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Abstract

While image captioning provides isolated descriptions for
individual images, and video captioning offers one single
narrative for an entire video clip, our work explores an im-
portant middle ground: progress-aware video captioning at
the frame level. This novel task aims to generate temporally
fine-grained captions that not only accurately describe each
frame but also capture the subtle progression of actions
throughout a video sequence. Despite the strong capabil-
ities of existing leading vision language models, they often
struggle to discern the nuances of frame-wise differences.
To address this, we propose ProgressCaptioner, a caption-
ing model designed to capture the fine-grained temporal dy-
namics within an action sequence. Alongside, we develop
the FrameCap dataset to support training and the Frame-
CapEval benchmark to assess caption quality. The results
demonstrate that ProgressCaptioner significantly surpasses
leading captioning models, producing precise captions that
accurately capture action progression and set a new stan-
dard for temporal precision in video captioning. Finally, we
showcase practical applications of our approach, specifi-
cally in aiding keyframe selection and advancing video un-
derstanding, highlighting its broad utility.1

1. Introduction

Visual captioning [38]—the task of generating textual de-
scriptions of visual content—is a fundamental problem in
computer vision with extensive practical applications. Ex-
isting captioning paradigms are broadly divided into two
categories: image captioning and video captioning, with a
clear distinction between them. Image captioning [23] gen-
erates a single, isolated description for each image, with
no contextual linkage among different images. In contrast,
video captioning [1] assigns a single caption for the entire
video clip, aggregating information across frames without
addressing the specifics of individual frames.

Figure 1 illustrates this dichotomy. Employing an im-

†Work conducted as an independent researcher
1Project webpage: https://vision.cs.utexas.edu/

projects/ProgressCaptioner.
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The frame shows a 
large, worn-out 
wok with a dark 
interior. There is a 
small amount of 
oil visible at the 
bottom of the wok, 
indicating that it is 
ready for cooking.

Three eggs are 
being added into 
the wok. The eggs 
are still intact and 
have bright yellow 
yolks. The wok 
remains in the 
same position as 
in the first frame.

A metal spatula is 
used to stir the 
eggs. The eggs are 
starting to cook, 
with some white 
parts becoming 
more solid while 
others remain 
runny.

The scene 
transitions to 
show the same 
wok, now 
containing 
scrambled eggs.
The yolks are fully 
mixed into the 
whites.

Figure 1. We propose progress-aware video frame captioning (bot-
tom), which aims to generate a sequence of captions that capture
the temporal dynamics within a video. Unlike traditional image
and video captioning (top) that focus on broad event-level descrip-
tions, our task delves into the detailed, progressive dynamics of an
action, necessitating precise, temporally fine-grained capabilities.
Blue text highlights how the progress-aware captions build succes-
sively on the earlier content to highlight what is changing.

age captioning model like BLIP [37] to describe each frame
of the video results in captions that are local, not temporally
context-aware, and may exhibit little variation across the se-
quence. Conversely, video captioning provides a global, not
temporally fine-grained overview of the event, as exempli-
fied by the YouCook2 [85] ground truth label “scramble the
eggs in the wok”. In both scenarios, the nuances of how the
action unfolds over time are missed. This raises the ques-
tion: Can we develop temporally fine-grained captions that
capture the subtle, progressive nature of action sequences?
Figure 1 (bottom) illustrates what we seek.

Having such progress-aware captions could benefit a
great variety of downstream tasks, bringing improved video
understanding [73, 79], more precise video retrieval [66–
68], and enriched video generation [50, 58]. Moreover,
such a capability could open up new AR/VR and robotics
applications. For instance, in AI coaching, a captioning
system could meticulously analyze an expert’s tennis fore-
hand, simplifying the learning process for users. Similarly,
for how-to video creation, it could elicit and describe the
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Figure 2. Use cases of video frame captioning: finer-grained cap-
tions enable detailed, step-by-step guidance for daily tasks.

key object state changes at each stage (e.g., “how to make
whipped cream”)—useful for both content creators as well
as visually-impaired users learning a new skill. See Fig. 2.

Towards this end, we introduce a novel captioning
task—progress-aware video captioning at the frame level.
This task involves generating captions that not only coher-
ently depict action progression but also tailor each descrip-
tion specifically to its corresponding frame.2 Our task is
uniquely characterized by its demand for fine-grained tem-
poral sensitivity. By “fine-grained”, we refer to generating
detailed descriptions that elucidate the stages or procedural
steps of the action, effectively conveying how the action is
performed throughout the video sequence.

As discussed, traditional video captioning [9, 63, 70, 86]
settles for broad event-level descriptions, where a descrip-
tion like scrambling eggs for the video in Figure 1 would be
considered entirely accurate. In contrast, we seek progress-
aware captions that detail each stage of the action, such
as “eggs still intact”, “starting to cook” and “fully mixed”.
While recent works [6, 8, 11, 12, 61, 83] enhance the over-
all descriptiveness of video captions, they continue to pro-
duce a single video-level description without distinguishing
the nuances across time. Our task delves deeper, exploring
how each frame contributes to the narrative of the action’s
progression, thereby setting a new standard for fine-grained
temporal precision in video captioning.

Despite great advancements of vision language mod-
els (VLMs) [2, 33, 37, 40–42, 62, 75, 81, 83] that have
markedly improved visual captioning, we observe that these
models still struggle with this nuanced task. Two main is-
sues persist: first, the lack of temporally fine-grained cap-
tions; when shown adjacent frames that depict subtle varia-
tions in action progression (such as frames 2 and 3 in Fig-
ure 3), the generated captions can be overly coarse, fail-
ing to differentiate between the frames (see row 2, Gemini-
1.5-Pro’s captions). Second, we identify and term a notable
issue of “temporal hallucination”, where the captions sug-
gest temporal progression in disagreement with what the
visual frames exhibit. See frame 2 of Figure 3, where
GPT-4o’s generated captions (row 1) incorrectly advance
the action sequence. The prevalence of such errors can

2Without loss of generality, we obtain the input frame sequence by uni-
formly sampling from the action clips at a fixed rate (1FPS). These frames
may or may not demonstrate visual action progression from one to the
next, demanding that the model discern the difference when generating
progress-aware captions.

The hands are further 
along in the peeling 
process, with a larger 
portion of the shell 
removed.

The hands are partially 
peeling the shell from 
the prawn, with fingers 
grasping the edge of 
the shell.

