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Abstract

This paper studies zero-shot object recognition using event
camera data. Guided by CLIP, which is pre-trained on RGB
images, existing approaches achieve zero-shot object recog-
nition by optimizing embedding similarities between event
data and RGB images respectively encoded by an event en-
coder and the CLIP image encoder. Alternatively, several
methods learn RGB frame reconstructions from event data
for the CLIP image encoder. However, they often result in
suboptimal zero-shot performance.

This study develops an event encoder without relying on
additional reconstruction networks. We theoretically ana-
lyze the performance bottlenecks of previous approaches:
the embedding optimization objectives are prone to suffer
from the spatial sparsity of event data, causing semantic
misalignments between the learned event embedding space
and the CLIP text embedding space. To mitigate the issue,
we explore a scalar-wise modulation strategy. Furthermore,
to scale up the number of events and RGB data pairs for
training, we also study a pipeline for synthesizing event data
from static RGB images in mass.

Experimentally, we demonstrate an attractive scaling
property in the number of parameters and synthesized data.
We achieve superior zero-shot object recognition perfor-
mance on extensive standard benchmark datasets, even
compared with past supervised learning approaches. For
example, our model with a ViT/B-16 backbone achieves
47.84% zero-shot accuracy on the N-ImageNet dataset.

1. Introduction
An event camera asynchronously captures pixel-wise
brightness changes as an event stream, each recording the
position, time, and polarity of a brightness change. Com-
pared to traditional image sensors, event cameras not only
offer benefits such as motion blur-free imaging and high

� Corresponding author.

Object
Recognition

Action Recognitio
n

N-ImageNet

N-Caltech101CIFAR-10-DVS

N-MINIST

HARDVS

DailyAction

PAF

Bullying10K

UCF101-DVS

47.84

90.4418.48

25.72

64.24

98.62

84.72

87.87

80.03

4.30

53.88

14.05

12.89

40.98

85.64

68.0676.26

74.43

8.72

67.58

14.61

14.56

60.66

90.33

81.94

81.80

79.99

Figure 1. Comparison of our accuracies (%) with respect to the
second-best and third-best accuracies (%) from previous methods
[44, 50, 51] on object [20, 23, 32, 33] and action [4, 11, 27, 30,
43] recognition. Beside each axis, the dataset name is given.

temporal resolution but also consume less energy and are
robust under adverse lighting conditions. The significant
advantages of event cameras have led to extensive neural
network applications, such as object recognition [20, 51],
semantic segmentation [22, 47], etc. [46].

Aiming a generalized object recognition in open-world
settings, this paper studies zero-shot object recognition us-
ing event camera data; in other words, our method can be
tested on object classes that are not seen in the training
set. Our method is contrastive learning-based, and bene-
fited from distillation of pre-trained zero-shot object recog-
nition frameworks for RGB images. We particularly fo-
cus on CLIP [35, 40], because the extraordinary success of
CLIP has been demonstrated in extensive tasks.

To adapt the existing zero-shot RGB network, CLIP [50],
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to the event domain, a direct approach is to convert the event
data into an event frame, and treat it as an RGB image
for zero-shot object recognition [44, 50]. However, event
frames are typically spatially sparse, whereas RGB images
densely record light intensity of a scene. The domain di-
vergence undermines the performance of CLIP. In exten-
sions, grayscale images are reconstructed from event data
by learning an additional network [8], enabling compati-
bility between the CLIP image encoder and the event data.
However, it incurs extra computational costs during infer-
ence, and usually results in poor performance due to the
low reconstruction quality and error accumulation between
the reconstruction and recognition stages.

Therefore, some works distill an event encoder from the
CLIP image encoder by using paired event data and RGB
images [51]. Afterwards, object recognition is computed
from the event encoder and the CLIP text encoder. Con-
trastive learning is usually employed for learning the event
encoder. However, it not only optimizes similarities be-
tween paired event and RGB data but also dissimilarities
between non-paired ones. Due to the spatial sparsity of
event data, event embeddings tend to become overly similar
(Fig. 2). When contrasting with an image, this leads to sim-
ilar similarities between the image and both paired and non-
paired events, underscoring optimization attention to ensure
the embedding discriminativeness. Theoretically, it results
in the degree of freedom for alignments between event em-
beddings and text embeddings from the CLIP text encoder
(Sec. 3). This misalignment hampers effective event-based
zero-shot learning. Some works use text embeddings of
class names into training, yet show little zero-shot perfor-
mance. Moreover, due to the lack of paired event and RGB
datasets, the previous approach usually performs training
and testing on the same dataset [8, 51], leading an biased
evaluation.

