Given an RGB image, MATCHA produces a single feature for geometric, semantic and temporal
matching with nearest neighbor searching. MATCHA is built on top of stable diffusion (SD) models [54] and DINOv2 [46]. Specifically,
original geometric and semantic features extracted from SD are first fused dynamically with a transformer [65] consists of self and cross
attention blocks. In this dynamic fusion process, both geometric and semantic features are augmented with each other which are supervised
with corresponding ground-truth signals in the training process. Then, augmented geometric and semantics features along with DINOv2
feature are unified statically via concatenations into a single feature for matching anything.

semantic feature Fd into a single unified feature Fm. We
describe the detail of each step in the followings.
Dynamic feature fusion. We adopt the transformer [65]
with self and cross attention mechanism for fusion. This
strategy allows our model to dynamically gather comple-
mentary information from the geometric and semantic de-
scriptors and supervise them jointly in the training process.
We patchify both features Fh and Fl with a patch size of
p and project their feature dimension to a common feature
dimension Dh with a linear layer, which produces the in-
put semantic feature F 0

h ∈ RN×Dh and geometric feature
F 0
l ∈ RN×Dh for the fusion stage, where N = H

p∗8 ×
W
p∗8 is

the number of patchified features. The fusion module con-
sists of k self- and cross-attention blocks. For i-th block
with i ∈ {1, ..., k}, the updating process is as follows:

F i
hs = F i−1

h + selfih(F
i−1
h ), (1)

F i
ls = F i−1

l + selfil(F
i−1
l ), (2)

F i
h = F i−1

h + crossih(F
i
hs, F

i
ls), (3)

F i
l = F i−1

l + crossil(F
i
ls, F

i
hs), (4)

where selfih and selfil are i-th self-attention blocks for
Fh and Fl, respectively. crossih and crossil are i-th
cross-attention blocks for Fh and Fl, respectively. We use
the same multi-head attention architecture for each feature
branch with non-sharing parameters. Finally, we concate-
nate the original input features and the fused features along
the channel dimension and feed them into a two-layer MLP
to output the final semantic feature Fs and geometric feature
Fg , defined as:

Fs = MLPh([F
0
h ||F k

h ]), Fg = MLPl([F
0
l ||F k

l ]), (5)

where [.||.] denotes channel-wise concatenation. Fg and Fs

are augmented geometric and descriptors and can be used
directly for geometric and semantic matching, respectively.
Feature Merging. With the previous preparation of the
fusion, we are able to smoothly merge the three features
to unify their knowledge. We start by concatenating the en-
hanced semantic and geometric features, Fs and Fg , to form
Ft, which effectively captures both semantic and geomet-
ric information within the image. As shown in Tab. 3, this
explicit merging, built upon the dynamic fusion process, re-
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sults in a single feature that significantly outperforms the di-
rect merging of raw DIFT features without fusion enhance-
ment. This demonstrates its superior ability to handle both
semantic and geometric information simultaneously. To fur-
ther boost its matching ability, we equip Ft with the strong
semantic cues of DINO-v2 in Fd by another concatenation
to obtain the final unified matching feature Fm. Specifi-
cally, the two concatenations are defined by:

Ft = (Fg||Fs(..., :: ds)), Fm = (Ft||Fd(..., :: dt)), (6)

where ds = Ds

Dg
and dt =

Dd

Dt
are strides adopted to down-

sample Fs and Fd along the channel dimension. In our ex-
periments, Fg , Fs, and Fd have dimensionalities of 256,
768, and 1024, respectively, leading to the dimensionality
of Fm being 1024.

3.3. Supervision

Instead of providing supervision on the final unified fea-
ture, we choose to only provide supervision signals to the
dynamic fusion enhancement. Ideally, we want to introduce
precise signals on each of the tasks directly to our unified
feature, which usually requires large-scale annotated data
for balanced training across different tasks. However, it
is highly expensive to obtain large-scale and accurate cor-
respondence annotations, especially for semantic matching
and temporal matching. Therefore, with the limited amount
of supervision, we choose to customize the DIFT feature for
semantic matching, and support the general semantic under-
standing from DINOv2 descriptor without further tuning it.
Specifically, we apply semantic matching supervision to Fs

using CLIP contrastive loss [48] combined with a dense se-
mantic flow loss [32] and geometric matching supervision
to Fg using the dual softmax loss function [47]. We provide
more information about our supervision losses and training
details in the supplementary material.