The shell is nearly 
completely removed, 
with the hands holding 
the almost fully peeled 
prawn.

Two hands are 
holding a prawn with 
the head facing the 
camera. The left hand 
is pulling the prawn's 
head down while the 
right hand is holding 
the top of the prawn's 
body.

Two hands are 
holding a prawn with 
the head facing the 
camera. The left hand 
is pulling the prawn's 
head and shell down 
while the right hand is 
holding the top of the 
prawn's body.

Two hands are 
holding a prawn with 
the head facing the 
camera. The left hand 
is pulling the prawn's 
head and shell down 
while the right hand is 
holding the top of the 
prawn's body.

Frame 1 Frame 2 Frame 3

not temporally fine-grainedtemporal hallucination

Figure 3. Issues of existing VLMs in video frame captioning: (1)
Lack of temporal granularity. See captions for frames 2 and 3, pro-
duced by Gemini-1.5-Pro (row 2), which fail to distinguish subtle
differences between the frames. (2) Temporal hallucination. See
frame 2’s caption produced by GPT-4o (row 1), which inaccurately
suggests progression that is not visible.

be attributed to models’ reliance on the common statistics
of activity sequences, which mistakenly override match-
ing specific statements to specific frames. Meanwhile, im-
age captioners—even if trained with fine-grained annota-
tions—treat frames in isolation and hence lack the temporal
context to say what is progressing versus what is present.

We introduce ProgressCaptioner, a model for generat-
ing progress-aware frame-level video captions. Our ap-
proach uniquely interleaves pseudo labeling with two learn-
ing stages. Stage I develops a frame pair captioning model,
and stage II extends this to full frame sequences. This pro-
cess also creates the FrameCap training dataset, comprising
action videos along with high-quality frame-wise captions,
which are initially generated by an ensemble of VLMs and
then filtered using our proposed evaluation methods.

To assess the quality of frame-wise captions and bench-
mark ProgressCaptioner against leading VLMs, we intro-
duce the FrameCapEval benchmark comprised of videos
from four public video action datasets. ProgressCaptioner
consistently outperforms leading open-source VLMs with
a 1.8→ to 2.7→ improvement in caption quality and also
achieves the highest selection rate in user studies, even sur-
passing the much larger proprietary models GPT-4o [2] and
Gemini-1.5-Pro [53]. Finally, we highlight potential appli-
cations enabled by our advanced captions: keyframe selec-
tion and enhanced video understanding. We hope that our
task, model, and benchmark can inspire future development
in temporally fine-grained video captioning.

2. Related Work

Image Captioning Image captioning has been extensively
studied in recent years [3, 13, 60, 76]. A related line of
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work is image difference captioning, where the task is to
describe differences between two images [27, 48, 56] or
sets of images [15]. Building on the success of generative
models, recent benchmarks [4, 28, 77] challenge models to
distinguish between two visually similar images, advancing
fine-grained image understanding. However, all the above
models are restricted to static (typically synthesized) im-
age pairs and address coarse-grained differences like object
presence or absence. Temporal intricacies—accurately de-
scribing how an action progresses—remain unexplored.
Video Captioning Video captioning [1] aims to produce
a single description that encapsulates a video clip. While
traditional benchmarks [9, 63, 70, 86] offer a brief one-
sentence caption for each video, recent efforts expand this
scope, extending captioning to hours-long videos [26], en-
riching the granularity of details [8, 11, 61], enhancing cap-
tion uniqueness [49], integrating a causal temporal narra-
tive [46], or introducing LLM summarization [34].

Adjacent to traditional video captioning are the tasks of
visual storytelling [25, 36] (creating a coherent story for a
sequence of snapshots), dense video captioning [30, 74, 87]
(temporal localization and captioning of all events in an
untrimmed video), audio description [20–22] (detailed nar-
rations of visual events in videos (e.g., movies) for vi-
sually impaired audiences), and video paragraph caption-
ing [78] (producing a multi-sentence paragraph describing
the video). However, all these works still address “what
is happening” at a coarse-grained event level, e.g., noting
that someone is making a souffle within a specific time
range. The ability to break down frame-level details—such
as whisking egg whites, folding ingredients, and observing
the souffle rising—is still lacking.
Vision Language Models Recent advancements in
VLMs [2, 33, 37, 40–42, 62, 75, 81, 83] have greatly en-
hanced the capabilities of both image and video captioning.
Despite their strong performance, VLMs often exhibit “hal-
lucination” [19, 65], and preference learning [52, 84] has
proven effective in mitigating this issue.

Compared to image-LMs, video-LMs crucially re-
quire the integration of temporal dynamics understanding,
spurring a series of work on evaluating temporal percep-
tion [18, 39, 43, 69]. While these assessments ensure that
a model can generate an accurate overall video summary
or answer general questions, they entail neither temporal
localization nor discernment of fine-grained differences be-
tween frames. The OSCaR benchmark [47] focuses on ob-
ject state change (OSC) captioning, yet it is limited to just
three frames and specifically OSC videos, with models and
captions not publicly released yet preventing direct compar-
ison. Additionally, their approach relies on human annota-
tion and a single advanced GPT model. In contrast, our
approach features a scalable data collection pipeline that re-
duces reliance on these labor-intensive resources, employs

A tennis player is hitting a forehand shot on a green and red tennis 
court. They are positioned near the baseline and are in the follow-
through stage of their swing, with their racket extended forward 
and their body weight shifting forward. 
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The player 
extends his right 
arm back, 
preparing to 
swing the racket.

The player 
completes the 
serve motion, 
landing back on his 
feet with the racket 
down by his side.

The player tosses 
the ball into the 
air with his left 
hand, initiating 
the serve

The player stands 
poised, holding 
the racket, 
preparing to 
serve.

Frame 1 Frame 2 Frame 3 Frame 6

Frame 2

…

…

Figure 4. Captioning outcomes using Gemini-1.5-Pro [53].

novel automatic evaluation tasks, and broadens the scope
beyond OSC videos. Finally, unlike methods for long-form
video and event localization with VLMs [10, 44, 54], our
focus is distinctly more temporally fine-grained, concentrat-
ing on how individual frames evolve within a single event.

3. Approach

We delve into the specific challenges of our progress-aware
video frame captioning problem in Sec. 3.1 and outline Pro-
gressCaptioner’s development in Sec. 3.2.