This paper designs an event-based zero-shot object
recognition framework for mitigating the above drawbacks.
Additionally, our method demonstrates the appealing scala-
bility in terms of model parameters and training data. The
favorable properties are credited to two key designs: scalar-
wise modulation and data synthesis.

We theoretically and experimentally show that objectives
involving dissimilarities optimization between non-paired
event and RGB embedding lead to the semantic misalign-
ment. Then, we propose a scalar-wise modulation strat-
egy to directly align the event to RGB data embeddings,
rather than solely relying on the contrastive learning objec-
tive. It compels the network to adaptively mine scalar-wise
semantic alignments between RGB and event embeddings,
dynamically directing optimization attention toward distin-
guishing overly similar event embeddings. These scalar-
wise alignments transfer RGB and text data alignments di-
rectly to the event and text data, and prompt the zero-shot
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Figure 2. Similarity distribution for (a) RGB and (b) event em-
beddings. RGB and event embeddings are extracted using a pre-
trained CLIP model [13] on the validation fold of ImageNet-1K
[10] and N-ImageNet [20] datasets. Cosine similarities are com-
puted separately among the RGB and event embeddings, and the
density is normalized by the maximum value.

object recognition with the CLIP text encoder.
To overcome the dataset scarcity challenge, we use syn-

thetic data for training our network. Our target is zero-shot
object recognition that typically relies on event data in a
short duration (e.g., dozens of milliseconds) and the event
data in the duration usually contains linear motion [25]. We
randomly generate affine transformations and interpolate
static RGB images into a sequence for event data synthesis.
Compared to traditional methods that rely on video and pre-
trained frame interpolation networks, our approach shows a
low computation complexity, and introduces greater diver-
sity than the same amount of video data. Our contributions
are summarized as follows:
• A scalable zero-shot object recognition framework for

event camera data;
• A scalar-wise modulation strategy to promote alignments

between embeddings from the event and text encoders;
• A large-scale and diverse dataset of event and RGB pairs.
Experimentally, we evaluate our network on nine stan-
dard event datasets, demonstrating competitive perfor-
mance even compared to the dataset-specific methods. Re-
fer to Fig. 1 for an overall comparison. Our code and dataset
will be made publicly available.

2. Related Works
We review the recent achievements of event camera data
in zero-shot learning and relevant self-supervised learning
methods. Then, we introduce the event datasets.

Zero-shot learning. Event-based zero-shot learning is
still in an early stage, with studies focused on object recog-
nition [8, 44, 50, 51] and semantic segmentation [22] using
CLIP [35]. We are interested in zero-shot object recogni-
tion that can be broadly categorized into two groups: i)
reconstruction-based approach. With extra computational
costs, it reconstructs grayscale images from event data to
leverage pre-trained CLIP for object recognition. By ex-
ploiting the strong RGB domain prior from CLIP, the recon-
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{x̂evt}

Figure 3. Overview of our method. Our goal is to learn an event
encoder f evt(·) to replace the image encoder f img(·) from a pre-
trained CLIP for allowing zero-shot object recognition with event
data. Given paired event and RGB images, we respectively extract
the embeddings {x̂evt} and {ximg} from f evt(·) and f img(·) to op-
timize Eq. (1) and Eq. (3). The fire (i.e., ) and snowflake (i.e., )
emojis respectively denote trainable and frozen components.

struction network can be trained by using only event data
[8]. Although it offers promising reconstruction quality, the
zero-shot recognition performance is poor due to error ac-
cumulation; ii) contrastive learning-based approach. Stud-
ies like [50, 51] enforce embedding similarities between an
event encoder and the pre-trained image encoder of CLIP,
using paired event data and RGB images for training. The
primary objective is instance discrimination between event
and RGB images through contrastive learning. However, as
analyzed in Sec. 1, their performance is hindered, and often
requires sacrificing large-scale datasets intended for evalu-
ation to be used for training. Other methods [44, 51] con-
vert event data into event frames to explore the direct use of
CLIP for zero-shot recognition or few-shot learning. This
paper studies a method trained on synthetic data to address
their limitations and improve zero-shot object recognition.
Self-supervised learning. Similar to zero-shot learning,
self-supervised learning aims to learn generic feature em-
beddings of event data. It employs tasks like masked image
modeling [17, 21], contrastive learning [7, 47], and self-
distillation [31, 46]. These methods improve performance
on downstream tasks through transfer learning. However,
unlike zero-shot learning, they are required to learn a de-
coding head for recognition. This paper focuses on zero-
shot object recognition on event data, enabling recognition
with a simple forward pass without further training.
Event datasets. Event cameras offer high temporal res-
olution, reduced motion blur, and lower power consump-
tion, making them ideal for dynamic and low-light environ-
ments. This has spurred the development of various event-
based datasets for object and action recognition. Notable
object recognition datasets include N-ImageNet [20], N-
Cars [39], CIFAR10-DVS [23], N-Caltech101 [32], DVS-
128-Gesture [1], etc. [3, 33, 36]. Examples of the action