4. Experiments
We evaluate MATCHA on three matching tasks. We also
test a variant of our method, denoted as MATCHA-Light,
which evaluates the individual performance of Fs, Fg and
Ft (cf . Sec. 3.2) on semantic, geometric, and temporal
matching tasks. This model is lighter due to no fusion from
DINOv2, and follows DIFT by tackling different matching
tasks using different descriptors. As we aim to provide a
universal descriptor for different matching tasks, we mainly
compare MATCHA with previous descriptors in our exper-
iments. More experiments are provided in the supplemen-
tary material.

4.1. Semantic Matching

Datasets. Following [5, 34, 73], we use three widely used
datasets. SPair-71k [42] contains 12,234 testing pairs split

SM. SPair-71k [42] PF-Pascal [21] PF-Willow [20]
Method Sup. PCK@0.01/0.05/0.1(↑) PCK@0.05/0.1/0.15(↑)
DINOv2 [46] ✗ 6.3 / 38.4 / 53.9 63.0 / 79.2 / 85.1 43.8 / 75.4 / 86.1
⋆DIFT [61] ✗ 7.2 / 39.7 / 52.9 66.0 / 81.1 / 87.2 58.1 / 81.2 / -
DIFT ✗ 3.1 / 37.9 / 54.3 58.7 / 81.8 / 87.8 55.7 / 85.1 / 92.9
DIFT.Uni + DINO [46, 61] ✗ 8.0 / 40.0 / 52.4 61.8 / 78.2 / 85.2 58.7 / 82.9 / 90.7
USC [23] ✗ - / 28.9 / 45.4 - 53.0 / 84.3 / -
SD+DINO [74] ✗ 7.9 / 44.7 / 59.9 71.5 / 85.8 / 90.6 -
†GeoASM [73] ✗ 9.9 / 49.1 / 65.4 74.0 / 86.2 / 90.7 -

DHF [40] ✓ 8.7 / 50.2 / 64.9 78.0 / 90.4 / 94.1 -
*SCorrSAN [24] ✓ 3.6 / 36.3 / 55.3 81.5 / 93.3 / 96.6 54.1 / 80.0 / 89.8
*CATs++ [5] ✓ 4.3 / 40.7 / 59.8 84.9 / 93.8 / 96.8 56.7 / - / 81.2
*SD4Match [34] ✓ - / 59.5 / 75.5 84.4 / 95.2 / 97.5 56.7 / 80.9 / 91.6
*SD+DINO [74] ✓ 9.6 / 57.7 / 74.6 80.9 / 93.6 / 96.9 -
*†GeoASM [73] ✓ 22.0 / 75.3 / 85.6 85.9 / 95.7 / 98.0 -

MATCHA-Light ✓ 10.4 / 65.5 / 78.9 82.3 / 93.5 / 96.6 69.0 / 90.1 / 96.2
MATCHA ✓ 12.2 / 67.1 / 79.6 79.5 / 93.0 / 96.8 70.2 / 91.3 / 97.0

Table 1. Evaluation on Semantic Matching. We report PCK un-
der different thresholds. * denotes methods with dataset-specific
models and † denotes semantic masks being required. Red indi-
cates methods that compute correlation volume from image pairs
while others produce separate descriptors for matching. Both re-
sults of DIFT from its original paper [61] (⋆DIFT) and our imple-
mentation (DIFT) are included.