3.1. Progress-aware Video Frame Captioning

Problem Formulation Our objective is to develop a cap-
tioning model that, given a video, produces accurate tempo-
rally fine-grained captions. Formally, for a sequence of T
frames, denoted as V = {vi}Ti=1, the captioning model gen-
erates a corresponding sequence of captions C = {ci}Tc=1,
where each ci describes the i-th frame vi (recall we sam-
ple at 1FPS). This captioning process has three key require-
ments: (1) Accuracy, where each caption ci must faithfully
represent what is visually occurring in frame vi, without
hallucinating from the context of other frames; (2) Tempo-
ral Specificity, where each caption ci specifically attends to
vi, without being overly generic to be applicable to multi-
ple frames in the sequence; (3) Progressive Coherence: The
sequence of captions {ci}Ti=1 should build upon each other
to reflect the essential changes in the action over time.
FrameCap Dataset To train our captioning model, we re-
quire a dataset that pairs frame sequences (V) with corre-
sponding captions (C). Existing datasets [9, 63, 70, 86]
provide only a single, generic caption for an entire video
clip, lacking the frame-wise caption format we need. To ad-
dress this gap and train our model, we develop the Frame-
Cap dataset. Given the prohibitive expense of collecting
human-labeled caption sequences as our ground truth (C),
especially at scale, we leverage leading VLMs as powerful
tools to create a pseudo caption sequence Ĉ from V . For
video sources, we refer to two large-scale datasets that fo-
cus on fine-grained human activities: HowToChange [72]
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Figure 5. Framework of ProgressCaptioner, designed in two stages. In Stage-I, we prepare frame pairs and generate corresponding caption
pairs using multiple VLMs. Each pair undergoes our designed progression detection and caption matching evaluations, to decide if they
are selected for model supervised fine-tuning or rejected, with the latter contributing to preference data to aid in model preference learning.
The Stage-I model training then proceeds using this collected data. In Stage-II, the trained stage-I model labels frame sequences with a
two-frame sliding window, in conjunction with other VLMs. These sequences are again assessed through progression detection and caption
matching to classify them as selected or rejected. All collected data from both stages contribute to the final training of ProgressCaptioner.

(featuring object state change videos from YouTube) and
COIN [59] (featuring daily activities from YouTube).

Caption Sequence Construction Prompting VLMs for
our desired caption sequence is nontrivial. We identify two
key problems: (1) Input considerations: how many context
frames from {vi}Ti should be provided? (2) Output assess-
ment: what issues arise in VLM-generated captions, and
how can we filter to retain only high-quality ones? To ex-
plore these questions, we conduct preliminary experiments
by prompting leading VLMs to perform the frame-wise cap-
tioning task. We share our findings below.

Observation I Intuitively, inputting all T frames would
seem best. However, current VLM capabilities do not sup-
port this extensive context. Specifically, providing too many
frames at once often leads to descriptions that lack detail
and exhibit temporal inaccuracies, with VLMs also risk-
ing memory overload, as similarly observed in [11]. Con-
versely, providing a single frame at a time reduces the task
to image captioning, which is not optimal either, resulting
in captions that lack temporal context and coherence.

Figure 4 shows a representative trial with Gemini-1.5-
Pro [53]. Inputting the full sequence (case (a)) yields brief
per-frame descriptions with temporal misalignment (i.e., the
second caption erroneously describes what is visually oc-
curring in the third frame). On the other hand, captioning
frames in isolation (case (b)) removes essential temporal
context, where the model mistakes the initial stage of a ten-
nis serve for the follow-through of a forehand swing. These
findings underscore the importance of finding a balanced
approach and motivate us to adopt a frame pair as the step-
ping stone of our captioning model.

Observation II Next, building upon the use of a frame

pair (v1, v2), is the caption pair (ĉ1, ĉ2) produced by exist-
ing VLMs of sufficient quality to be directly adopted? Our
preliminary experiments reveal two main issues: (a) lack
of temporal granularity, and (b) temporal hallucination, as
showcased in Figure 3. To dissect these issues, we analyze
the captions in relation to the visual progression between
frames v1 and v2. Specifically, if there is a visible progres-
sion from v1 to v2 (e.g., the slight peeling of a shrimp’s
shell from frame 2 to frame 3 in Figure 3), the captions
should adequately reflect this change. Overly similar cap-
tions in such a scenario signify a failure in temporal granu-
larity. Conversely, when there is no change between frames
(e.g. frames 1 and 2 in Figure 3), the captions should re-
main consistent. We deem it a temporal hallucination when
captions erroneously indicate progression in disagreement
with the visuals. This deficiency in existing VLMs moti-
vates our development of a new captioning model and spe-
cialized evaluations for high-quality caption selection.

3.2. ProgressCaptioner

The observations above drive the design of our model, Pro-
gressCaptioner, which unfolds in two stages. Based on our
findings that current VLMs have trouble maintaining cap-
tion quality when handling extensive T -frame inputs, our
approach begins with frame pair captioning. In the first
stage, we develop a ProgressCaptioner to excel at describ-
ing the nuances between adjacent frames. The second stage
then leverages the first-stage model to pseudo label the full
T -frame sequence with a two-frame sliding window. This
staged approach refines caption quality along with model
development, enhancing the captioning process iteratively
with more precise pseudo labels.
Frame Pair Data Preparation Starting with a frame pair
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v = (v1, v2), we employ K captioning models to gener-
ate an initial set of caption pairs {(ĉ1, ĉ2)}K1 . Acknowl-
edging the potential inaccuracies in these captions, as per
observation II, we design two automatic evaluation tasks
to assess caption quality. The first task, progression de-
tection, examines progress awareness: it checks whether
the captions appropriately reflect visual changes between
v1 and v2. Specifically, an LLM assesses each caption
pair (ĉ1, ĉ2)k to determine if they suggest a visible physical
change. We utilize majority voting across multiple LLMs’
assessments for all K caption pairs to establish a consensus
visual-change label. Caption pairs that align with this con-
sensus are marked as passing; others are marked as failing.

For pairs passing progression detection, we proceed to
our second evaluation task—caption matching—to assess
how precisely ĉ1 and ĉ2 describe v1 and v2, respectively.
The task is designed as a multi-choice question format,
where a VLM is given ĉ1, ĉ2, and an “unsure” option, and
tasked with matching the correct caption to each frame. A
caption pair is considered good if the evaluation VLM cor-
rectly identifies ĉ1 for v1 and ĉ2 for v2. Because the captions
will all be topically related, this is essentially a matching
task with “hard negatives” that lets us automatically gauge
the precision of the proposed captions for the target images.