recognition datasets are HMDB-DVS [4], UCF-DVS [4],
PAF [30], DailyAction [27], and HARDVS [43]. This pa-
per extensively evaluates our method on object recognition
and action recognition datasets.

3. Method
We first introduce the background of contrastive learning by
establishing a baseline. Next, our framework is presented
component by component, tracking the performance varia-
tions of the baseline. All training is conducted on our syn-
thetic dataset, and the N-ImageNet, the largest event-based
recognition dataset, is used for benchmarking.

3.1. Background
Preliminary. Contrastive learning pulls embeddings of
the same instance close to each other and pushes apart em-
beddings of different instances. It embeds instances into a
query set {q} and a key set {k}. For each query embed-
ding q, there is a matching key embedding k+ and a set of
non-matching key embeddings {k−}. Then, an embedding
space is optimized to ensure that q is close to k+ and dis-
tant from {k−} through minimizing an InfoNCE loss [42].
The InfoNCE loss for a query embedding q is given by

Lnce(q, {k}) = − log
exp(q · k+/τ)

exp(q · k+/τ) +
∑
k−

exp(q · k−/τ)
,

where τ is a temperature parameter to control the distribu-
tion sharpness. Usually, the query q and key k embeddings
are ℓ2-normalized, and the dot product · between them cal-
culates their cosine similarity.

3.2. Baseline
In the context of learning an event encoder using a pre-
trained CLIP image encoder, paired event data and RGB
images are treated as the same instances. The collections
of event and RGB data are respectively encoded into two
embedding sets: {x̂evt} for events and {ximg} for images,
with an event encoder f evt(·) and a pre-trained CLIP image
encoder f img(·). The embeddings {x̂evt} and {ximg} are
mutually served as query set and key sets for optimizing a
symmetrized InfoNCE loss,

Lbaseline =
1

|{x̂evt}|
∑

x̂evt∈{x̂evt}

Lnce(x̂
evt, {ximg})

+
1

|{ximg}|
∑

ximg∈{ximg}

Lnce(x
img, {x̂evt}) , (1)

where |{x̂evt}| and |{ximg}| respectively denote the sizes of
event and image embedding sets. During training, the image
encoder f img(·) is frozen, maintaining the CLIP embedding
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Table 1. Zero-shot object recognition accuracy (%) on the N-
ImageNet dataset [20] by combining our model components.

Lbaseline Remark 1 Scalar-wise
Modulation Accuracy

✓ ✗ ✗ 9.57
✓ ✓ ✗ 43.48
✓ ✗ ✓ 47.84
✗ ✗ ✓ 47.80
✗ ✓ ✓ 48.63
✓ ✓ ✓ 48.86

space structure for directly using the pre-trained CLIP text
encoder f txt(·) in zero-shot object recognition.

Though the baseline approach can effectively minimize
Eq. (1) during training, it fails to find an accurate zero-shot
object recognition performance, as seen in Tab. 1. The low
performance, 9.57%, suggests a divergence between the op-
timization and evaluation objectives.

We note the divergence is raised by the degree of free-
dom associated with the embedding dimension and opti-
mization objective. Let ximg

+ and xtxt
+ embedded respec-

tively by the pre-trained f img(·) and f txt(·) are matching
RGB image and text descriptions, which are also matching
with x̂evt, and x̂evt