from 70,958 annotated pairs across 18 classes, with diverse
scenes and significant viewpoint and scale variation. PF-
PASCAL [21] includes 299 testing pairs split from 3547
annotated pairs with similar viewpoints and instance pose.
PF-WILLOW [20] contains 900 testing pairs across 4 cate-
gories and is used to verify the generalization capability. We
evaluate all datasets at an image resolution of 512× 512.
Baselines. The baseline methods include those without su-
pervision, e.g., DIFT [61], USC [23], DINOv2 [46] as well
as those supervised with GT semantic correspondences,
e.g., SD4Match [34] and DHF [40]. We also show results
of SD+DINO [74] and GeoASM [73] which provide mod-
els with and without supervision. Besides, numbers of two
semantic matchers SCorrSAN [24] and CATs++ [5] are also
included as a reference.
Metrics. We adopt the standard metric of Percentage
of Correct Keypoints (PCK) under different thresholds
(0.01/0.05/0.1 for SPair and 0.05/0.1/0.15 for others).
Results. As shown in Tab. 1, both MATCHA and
MATCHA-Light surpass all other semantic features except
for GeoASM [73] which requires dataset-specific trained
models for evaluation and applies task-specific augmenta-
tion on top of its baseline SD+DINO [74]. Such test-time
augmentation requires masks of the dominant object to flip
test images and is not applicable for geometric matching
and temporal matching. In contrast, we pursue general im-
provement in feature representation to better handle match-
ing across various situations using a single feature model
(cf . Tab. 4). We show that our models stand out on PF-
Willow, indicating strong generalization capability.

4.2. Geometric Matching

Datasets. Following prior works [15, 47, 49, 64],
HPatches [1] is used to test feature matching performance.
We also utilize testing splits [60] of ScanNet [10] and

27085



1 2 3 4 5 6 7 8 9 100.0

0.2

0.4

0.6

0.8

1.0

M
M

A

Overall

1 2 3 4 5 6 7 8 9 10
Threshold [px]

Illumination

DISK
D2-Net
R2D2
SuperPoint

XFeat
Croco.E+SP
Mast3R.E+SP
DINOv2+SP

DIFT+SP
MATCHA-light+SP
MATCHA+SP

1 2 3 4 5 6 7 8 9 10

Viewpoint

Figure 4. Geometric Matching on HPatches. We report Mean
Matching Accuracy (MMA) at error thresholds ranging from 1-10
pixel. Concrete and dash lines denote methods with and without
supervision, respectively.

Megadepth [35] to evaluate the relative pose estimation. We
further create randomly selected 1500 pairs of images with
large viewpoint and appearance changes from the database
of Aachen (Day&Night) v1.0 [57] to validate the general-
ization ability. These four datasets cover geometric corre-
spondences induced by homography and perspective trans-
formations under indoor, outdoor and planar scenes with
moderate to strong viewpoint and illumination changes.
Baselines. Our baselines include local features (e.g.,
SuperPoint (SP) [11], DISK [64], etc.), foundation mod-
els (e.g., DINOv2 [46], DIFT [61]) as well as en-
coders of recent popular geometric foundation models (e.g.,
Croco.E [68] and MASt3R.E [33]). Following DIFT [61],
we use SP to provide keypoints for DINOv2, Croco.E,
MASt3R.E and our method MATCHA and MATCHA-
Light. We run all methods in the same setting on the original
image resolution. We compute matches using nearest neigh-
bour matching with mutual check and estimate relative pose
using Poselib [31] with LO-RANSAC [9] as XFeat [47].
Metrics. Following [15, 75], we report the mean match-
ing accuracy (MMA) under 1-10 pixel error thresholds on
HPatches and report the area under the curve (AUC) of
poses accuracy at error thresholds of 5/10/20 degrees for
relative pose estimation.
Feature matching results. As shown in Fig. 4, both our
models have rather close performance on planar scenes,
achieving overall the best matching accuracy at bigger
thresholds, e.g., above 7px errors. At smaller thresholds,
we are only less accurate than DISK and R2D2 which ben-
efit from feature maps at the original image resolution. Note
that all other methods including our models use downscaled
feature maps (8× downsampling), but our models give the
best accuracy among them.

We observe that supervised methods, e.g., DISK, are
much better than methods without supervision, e.g., DIFT,
at handling viewpoint variations. This strongly suggests
that accurate geometric matching against viewpoints is
rather hard to learn from large data without precise corre-
spondence supervisions.