This automatic pipeline distinguishes between high-
quality caption pairs, denoted by ĉ+ = (ĉ+1 , ĉ

+
2 ), and

those that exhibit inaccuracies or hallucinations, denoted by
ĉ→ = (ĉ→1 , ĉ

→
2 ), forming training data for Stage I.3

Stage I Training Following the success of versatile VLMs
in captioning tasks [34, 42, 61, 71], we initialize Progress-
Captioner with the LLAVA-OV-7B [33] checkpoint to in-
herit its pretrained capabilities. Stage-I training utilizes
frame and caption pair data collected on HowToChange and
COIN YouTube videos <v, ĉ+, ĉ→> through two princi-
pal methods: supervised fine-tuning (SFT) and direct pref-
erence optimization (DPO). The SFT process is straight-
forward given our dataset; we perform instructional tun-
ing to tailor the general capabilities of the original VLM
to our specific frame-wise captioning requirements using
<v, ĉ+>. The subsequent DPO step targets the preva-
lent issue of hallucination in VLMs and is innovatively
driven by our proposed automatic evaluation critics. Pref-
erence optimization [52] in LLM training typically requires
human-provided preference data to steer LLM responses to-
wards more desirable outputs. Here, we employ progression
detection and caption matching to automatically construct
preference data ĉ+ and ĉ→, eliminating the reliance on man-
ual labeling. This preference data <v, ĉ+, ĉ→> is adopted
in DPO training to further enhance model performance with
feedback from LLM and VLM evaluations.

3We encourage readers to view data examples provided in Supp. for a
better understanding of our data refinement process, as well as details on
pseudo labeling, prompts used, and the K VLMs we employ.

Frame Sequence Data Preparation The second stage ex-
pands our pseudo labeling scheme from 2 to T frames,
where our Stage-I ProgressCaptioner first generates cap-
tions using a two-frame sliding window. To increase data di-
versity and volume, we also incorporate captions produced
by other VLMs, with both two-frame and full T -frame con-
texts, since captions of low-quality are also useful (after un-
dergoing our evaluation tasks, those that are rejected en-
rich the preference data). Once the initial set of caption
sequences is generated, we conduct progression detection
to identify M visually distinct frames from the original T -
frame sequence, denoted as VM = {vi}Mi=1, using majority
voting; M varies based on the distinctiveness of each frame
sequence’s content. The caption matching task is then em-
ployed to encompass M frames, with a selection pool of
all M captions, ĈM = {ĉi}Mi=1, plus an “unsure” option.
A high-quality caption sequence Ĉ+ is identified when the
evaluation VLM correctly selects ĉi for vi across all frames.
Conversely, a caption sequence is deemed problematic, Ĉ→,
if the VLM incorrectly answers more than half of the cap-
tion selections. This process forms our Stage-II data.
Stage II Training Following the same pipeline as stage I,
ProgressCaptioner is first trained through SFT using data
prepared during both stages, which includes frame-caption
pairs <v, ĉ+> and frame-caption sequences <V, Ĉ+>.
Subsequently, we conduct DPO with preference data col-
lected from both stages <v, ĉ+, ĉ→> and <V, Ĉ+, Ĉ→> to
further refine performance and mitigate hallucination. This
sequential approach results in our final captioning model,
that accepts inputs ranging from 2 to T frames. This flexi-
bility allows users to control the temporal context, balanc-
ing the need for local frame-wise changes (smaller window)
and global event progressions (larger window). The frame-
work is illustrated in Figure 5.

4. Experiments

We tackle two questions below: (1) How to evaluate frame-
wise caption quality of existing models? And how does Pro-
gressCaptioner perform? (Sec. 4.1); (2) What applications
are enabled by precise progress-aware captions? (Sec. 4.2)

4.1. Benchmarking Video Frame Captioning

Benchmark Data Curation We establish the FrameCapE-
val benchmark, featuring videos from four action under-

standing datasets: HowToChange [72] and COIN [59] (on
which ProgressCaptioner was trained), along with Penn Ac-
tion [82] and Kinetics [7], which are unseen in training and
serve to assess generalization capabilities. We are mindful
of the single frame bias [32] and manually verify all videos
to exclude sequences lacking fine-grained action progres-
sion. This process yields a final set of 684 videos.
Evaluation Metrics We employ the automatic evalua-
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[LLAVA-OV] The tofu 
cubes are now being 
cooked in the pan. 
They have started to 
brown slightly on the 
edges, indicating they 
are being seared. 

[Gemini-1.5-Pro] The 
tofu cubes are being 
added to the pan, 
some are already 
sizzling in the oil.

[ProgressCaptioner]
In this frame, a hand is 
seen placing tofu 
cubes into a black 
frying pan. The pan is 
on a stove, and the 
tofu is being added to 
it, indicating the start 
of the cooking 
process.

[GPT-4o] The tofu 
cubes are now visibly 
sizzling in the pan, 
beginning to develop a 
light golden hue on 
their surfaces.

[LLAVA-Video] The 
tofu cubes are shown 
browning in the pan, 
with some pieces 
already turning golden 
brown while others are 
still pale.

[ProgressCaptioner]
This frame displays a 
close-up view of the 
same black frying pan 
filled with cubed tofu. 
The tofu pieces are 
evenly distributed 
throughout the pan, 
and there is no visible 
action taking place. 

[Idefics2] The tofu 
cubes are still 
browned, but they 
have a darker color.

[Qwen2-VL] The 
tofu is being cooked 
in the pan.

[ProgressCaptioner] 
The frame displays 
the same black frying 
pan filled with cubed 
tofu, but now the 
tofu has a golden-
brown color, 
indicating that it has 
been cooked and is 
likely being fried. The 
tofu pieces appear 
crispy and well-
cooked, suggesting 
that they have been 
in the pan for some 
time.

[Gemini-1.5-Pro] The bowler is 
bringing their arm forward, starting 
the downswing, with the ball 
approaching the release point. Their 
body is starting to lean forward.

[GPT-4o] The individual is initiating 
the forward movement, 
transitioning from the backswing as 
they prepare to release the ball 
towards the lane.

[ProgressCaptioner] The person is 
still in the process of delivering the 
ball down the lane. Their body is 
leaning forward, and their arms are 
extended behind them for balance. 