− and ximg
− be the non-matching event and

image embedding.
Lemma 1. When Eq. (1) is effectively minimized, ximg

+ ·
xtxt
+ > ximg

− · xtxt
+ does not imply x̂evt · xtxt

+ > x̂evt
− · xtxt

+ ,
due to degree of freedom in the embedding space.
Remark 1. The misalignment between event and text em-
beddings can be mitigated if a proper reference dataset is
provided. According to Eq. (1), we know the event embed-
ding is pulled to semantic similar image embeddings, while
the image embedding is already aligned with the text em-
bedding in the CLIP for zero-shot object recognition. Thus,
we translate x̂evt by using a pool of pre-embeded image em-
beddings {ximg} to align with the CLIP text embedding. Let
{k} be the indices set of k-NN embedding from {ximg}, us-
ing cosine similarities as the distance measure. The trans-
lated event embedding x̃evt is

x̃evt =
∑

k∈{k}

x̂evt · ximg
k + 1∑

k′∈{k}(x̂
evt · ximg

k′ + 1)
ximg . (2)

With the translated event embedding x̃evt, the zero-shot ob-
ject recognition performance can be improved from 9.57%
to 43.48%. However, we do not focus on the strategies, as
the performance is usually reference dataset dependent. For
readers’ interest, we present the ablations with it in Tab. 1.

3.3. Scalar-wise Modulation
One may note that there is an exemption in Lem. 1. If x̂evt ·
ximg
+ = 1, this would imply perfect alignment between x̂evt

and ximg
+ . In this case, x̂evt would inherently satisfy x̂evt ·

xtxt
+ > x̂evt

− · xtxt
+ if ximg

+ · xtxt
+ > ximg

− · xtxt
+ .

Inspired by the observation, rather than simply enforcing
the embedding similarities between x̂evt and ximg

+ , we in-
troduce a scalar-wise modulation to enforce the scalar-wise
alignments between x̂evt and ximg

+ . As noted in Sec. 1, event
embeddings {x̂evt} tend to be overly similar to one another,
warranting greater optimization focus. To address it, our
approach is adaptive, constraining the degrees of freedom
by ensuring that each scalar of the event embedding and the
image embedding are aligned, therefore enhancing the em-
bedding alignment.

We achieve it by adding a mean squared error to the opti-
mization objective that adaptively penalizes the scalar-wise
deviations in the embeddings. The loss is given by

Lmod =
∑

λx̂evt ,x̂evt,ximg
+

λx̂evt∥x̂evt − ximg
+ ∥2 , (3)

λx̂evt = N
(
1− λunf

x̂evt −min({λunf
x̂evt})

max({λunf
x̂evt})−min({λunf

x̂evt})
)
, (4)

λunf
x̂evt =

∑
x̂evt

−
(x̂evt · x̂evt

− + 1)∑
x̂evt′

∑
x̂evt′

−
(x̂evt′ · x̂evt′

− + 1)
, (5)

where N (·) is a Gaussian distribution function, and the sub-
script ‘−’ consistently to denote negative matching embed-
ding (i.e., another embedding in the batch {x̂evt}). ∥·∥ is
the Frobenius norm that reduces the vector to a scalar. The
input to the Gaussian function falls within the range from
0 to 1, ensuring that λx̂evt remains non-negative. By fram-
ing Lbaseline as a regularization term to maintain embedding
discriminativeness, the overall objective is

Ltotal = Lbaseline + Lmod . (6)

With the modulation, the degrees of freedom are con-
strained, taming the event embeddings to effectively align
with the text embeddings for improving the zero-shot per-
formance.

We present the detailed combinations of using Lmod in
Tab. 1. It consistently improves the performance by enforc-
ing a stronger alignment constraint. For example, 47.84%
accuracy is achieved with our scalar-wise modulation.

3.4. Data Synthesis
Due to the lack of paired event data and RGB images for
training, we generate synthetic event data. In object recog-
nition tasks using event datasets, events captured over a
short duration are typically used, emphasizing semantic in-
formation rather than motion information. Since events
within a short duration often exhibit linear motion [25], we
simulate random linear motion on a static RGB image. The
RGB image is warped to create a video, and the video is
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(a) (b) (c) (d)

Figure 4. Samples of synthetic event data. (a)/(c) are RGB images.
(b)/(d) are event frames, where red and blue indicate positive and
negative events, respectively.

subsequently transformed into event data using V2E [18].
Three motion patterns are explored, as described below:
• Translation. Random horizontal and vertical maximum

displacements are first sampled, and then the static image
is displaced linearly to meet the maximum displacement.
The translation simulates the effect of the image moving
in a straight line across the frame.

• Scaling. The image is scaled up or down linearly, simu-
lating zoom-in and zoom-out effects. It involves increas-
ing or decreasing the size of the image uniformly from
the center, creating the appearance of the camera moving
closer to or farther away from the subject.