Method GM MegaDepth [35] ScanNet [10] Aachen [57]
Sup. AUC@5/10/20(↑)

Croco.E [68] + SP ✗ 8.0 / 14.7 / 24.2 1.8 / 4.2 / 8.4 11.4 / 18.2 / 26.3
DINOv2 [46] + SP ✗ 24.6 / 37.4 / 50.9 2.3 / 5.9 / 12.3 17.2 / 26.1 / 36.4
DIFT [61] + SP ✗ 49.7 / 62.8 / 72.8 9.3 / 18.7 / 29.4 43.7 / 53.1 / 61.3
DIFT.Uni [61] + DINOv2 [46] + SP ✗ 50.9 / 63.9 / 74.5 9.5 / 19.4 / 30.6 41.9 / 51.3 / 60.0

SP [11] ✓ 47.2 / 60.0 / 69.9 6.8 / 14.9 / 24.7 41.6 / 50.2 / 58.1
XFeat [47] ✓ 45.4 / 58.9 / 69.3 12.3 / 25.9 / 40.6 36.1 / 45.9 / 55.1
DISK [64] ✓ 55.4 / 67.7 / 76.7 6.8 / 14.9 / 24.7 48.9 / 57.5 / 64.6
R2D2 [49] ✓ 39.6 / 54.3 / 66.2 5.4 / 11.3 / 19.3 27.6 / 36.4 / 44.1
D2Net [15] ✓ 32.5 / 47.7 / 61.4 10.6 / 22.9 / 37.3 30.3 / 41.8 / 52.5
MASt3R.E [33] + SP ✓ 37.8 / 51.6 / 63.6 7.4 / 16.8 / 28.5 31.2 / 41.3 / 51.3

MATCHA-Light + SP ✓ 57.1 / 70.9 / 81.2 13.0 / 26.6 / 41.8 51.4 / 60.1 / 67.1
MATCHA + SP ✓ 55.8 / 69.3 / 80.0 12.7 / 26.1 / 40.8 51.7 / 61.0 / 68.5

Table 2. Evaluation on Relative Pose Estimation. We report the
AUC values at error thresholds of 5◦/10◦/20◦ on all datasets.

Relative pose estimation results. As shown in Tab. 2,
our models achieve the best performance on both indoor
and outdoor datasets. While DIFT is the most superior un-
supervised method, we are able to drastically increase its
AUC score by 6.1-8.4 point and 5.8-7.1 point on outdoor
MegaDepth and Aachen, and by 3.7-11.4 point on indoor
ScanNet. Additionally, even if trained with a huge number
of 3D correspondences, the encoder of MASt3R is signif-
icantly less accurate than other feature models that are su-
pervised with much less yet explicit geometric correspon-
dences, e.g., DISK, SP and both of our models. Those ob-
servations further validate the importance of a precise su-
pervision direct on descriptors for robust and accurate geo-
metric correspondences.

4.3. Zero-shot Temporal Matching

We further evaluate the zero-shot performance of our mod-
els on the challenging temporal matching task.
Datasets. We re-purpose the existing TAPVid dataset [13]
to benchmark feature models for temporal matching.
TAPVid dataset consists of 30 highly varying real-world
video sequences with unknown camera poses, among which
some contain highly dynamic objects and extreme camera
motions. We perform matching between the first frame and
all following frames in each sequence to test the ability of
features on handling temporal challenges.
Baselines. We compare our models to previous state-
of-the-art geometric (e.g., DISK [64]) and semantic (e.g.,
DIFT [61]) matching baselines. Rather than using DIFT
original feature for temporal matching as in their paper,
we instead follow MATCHA-Light to use its concatenated
geometric and semantic feature, which leads to better per-
formance. We further consider a hybrid version of DIFT,
DIFT.Uni+DINOv2, which combines geometric and se-
mantic DIFT features as well as DINOv2 descriptors as in
MATCHA and can be considered as an unsupervised ver-
sion of MATCHA.
Metrics. As TAPVid provides sparse query points for
images, we report the same PCK metric at thresholds of
0.05/0.1/0.15 as in semantic matching (cf . Sec. 4.1).
Results. As shown in Tab. 4, among supervised methods,
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DINOv2 DIFT* MATCHA

Figure 5. Visualization of temporal matches on TapVID-
Davis [13]. We visualize several challenging cases for establishing
temporal correspondences, where MATCHA generally achieves
the best performance in handling extreme scale and viewpoint
changes, as well as scenes with multiple similar instances. DIFT*
is the adapted DIFT where we use its concatenated semantic and
geometric feature for temporal matching for better performance.

the geometric-matching-only models are generally better on
temporal matching than the semantic-matching-only mod-
els. However, among unsupervised methods, DINOv2 de-
spite of its poor geometric matching performance (Sec. 4.2)
and moderate semantic matching capability (Sec. 4.1),
achieves surprisingly superior temporal matching ability.
While those two observations seem contradictory, our hy-
pothesis is that DINOv2, benefiting from its large-scale
learning on single object-centric data, is able to well han-
dle large viewpoint and scale changes especially when there
is a single dominant object in the scene. However, it is
poor at handling repetitive structures, and therefore it fails
to achieve good geometric matching as well as temporal
matching when many similar instances exist. We provide
a visual example in Fig. 5 that supports our hypothesis.