(a)

(b)

(c)

[VILA] A person is using a 
tool to press down on a blue 
strip of material on the floor.

[LLAVA-OV] Using a 
hammer, the person is 
tapping the plank into place, 
aligning it with the baseboard 
and securing it in position.

[ProgressCaptioner] The
person continues to work on 
the floor installation, 
adjusting the wooden plank 
near the base of the door. 
They use their hands to press 
down on the plank.

Figure 6. Qualitative comparisons of ProgressCaptioner with SOTA VLMs on three action sequences. For sequences (a) and (b), only
the middle frame predictions are displayed. See Supp. for all models’ predictions on full sequences and more examples. Inaccuracies
in descriptions are highlighted in red. Even top VLMs often produce descriptions that misalign with the corresponding frames, while
ProgressCaptioner delivers hallucination-free and temporally fine-grained captions, including phrases explicitly calling out progress (blue).

Model Size HTC COIN Penn&K
Cap Prog Cap Prog Cap Prog

Proprietary models
Gemini-1.5-Pro [53] (img) - 28.4 59.7 24.3 58.6 15.3 51.2
Gemini-1.5-Pro [53] - 31.4 63.8 25.0 63.8 17.6 60.3
GPT-4o [2] - 32.4 64.2 21.3 58.4 18.2 63.2

Open-source models
Idefics2 [31] 8B 2.0 54.4 2.9 52.2 12.5 50.9
VILA [40] 8B 6.9 53.6 5.1 48.2 15.9 51.4
Qwen2-VL [62] 7B 13.7 69.6 11.0 70.8 8.5 58.8
LLAVA-Video [83] 7B 3.9 59.3 8.8 53.0 9.7 51.8
LLAVA-OV [33] (img) 7B 5.9 56.3 17.6 55.4 11.9 55.5
LLAVA-OV [33] 7B 7.8 59.0 5.9 57.3 5.1 50.8
PL (VLM ensemble) - 18.6 62.5 17.6 60.1 19.3 52.4
ProgressCaptioner (ours) 7B 37.3 73.6 32.3 66.1 31.3 63.7

Table 1. Results on the FrameCapEval Benchmark, composed of
video from four public datasets. Cap and Prog denote caption
matching and progression detection accuracy, respectively. PL de-
notes the pseudo labeling baseline adopting filtered captions from
multiple VLMs. ProgressCaptioner greatly outperforms SOTA
open-source VLMs and even the leading proprietary models, de-
spite being a 7B model. The best results are bolded and under-
lined, the second best are bolded, and the third best are italicized.
The results confirm our model’s generalizability from in-domain
datasets (HTC for HowToChange and COIN) to external datasets
not seen during training (Penn&K for Penn Action and Kinetics).

tion tasks of progression detection and caption match-
ing (Sec. 3.2), reporting accuracy with Llama-3.1-70B-

Figure 7. User study results comparing ProgressCaptioner with
top competitors show it as the most preferred model (see text).

Instruct [14] as the evaluation LLM and Gemini-1.5-
Pro [53] as the evaluation VLM. Additionally, we enhance
our evaluation with a user study of 15 participants, report-
ing the average selection rate. See Supp. for experiments
on evaluation metric reliability and full user study details.

Baselines We evaluate an array of state-of-the-art VLMs,
including two proprietary models, GPT-4o [2] and Gemini-
1.5-Pro [53], and five open-source models—Idefics2 [31],
VILA [40], Qwen2-VL [62], LLAVA-Video [83], and
LLAVA-OV [33]. We also include a pseudo labeling
baseline using filtered captions produced by an ensemble
of VLMs (Sec. 3), and image captioning baselines using
Gemini-1.5-Pro and LLAVA-OV. We select open-source
VLM variants with fewer than 10B parameters for compu-
tational efficiency and a fair comparison with our Progress-
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“intense sparks” “a bright, 
intense light”

selected keyframe

“squeezing 
grapefruit”

“grapefruit juice 
being poured”

Figure 8. ProgressCaptioner facilitates keyframe selection and enriches the selected keyframes with progress-aware descriptions.

Captioner, which is an 7B model. The closed proprietary
models are much larger and trained with much more exten-
sive data; we include them as a useful reference point, but
stress that they do not constitute an apples-to-apples com-
parison, to the disadvantage of our ProgressCaptioner.

Implementation ProgressCaptioner is constructed with
SigLIP [80] as the vision encoder and Qwen2 [62] as the
language model, linked through a projector, and initialized
from the LLAVA-OV-7B checkpoint [33]. For benchmark
evaluations in Sec. 4.1, ProgressCaptioner operates on the
full T -frame sequence for a comprehensive temporal con-
text. For applications presented in Sec. 4.2, where fine-
grained analysis of local frame changes is crucial, a slid-
ing window approach is used, with the model processing
frame pairs. To ensure a fair comparison, all video base-
line models are provided with the same temporal context as
ProgressCaptioner across all evaluations.

Results As shown in Table 1, on the FrameCapEval
benchmark, ProgressCaptioner greatly outperforms exist-
ing open-source VLMs of similar capacity and even the
(much larger) latest Gemini-1.5-Pro and GPT-4o. We ob-
serve that strong language-backed VLMs like GPT-4o show
high caption matching accuracy, whereas Qwen2-VL excels
in progression detection, reducing hallucination. However,
it tends to produce less detailed captions, leading to lower
caption matching accuracy. In contrast, ProgressCaptioner
effectively balances precision and detail in frame-wise cap-
tioning, consistently leading the benchmark across both in-
domain and out-of-domain datasets.

Figure 6 provides qualitative comparisons on three ac-
tion sequences. Consider the (a) bowling sequence for in-
stance: baseline models erroneously suggest progression in
frame 2, like “arm forward”, exemplifying the common is-
sue of temporal hallucination in current VLMs. This issue
recurs in the other two sequences. Conversely, Progress-
Captioner delivers high-quality captions that precisely char-
acterize action progress in each frame. See Supp. for more
qualitative examples and an ablation of ProgressCaptioner.