• Rotation. The image is rotated around its center by a ran-
dom angle within a specified range, to simulate the effect
of the image spinning in place, mimicking a rotational
movement of the camera or the object within the scene.

Samples of the synthetic event data are provided in Fig. 4,
and we follow [47] for visualizations. When using the train-
ing set of the N-ImageNet dataset [20] for training, the per-
formance is 54.36%. By training on the out-of-domain syn-
thetic dataset, we can achieve competitive zero-shot object
recognition performance (47.84% vs. 54.36%) on the N-
ImageNet dataset [20].

4. Experiments
4.1. Set-ups
Training datasets. To train our methods, we create a syn-
thetic event dataset by curating RGB data from multiple
sources, following the pipeline described in Sec. 3.4. In
total, there are around 180M RGB images.

Downstream datasets. Our method is evaluated on the
object and action recognition tasks. For object recog-
nition, N-ImageNet [20], N-Caltech101 [32], CIFAR-10-
DVS [23], and N-MINIST [33] datasets are explored. To
benchmark our performance on the action recognition tasks,
we explore HARDVS [43], DailyAction [27], PAF [30],
Bullying10K [11], and UCF101-DVS [4] datasets.

Baselines. We compare with two groups of state-of-the-
art methods: i) zero-shot frameworks for event data on
object and action recognition datasets; ii) dataset-specific
methods optimized for different datasets.

Implementation details. We train our method for 50
epochs with a batch size of 10240, a layer decay of 8.5 ×
10−1, a gradient clip of 5, a learning rate of 4×10−4, weight
decay of 5 × 10−2, and an AdamW optimizer [29]. The
learning rate is cosinely scheduled with a warm epoch of
1. We follow [47] for augmentations. Our event encoder
f evt(·) uses a ViT-B/16 backbone, initialized from a pre-
trained CLIP [40], and we use the same pre-trained CLIP
for the image encoder f img(·). All the experiments are con-
ducted under the PyTorch framework [34].

4.2. Object Recognition
Settings. For methods belonging to the zero-shot learn-
ing framework category (i.e., indicated by a tick in the
‘ZS’ column of Tab. 2), we explore their upper bound per-
formance by optimizing text embeddings of corresponding
class names. The performance of these variations are pre-
sented in rows where the method name superscripted with
a ‘up’ symbol. All the zero-shot learning frameworks are
based on EVA-02-CLIP-B/16 [40] for fair comparisons.

Results. Comparisons with past state-of-the-art meth-
ods for object recognition on the N-ImageNet [20], N-
Caltech101 [32], CIFAR-10-DVS [23], N-MINST [33]
datasets are given in Tab. 2 (a-d). Our observations are de-
scribed as follows: i) we have the best zero-shot perfor-
mance among the groups of zero-shot learning framework
on the four datasets; ii) our performance is competitive
with the dataset-specific methods on the N-ImageNet [20]
and N-Caltech101 [32] datasets. However, it falls behind
on the CIFAR-10-DVS [23] and N-MINIST [33] datasets,
similar to other zero-shot learning frameworks. This can
be attributed to the low-quality of these datasets, e.g., they
have a small resolution. Nonetheless, our methods demon-
strate greater robustness than other zero-shot frameworks,
achieving higher performance; iii) ECLIP and EventCLIP
exhibit higher performance than our methods when us-
ing optimized text embeddings on the N-MINIST dataset.
Considering these methods feed event data represented as
frames (differing in event frame representations) to CLIP
pre-trained on RGB images, it suggests the RGB image pre-
trained CLIP remains competitive in extracting discrimina-
tive embeddings for events with simple textures.

4.3. Action Recognition.
Settings. Applying zero-shot learning frameworks to ac-
tion recognition extends beyond object semantic under-
standing, requiring the modeling of subtle semantic varia-
tions over time. Besides, the class labels in existing event-
based action recognition datasets are often misleading and
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Table 2. Comparisons with state-of-the-art data-specific methods and zero-shot frameworks on (a-d) object [20, 23, 32, 33] and (e-i) action
[4, 11, 27, 30, 43] recognition using event camera data. The method categories are distinguished by the ‘ZS’ (i.e., zero-shot) column. All
methods are evaluated with the accuracy (%) metric. For the zero-shot learning framework, we explore its upper bound performance by
using optimized text embeddings for the recognition task, denoted by a superscript ‘up’.