Furthermore, MATCHA and DIFT.Uni+DINOv2 stand-
ing on top of DINOv2 are significantly better than the
other baseline models, which infers that part of the seman-
tic knowledge required for tackling temporal matching is
uniquely supported by DINOv2. Finally, MATCHA out-
performs DIFT.Uni+DINOv2, indicating that the accurate
correspondence supervision signals from semantic and geo-
metric matching provide additional help to improve tempo-
ral matching accuracy as well.

with Feat. Corres. Desc. Aachen PF-Willow
Baseline DINOv2 Fusion Sup Type AUC@5/10/20(↑) PCK@0.05/0.1/0.15(↑)
DIFT ✗ ✗ ✗ SM 25.6 / 35.6 / 46.3 55.7 / 85.1 / 92.9
DIFT.S ✗ ✗ ✓ SM 11.5 / 18.6 / 27.7 63.6 / 88.4 / 95.7
MATCHA-Light ✗ ✓ ✓ SM 21.9 / 31.4 / 41.3 69.0 / 90.6 / 96.2
M1 ✓ ✓ ✓ SM 29.2 / 39.5 / 49.7 70.3 / 92.4 / 97.6

DIFT ✗ ✗ ✗ GM 43.7 / 53.1 / 61.3 26.4 / 40.4 / 50.6
DIFT.S ✗ ✗ ✓ GM 50.4 / 58.7 / 65.7 32.7 / 46.4 / 55.6
MATCHA-Light ✗ ✓ ✓ GM 51.4 / 60.1 / 67.1 33.2 / 49.4 / 59.1
M1 ✓ ✓ ✓ GM 54.0 / 62.7 / 69.8 53.1 / 76.8 / 85.5

DIFT.Uni ✗ ✗ ✗ Uni 43.6 / 52.7 / 60.8 26.4 / 40.4 / 50.6
DIFT.Uni + DINO ✓ ✗ ✗ Uni 41.9 / 51.3 / 60.0 58.7 / 82.9 / 90.7
M2 ✗ ✗ ✓ Uni 50.5 / 58.9 / 65.9 31.8 / 45.6 / 55.4
M3 ✗ ✓ ✓ Uni 50.0 / 59.0 / 66.5 60.8 / 82.8 / 90.4
M4 ✓ ✗ ✓ Uni 53.0 / 61.8 / 69.0 53.9 / 78.1 / 88.2
MATCHA ✓ ✓ ✓ Uni 51.7 / 61.0 / 68.5 70.2 / 91.3 / 97.0

Table 3. MATCHA Ablation Study. We ablate different compo-
nents of proposed model on Aachen [57] for geometric matching
and PF-Willow [20] for semantic matching using the same metrics
defined in the previous sections. We denote their descriptor types
using SM/GM/Uni that stand for semantic/geometric/unified fea-
tures. We use green cells for evaluations on a supervised match-
ing task and gray on zero-shot matching tasks.