User Study Figure 7 presents the user study results, where
ProgressCaptioner is compared against four of the strongest
competitors: LLAVA-OV, Qwen2-VL, Gemini-1.5-Pro and
GPT-4o. Each participant is presented with five captions
produced by these models and is tasked with selecting the
top-2, with an additional “none” option if the captions are
deemed inadequate. ProgressCaptioner emerges as the most
preferred model, with an average best caption selection rate
of 31.6%—2→ to 3.6→ better than the comparably sized
best models from the literature [33, 62], and even surpass-
ing top-tier proprietary models that enjoy significant scaling
advantages. While our model outperforms all open-source
and proprietary models for top-1 preference, the more for-
giving top-2 metric brings the proprietary closed models
back in the game, though our model remains competitive
even there (50.3% for GPT-4o vs. 47.3% for ours). These
findings underscore our model’s strong ability to produce
accurate, temporally fine-grained captions.

4.2. Applications of Video Frame Captioning

ProgressCaptioner offers progress-aware frame-wise cap-
tions, which hold great potential for many real-world ap-
plications. We explore several practical use-cases below.
Keyframe Selection Our first use-case leverages Progress-
Captioner’s temporally precise captions as an intermediate
representation to identify keyframes within a densely sam-
pled sequence, aided by an LLM (see Supp. for details).
Figure 8 provides two examples, showcasing how Pro-
gressCaptioner’s produced captions allow selecting distinct
frames that effectively capture different stages of the weld-
ing and squeezing grapefruit action. While recent video
summarization work [24] explores using VLMs and LLMs
for keyframe selection, it aims to identify coarse-grained
events within long videos, which is not adequate for our
problem scenario. See Supp. for a side-to-side comparison
and more qualitatives that underscore this distinction.
Keyframes for Action Recognition Not only is keyframe
selection useful for human viewers to quickly preview a
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Uniform

Action label: high kick

Ours

Figure 9. On Kinetics test videos, ProgressCaptioner selects four
frames that are more informative of the action than uniform sam-
pling, resulting in improved action recognition accuracy.

longer video, but it can also extract the most informative
portions of a video to benefit activity recognition [29]. To
illustrate, we next apply our keyframe selection mecha-
nism to Kinetics [7] Temporal [57] subset that necessitates
multi-frame reasoning. Given that the original video clips
are short (sampled at 1FPS, resulting in sequences of 10
frames), we employ two models that take four frames as in-
put: Slow backbone from SlowFast [17] and X3D-XS [16].
We prompt GPT-4o to select four representative frames
from frame-wise captions produced by ProgressCaptioner.
We take the two model checkpoints that have been trained
on the Kinetics training set and replace uniformly sampled
frames with our selected keyframes during inference. Fig-
ure 9 presents a qualitative comparison, highlighting perfor-
mance gains such as a +1.7% increase in top-1 accuracy for
both SlowFast and X3D models. Even among just 10 candi-
date frames, our method’s fine-grained ability to identify the
4 most informative ones translates into better recognition.

Advancing Video Understanding The precise, frame-
wise captions generated by ProgressCaptioner enhance our
understanding of videos. To demonstrate this, we con-
sider two video tasks that demand temporally fine-grained
understanding: (1) frame-wise classification on How-
ToChange [72] and Penn Action [82], and (2) video ques-
tion answering (QA) on NExT-QA [69] (ATP-Hard [5]).
These tasks are chosen because they challenge the model
to comprehend not just the overarching content of a video,
but also the more fine-grained event progression within a
video. The HowToChange and Penn Action test sets pro-
vide frame-wise labels detailing object state changes or ac-
tion phases, requiring frame-level understanding. Similarly,
NexTQA (ATP-Hard) poses temporally challenging ques-
tions that demand multi-frame reasoning, such as determin-
ing event order, emphasizing the need for precise tempo-
ral comprehension. For baseline comparisons, we evaluate
against the LLAVA-OV-7B [33] model, from which Pro-
gressCaptioner is initialized, to highlight the enhancements
that our specialized training on FrameCap brings to video
understanding tasks. For the first task, as we pioneer a zero-
shot, language-guided approach to this traditionally vision-
centric problem (details below), no other zero-shot base-
lines exist. For the second task, we compare ProgressCap-

Which state of 
mashing banana?

A. Initial     B. Transition    C. End     D. Can not tell

The bananas are now in 
smaller pieces…The mixer 
is actively blending the 
ingredients, suggesting 
that the mashing process 
is ongoing.

LLM

Figure 10. ProgressCaptioner delivers precise and detailed per-
frame descriptions, leading to enhanced zero-shot frame-wise
classification performance when compared with LLAVA-OV.

Model Acc@C Acc@T Acc@All
VFC [45] 32.2 30.0 31.4
VideoAgent [64] 57.8 58.8 58.4
LLAVA-OV [33] + GPT-4o 62.6 53.4 58.8
ProgressCaptioner + GPT-4o (ours) 64.4 58.1 61.8

Table 2. Video QA results on NExT-QA (ATP-Hard). C and T
denote causal and temporal subsets, respectively.

tioner against two existing zero-shot approaches [45, 64].
(a) Zero-shot Frame Classification We repurpose zero-
shot frame-wise classification task into a multi-choice QA
format, using frame-wise captions to guide an LLM in
identifying the correct label per frame, evaluating caption
accuracy and granularity (Figure 10 left). Results (Fig-
ure 10 right) show that ProgressCaptioner consistently out-
performs LLAVA-OV across both datasets. Notably, our
training involves no signals related to these frame-wise la-
bels, underscoring its generalizability and effectiveness in
enhancing video frame-level understanding.
(b) Video QA Finally, we report results using frame-wise
descriptions for video QA, where an LLM (we use GPT-4o)
is employed to answer questions on NExT-QA (ATP-Hard)
set. As shown in Table 2, ProgressCaptioner achieves the
best results on this benchmark, outperforming the previous
leader VideoAgent [64] by +3.4%. Compared with a sim-
ilar setup using LLAVA-OV, ProgressCaptioner achieves a
+4.7% gain in the temporal subset, highlighting its superior
ability to produce fine-grained, temporally precise descrip-
tions and bring enhanced video understanding.