4.4. Ablations

We perform ablation studies on Aachen [57] and PF-
Willow [20] for geometric and semantic matching, respec-
tively. In Tab. 3, we present intermediate variants that
evolve from DIFT baseline towards our final MATCHA.
We focus on studying the impact of four design choices:
(i) correspondence supervision, (ii) feature fusion between
semantic and geometric features, (iii) leveraging DINOv2
and (iv) using separate semantic (SM) and geometric (GM)
descriptors versus a unified (Uni) feature for both tasks. The
baselines include M1 (DIFT + DINOv2 + feature fusion +
supervision ), M2 (DIFT + supervision + unified descrip-
tor), M3 (DIFT + feature fusion + unified descriptor), and
M4 (DIFT + DINOv2 + supervision + unified descriptor)
Impact of correspondence supervisions. We add the
same number of self-attention layers (as in MATCHA) to
process the original DIFT semantic and geometric descrip-
tors and supervise them accordingly using the same seman-
tic and geometric supervisions individually. We name this
variant DIFT.S. As shown in Tab. 3, the geometric super-
vision leads to improved performance both on geometric
and semantic matching, verifying that a general improve-
ment in matching capability was gained with geometric su-
pervision. While supervised semantic DIFT descriptor also
shows clear improvement on semantic matching, it leads to
worse geometric matching performance, indicating the loss
of generalization capability in its feature potentially due to
the limited semantic matching data.
Impact of dynamic feature fusion. After turning on our
proposed fusion module (cf . Sec. 3.2), MATCHA-Light
is able to further improve the accuracy on top of DIFT.S
when being evaluated on both supervised and unsupervised
semantic and geometric matching tasks. While semantic
and geometric features contain information to support each
other, it is not trivial to extract and fuse them to realize the
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Geometric Semantic Temporal
Single Corres. Aachen PF-Willow TapVid-Davis Average

Method Desc Sup. AUC@5/10/20(↑) Avg(↑) PCK@0.05/0.1/0.15(↑) Avg(↑) PCK@0.05/0.1/0.15(↑) Avg(↑) Score(↑)
DISK [64] ✓ GM 48.9 / 57.5 / 64.6 57.0 10.2 / 17.0 / 23.1 16.8 57.0 / 61.7 / 65.0 61.2 45.0
DeDoDe-G [17] ✓ GM 62.4 / 70.6 / 76.8 69.9 27.1 / 42.2 / 51.7 40.3 80.6 / 85.8 / 88.4 84.9 65.1
XFeat [47] ✓ GM 36.1 / 45.9 / 55.1 45.7 25.7 / 40.0 / 48.8 38.2 63.3 / 71.4 / 77.1 70.6 51.5
MASt3R.E [33] ✓ GM 31.2 / 41.3 / 51.3 41.3 24.0 / 42.1 / 54.7 40.3 75.2 / 83.8 / 87.9 82.3 54.6

DIFT [61] ✗ ✗ 43.7 / 53.1 / 61.3 52.7 55.7 / 85.1 / 92.9 77.9 79.7 / 86.7 / 90.5 85.6 72.1
MATCHA-Light ✗ GM+SM 51.4 / 60.1 / 67.1 59.5 69.0 / 90.6 / 96.2 85.3 78.7 / 86.3 / 90.2 85.1 76.6

DINOv2 [46] ✓ ✗ 17.2 / 26.1 / 36.4 26.6 43.8 / 75.4 / 86.1 68.4 83.2 / 89.7 / 92.0 88.3 61.1
DIFT.Uni +DINOv2 ✓ ✗ 41.9 / 51.3 / 60.0 51.1 58.7 / 82.9 / 90.7 77.4 86.4 / 91.6 / 93.5 90.5 73.0
MATCHA ✓ GM+SM 51.7 / 61.0 / 68.5 60.4 70.2 / 91.3 / 97.0 86.2 87.8 / 93.5 / 95.5 92.3 79.6

Table 4. Towards Matching Anything with A Unified Feature. We compare ourselves to various feature models across geometric,
semantic and temporal matching and compute the ranking of each method for each task and averaged over tasks. We show that MATCHA
achieves the topk averaged ranking among all types of methods using a single feature for matching anything.

mutual helping goal. For example, naively concatenating
DIFT semantic and geometric features as in DIFT.Uni, or
DIFT supervised features as in M2, both lead to a big drop
in semantic matching performance compared to using those
feature individually. In contrast, we show that with the help
of feature fusion, semantic and geometric features not only
improve themselves as in MATCHA-Light, but also become
more cooperative and consistent with each other when be-
ing concatenated as in M3. The above experiments fully
demonstrate that our proposed feature fusion module en-
ables effective extraction and fusion of helpful information
from the semantic and geometric features into each other,
leading to enhanced feature matching accuracy.
Role of DINOv2. As shown in Tab. 3, M1,
DIFT.Uni+DINO, MATCHA building on top of DINOv2,
achieve constant improvement on both geometric and se-
mantic matching performance compared to their baselines
MATCHA-Light, DIFT.Uni and M3. Such conclusion is
consistent with our discussion in Sec. 4.3, showing that
DINOv2 provides interesting complementary knowledge to
DIFT as well as our supervised MATCHA-Light, to signif-
icantly boost their general matching capabilities.
A unified feature. As shown in the upper two parts of
Tab. 3, using only the semantic or geometric descriptor, it is
hard to achieve a good performance on both tasks. Among
those, M1 geometric descriptor is the most promising fea-
ture that achieves the best geometric matching performance
with proper generalization on semantic matching. However,
unifying the semantic and geometric feature of M1 into one
as in MATCHA largely improves its performance on seman-
tic matching, with a slight drop at geometric matching accu-
racy, achieving the best balance between the two matching
tasks. We further evaluate MATCHA in the next section
towards our end goal.