5. Conclusion

We introduce progress-aware video frame captioning,
which necessitates a significant enhancement in current
captioning models’ capability to describe temporal action
dynamics. Towards this end, we develop ProgressCap-
tioner and show its effectiveness in enhancing the tempo-
ral precision and alignment of captions with corresponding
frames. Furthermore, we demonstrate its practical applica-
tions: keyframe selection and enhanced video understand-
ing. By setting a new standard for temporal precision in
video captioning, we hope our work inspires further devel-
opment in this domain.
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[31] Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor
Sanh. What matters when building vision-language models?
arXiv preprint arXiv:2405.02246, 2024. 6

[32] Jie Lei, Tamara L Berg, and Mohit Bansal. Revealing single
frame bias for video-and-language learning. arXiv preprint
arXiv:2206.03428, 2022. 5, 1

[33] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng
Li, Hao Zhang, Kaichen Zhang, Yanwei Li, Ziwei Liu, and
Chunyuan Li. Llava-onevision: Easy visual task transfer.
arXiv preprint arXiv:2408.03326, 2024. 2, 3, 5, 6, 7, 8, 1

[34] Boyi Li, Ligeng Zhu, Ran Tian, Shuhan Tan, Yuxiao Chen,
Yao Lu, Yin Cui, Sushant Veer, Max Ehrlich, Jonah Philion,
et al. Wolf: Captioning everything with a world summariza-
tion framework. arXiv preprint arXiv:2407.18908, 2024. 3,
5

[35] Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li,
Wei Li, Zejun Ma, and Chunyuan Li. Llava-next-interleave:
Tackling multi-image, video, and 3d in large multimodal
models. arXiv preprint arXiv:2407.07895, 2024. 1

[36] Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S Kankan-
halli. Video storytelling: Textual summaries for events.
IEEE Transactions on Multimedia, 22(2):554–565, 2019. 3

[37] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
Blip-2: Bootstrapping language-image pre-training with

frozen image encoders and large language models. In In-
ternational Conference on Machine Learning (ICML), pages
19730–19742. PMLR, 2023. 1, 2, 3

[38] Sheng Li, Zhiqiang Tao, Kang Li, and Yun Fu. Visual to text:
Survey of image and video captioning. IEEE Transactions on
Emerging Topics in Computational Intelligence, 3(4):297–
312, 2019. 1

[39] Shicheng Li, Lei Li, Shuhuai Ren, Yuanxin Liu, Yi Liu,
Rundong Gao, Xu Sun, and Lu Hou. Vitatecs: A diag-
nostic dataset for temporal concept understanding of video-
language models. arXiv preprint arXiv:2311.17404, 2023.
3

[40] Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Moham-
mad Shoeybi, and Song Han. Vila: On pre-training for visual
language models. In IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 26689–26699,
2024. 2, 3, 6, 1

[41] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. Improved baselines with visual instruction tuning.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 26296–26306, 2024.

[42] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. Advances in Neural Information
Processing Systems (NeurIPS), 36, 2024. 2, 3, 5

[43] Yuanxin Liu, Shicheng Li, Yi Liu, Yuxiang Wang, Shuhuai
Ren, Lei Li, Sishuo Chen, Xu Sun, and Lu Hou. Tempcom-
pass: Do video llms really understand videos? arXiv preprint
arXiv:2403.00476, 2024. 3

[44] Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra
Malik. Egoschema: A diagnostic benchmark for very long-
form video language understanding. Advances in Neural In-
formation Processing Systems (NeurIPS), 36:46212–46244,
2023. 3

[45] Liliane Momeni, Mathilde Caron, Arsha Nagrani, Andrew
Zisserman, and Cordelia Schmid. Verbs in action: Improving
verb understanding in video-language models. In IEEE/CVF
International Conference on Computer Vision (ICCV), pages
15579–15591, 2023. 8

[46] Asmar Nadeem, Faegheh Sardari, Robert Dawes,
Syed Sameed Husain, Adrian Hilton, and Armin Mustafa.
Narrativebridge: Enhancing video captioning with causal-
temporal narrative. arXiv preprint arXiv:2406.06499, 2024.
3

[47] Nguyen Nguyen, Jing Bi, Ali Vosoughi, Yapeng Tian,
Pooyan Fazli, and Chenliang Xu. Oscar: Object state cap-
tioning and state change representation. arXiv preprint
arXiv:2402.17128, 2024. 3

[48] Dong Huk Park, Trevor Darrell, and Anna Rohrbach. Robust
change captioning. In IEEE/CVF International Conference
on Computer Vision (ICCV), pages 4624–4633, 2019. 3

[49] Toby Perrett, Tengda Han, Dima Damen, and Andrew Zis-
serman. It’s just another day: Unique video captioning by
discriminative prompting. arXiv preprint arXiv:2410.11702,
2024. 3

[50] Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra,
Animesh Sinha, Ann Lee, Apoorv Vyas, Bowen Shi, Chih-
Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of

13648



media foundation models. arXiv preprint arXiv:2410.13720,
2024. 1

[51] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning
(ICML), pages 8748–8763. PMLR, 2021. 2

[52] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn. Direct
preference optimization: Your language model is secretly a
reward model. Advances in Neural Information Processing
Systems (NeurIPS), 36, 2024. 3, 5

[53] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry
Lepikhin, Timothy Lillicrap, Jean-baptiste Alayrac, Radu
Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrit-
twieser, et al. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024. 2, 3, 4, 6, 1

[54] Shuhuai Ren, Linli Yao, Shicheng Li, Xu Sun, and Lu
Hou. Timechat: A time-sensitive multimodal large language
model for long video understanding. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 14313–14323, 2024. 3

[55] Peter J Rousseeuw. Silhouettes: a graphical aid to the inter-
pretation and validation of cluster analysis. Journal of com-
putational and applied mathematics, 20:53–65, 1987. 2

[56] Ragav Sachdeva and Andrew Zisserman. The change you
want to see (now in 3d). In IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 2060–2069, 2023.
3

[57] Laura Sevilla-Lara, Shengxin Zha, Zhicheng Yan, Vedanuj
Goswami, Matt Feiszli, and Lorenzo Torresani. Only time
can tell: Discovering temporal data for temporal modeling.
In IEEE Winter Conference on Applications of Computer Vi-
sion (WACV), pages 535–544, 2021. 8

[58] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An,
Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual,
Oran Gafni, et al. Make-a-video: Text-to-video generation
without text-video data. arXiv preprint arXiv:2209.14792,
2022. 1

[59] Yansong Tang, Dajun Ding, Yongming Rao, Yu Zheng,
Danyang Zhang, Lili Zhao, Jiwen Lu, and Jie Zhou. Coin:
A large-scale dataset for comprehensive instructional video
analysis. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1207–1216, 2019. 4, 5,
1, 2

[60] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. Show and tell: Lessons learned from the 2015
mscoco image captioning challenge. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(4):652–663,
2016. 2