4.5. Towards Matching Anything

Keeping multiple versions of descriptors for an image is not
effective in general. Therefore, we aim at pursuing a foun-

dation feature model that produces a single descriptor that
is designed for matching anything. In this section, we thor-
oughly evaluate the state-of-the-art feature models across
the three matching tasks, i.e., geometric, semantic, and tem-
poral matching. As shown in Tab. 4, geometric features
are not able to perform semantic matching well and have
limited generalization ability on temporal matching. While
the unsupervised foundation feature DIFT shows promising
matching capability generalizing across three tasks, it re-
quires different descriptors to handle different tasks and has
a clear gap compared to task-specific best performing mod-
els. MATCHA, building on top of the feature knowledge
learned in DIFT and DINOv2, further enhanced with pre-
cise correspondence supervision and supported by a careful
fusion mechanism, for the first time, outperforms all other
methods across all tasks, using only a single feature.

5. Conclusion
In this work, we introduce a new vision challenge: achiev-
ing match-anything capability with a single, unified fea-
ture representation. We propose MATCHA, a novel fea-
ture model that harnesses existing correspondence supervi-
sion resources to narrow the accuracy gap between founda-
tional features and task-specific supervised methods, while
preserving generalization across diverse correspondence
tasks. By incorporating limited, high-quality supervision,
we take a significant step toward eliminating the need for
task-specific feature descriptors, moving closer to universal
matching features. This approach has direct implications
for applications relying on robust correspondence, includ-
ing 3D reconstruction, tracking and localization, image re-
trieval, and image editing.
Limitations. Our experiments reveal that while features
derived from foundation models capture rich information,
they still face challenges in resolution precision for fine-
grained geometric matching and are often not optimized for
runtime efficiency. We encourage future work to address
these limitations for broader applicability.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021. 2, 3

[4] Hongkai Chen, Zixin Luo, Lei Zhou, Yurun Tian, Ming-
min Zhen, Tian Fang, David Mckinnon, Yanghai Tsin, and
Long Quan. Aspanformer: Detector-free image matching
with adaptive span transformer. In European Conference on
Computer Vision, pages 20–36. Springer Nature Switzerland
Cham, 2022. 2

[5] Seokju Cho, Sunghwan Hong, and Seungryong Kim.
Cats++: Boosting cost aggregation with convolutions and
transformers. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(6):7174–7194, 2022. 3, 5

[6] Seokju Cho, Jiahui Huang, Seungryong Kim, and Joon-
Young Lee. Flowtrack: Revisiting optical flow for long-
range dense tracking. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
19268–19277, 2024. 3

[7] Seokju Cho, Jiahui Huang, Jisu Nam, Honggyu An, Seun-
gryong Kim, and Joon-Young Lee. Local all-pair correspon-
dence for point tracking. arXiv preprint arXiv:2407.15420,
2024. 1, 3

[8] Christopher B Choy, JunYoung Gwak, Silvio Savarese, and
Manmohan Chandraker. Universal correspondence network.
Advances in neural information processing systems, 29,
2016. 2
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and Michael Felsberg. Dkm: Dense kernelized feature
matching for geometry estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17765–17775, 2023. 2

[17] Johan Edstedt, Georg Bökman, Mårten Wadenbäck,
and Michael Felsberg. Dedode: Detect, don’t de-
scribe—describe, don’t detect for local feature matching. In
2024 International Conference on 3D Vision (3DV), pages
148–157. IEEE, 2024. 8

[18] Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten
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