[61] Jiawei Wang, Liping Yuan, and Yuchen Zhang. Tarsier:
Recipes for training and evaluating large video description
models. arXiv preprint arXiv:2407.00634, 2024. 2, 3, 5

[62] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan,
Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin

Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui
Men, Dayiheng Liu, Chang Zhou, Jingren Zhou, and Jun-
yang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint
arXiv:2409.12191, 2024. 2, 3, 6, 7, 1

[63] Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, Yuan-Fang
Wang, and William Yang Wang. Vatex: A large-scale, high-
quality multilingual dataset for video-and-language research.
In IEEE/CVF International Conference on Computer Vision
(ICCV), pages 4581–4591, 2019. 2, 3

[64] Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena
Yeung-Levy. Videoagent: Long-form video understand-
ing with large language model as agent. arXiv preprint
arXiv:2403.10517, 2024. 8

[65] Yuxuan Wang, Yueqian Wang, Dongyan Zhao, Cihang Xie,
and Zilong Zheng. Videohallucer: Evaluating intrinsic
and extrinsic hallucinations in large video-language models.
arXiv preprint arXiv:2406.16338, 2024. 3

[66] Ziyang Wang, Yi-Lin Sung, Feng Cheng, Gedas Bertasius,
and Mohit Bansal. Unified coarse-to-fine alignment for
video-text retrieval. In IEEE/CVF International Conference
on Computer Vision (ICCV), pages 2816–2827, 2023. 1

[67] Wenhao Wu, Haipeng Luo, Bo Fang, Jingdong Wang, and
Wanli Ouyang. Cap4video: What can auxiliary captions do
for text-video retrieval? In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 10704–
10713, 2023.

[68] Wenhao Wu, Xiaohan Wang, Haipeng Luo, Jingdong Wang,
Yi Yang, and Wanli Ouyang. Cap4video++: Enhancing
video understanding with auxiliary captions. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2024.
1

[69] Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua.
Next-qa: Next phase of question-answering to explaining
temporal actions. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 9777–9786,
2021. 3, 8

[70] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large
video description dataset for bridging video and language.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5288–5296, 2016. 2, 3

[71] Lin Xu, Yilin Zhao, Daquan Zhou, Zhijie Lin, See Kiong Ng,
and Jiashi Feng. Pllava: Parameter-free llava extension from
images to videos for video dense captioning. arXiv preprint
arXiv:2404.16994, 2024. 5

[72] Zihui Xue, Kumar Ashutosh, and Kristen Grauman. Learn-
ing object state changes in videos: An open-world perspec-
tive. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 18493–18503, 2024. 3, 5,
8, 1, 2

[73] Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, and
Cordelia Schmid. Just ask: Learning to answer questions
from millions of narrated videos. In IEEE/CVF International
Conference on Computer Vision (ICCV), pages 1686–1697,
2021. 1

[74] Antoine Yang, Arsha Nagrani, Paul Hongsuck Seo, An-
toine Miech, Jordi Pont-Tuset, Ivan Laptev, Josef Sivic,

13649



and Cordelia Schmid. Vid2seq: Large-scale pretraining
of a visual language model for dense video captioning.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10714–10726, 2023. 3

[75] Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan,
Yiyang Zhou, Junyang Wang, Anwen Hu, Pengcheng Shi,
Yaya Shi, et al. mplug-owl: Modularization empowers
large language models with multimodality. arXiv preprint
arXiv:2304.14178, 2023. 2, 3

[76] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang,
and Jiebo Luo. Image captioning with semantic attention.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4651–4659, 2016. 2

[77] Aron Yu and Kristen Grauman. Fine-grained visual compar-
isons with local learning. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 192–
199, 2014. 3

[78] Haonan Yu, Jiang Wang, Zhiheng Huang, Yi Yang, and Wei
Xu. Video paragraph captioning using hierarchical recurrent
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4584–4593,
2016. 3

[79] Kuo-Hao Zeng, Tseng-Hung Chen, Ching-Yao Chuang,
Yuan-Hong Liao, Juan Carlos Niebles, and Min Sun. Lever-
aging video descriptions to learn video question answering.
In Association for the Advancement of Artificial Intelligence
(AAAI), 2017. 1

[80] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and
Lucas Beyer. Sigmoid loss for language image pre-training.
In IEEE/CVF International Conference on Computer Vision
(ICCV), pages 11975–11986, 2023. 7

[81] Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An
instruction-tuned audio-visual language model for video un-
derstanding. arXiv preprint arXiv:2306.02858, 2023. 2, 3

[82] Weiyu Zhang, Menglong Zhu, and Konstantinos G Derpa-
nis. From actemes to action: A strongly-supervised repre-
sentation for detailed action understanding. In IEEE/CVF
International Conference on Computer Vision (ICCV), pages
2248–2255, 2013. 5, 8, 1, 2

[83] Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Zi-
wei Liu, and Chunyuan Li. Video instruction tuning with
synthetic data. arXiv preprint arXiv:2410.02713, 2024. 2, 3,
6, 1

[84] Zhiyuan Zhao, Bin Wang, Linke Ouyang, Xiaoyi Dong, Ji-
aqi Wang, and Conghui He. Beyond hallucinations: Enhanc-
ing lvlms through hallucination-aware direct preference op-
timization. arXiv preprint arXiv:2311.16839, 2023. 3

[85] Luowei Zhou, Chenliang Xu, and Jason Corso. Towards
automatic learning of procedures from web instructional
videos. In Association for the Advancement of Artificial In-
telligence (AAAI), 2018. 1

[86] Luowei Zhou, Chenliang Xu, and Jason Corso. Towards
automatic learning of procedures from web instructional
videos. In Association for the Advancement of Artificial In-
telligence (AAAI), 2018. 2, 3

[87] Xingyi Zhou, Anurag Arnab, Shyamal Buch, Shen Yan,
Austin Myers, Xuehan Xiong, Arsha Nagrani, and Cordelia

Schmid. Streaming dense video captioning. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 18243–18252, 2024. 3

13650


	. Introduction
	. Related Work
	. Approach
	. Progress-aware Video Frame Captioning
	. ProgressCaptioner

	. Experiments
	. Benchmarking Video Frame Captioning
	. Applications of Video Frame Captioning

	. Conclusion

	. Dataset
	. FrameCap Training Data
	. FrameCapEval Benchmark


	. Experiments
	. Experimental setup
	. Prompt used
	. Results