Method ZS Accuracy

ECDP [47] ✗ 68.31
EventBind [51] ✗ 51.40
MEM [21] ✗ 57.89

EventBind [51] ✓ 3.05
EventBindup [51] ✓ 14.45
ECLIP [50] ✓ 8.72
ECLIPup [50] ✓ 25.05
EventCLIP [44] ✓ 4.30
EventCLIPup [44] ✓ 17.72
Ours ✓ 47.84
Oursup ✓ 57.97

(a) All methods are evaluated on the N-ImageNet
dataset for object recognition [20].

Method ZS Accuracy

ECDP [47] ✗ 87.66
EventBind [51] ✗ 94.08
MEM [21] ✗ 90.10

EventBind[51] ✓ 67.58
EventBindup[51] ✓ 84.11
ECLIP [50] ✓ 53.88
ECLIPup [50] ✓ 74.89
EventCLIP [44] ✓ 49.95
EventCLIPup [44] ✓ 72.16
Ours ✓ 90.44
Oursup ✓ 93.56

(b) All methods are evaluated on the N-Caltech101
dataset [32] for object recognition.

Method ZS Accuracy

ECDP [47] ✗ 78.00
DEP [19] ✗ 78.60
PSN [12] ✗ 85.90

EventCLIP [51] ✓ 13.36
EventCLIPl [51] ✓ 52.46
ECLIP [50] ✓ 14.61
ECLIPup [50] ✓ 54.43
EventCLIP [44] ✓ 14.05
EventCLIPup [44] ✓ 56.97
Ours ✓ 18.48
Oursup ✓ 60.00

(c) All methods are evaluated on the CIFAR-10-
DVS dataset [23] for object recognition.

Method ZS Accuracy

EventBind [51] ✗ 99.27
E2VID [37] ✗ 98.30
RC-GCN [3] ✗ 99.00

EventBind [51] ✓ 12.89
EventBindup [51] ✓ 59.07
ECLIP [50] ✓ 14.56
ECLIPup [50] ✓ 63.37
EventCLIP [44] ✓ 11.87
EventCLIPup [44] ✓ 65.60
Ours ✓ 25.72
Oursup ✓ 59.60

(d) All methods are evaluated on the N-MINIST
dataset [33] for object recognition.

Method ZS Accuracy

ESTF [43] ✗ 51.22
TSM [24] ✗ 52.63
VideoSwin [28] ✗ 51.91

EventBind [51] ✓ 60.66
EventBindup [51] ✓ 62.53
ECLIP [50] ✓ 37.27
ECLIPup [50] ✓ 39.51
EventCLIP [44] ✓ 40.98
EventCLIPup [44] ✓ 45.44
Ours ✓ 64.24
Oursup ✓ 66.89

(e) All methods are evaluated on the HARDVS [43]
dataset for action recognition.

Method ZS Accuracy

EARSNN [27] ✗ 90.30
IRSNN [48] ✗ 94.60
EJESSR [2] ✗ 91.03

EventBind [51] ✓ 90.33
EventBindup [51] ✓ 91.17
ECLIP [50] ✓ 85.64
ECLIPup [50] ✓ 86.19
EventCLIP [44] ✓ 85.08
EventCLIPup [44] ✓ 85.64
Ours ✓ 98.62
Oursup ✓ 99.17

(f) All methods are evaluated on the DailyAction
dataset [27] for action recognition.

Method ZS Accuracy

EARSNN [27] ✗ 78.10
STCA [16] ✗ 71.20
AEDCM [45] ✗ 55.00

EventBind [44] ✓ 84.72
EventBindup [44] ✓ 86.11
ECLIP [50] ✓ 81.94
ECLIPup [50] ✓ 87.50
EventCLIP [44] ✓ 68.06
EventCLIPup [44] ✓ 72.22
Ours ✓ 84.72
Oursup ✓ 88.89

(g) All methods are evaluated on the PAF dataset
[30] for action recognition.

Method ZS Accuracy

R3D [41] ✗ 66.80
SlowFast [15] ✗ 69.00
X3D [14] ✗ 70.80

Eventbind [51] ✓ 81.80
Eventbindup [51] ✓ 81.92
ECLIP [50] ✓ 76.26
ECLIPup [50] ✓ 76.45
EventCLIP [44] ✓ 73.24
EventCLIPup [44] ✓ 73.52
Ours ✓ 87.87
Oursup ✓ 88.18

(h) All methods are evaluated on the Bullying10K
dataset [11] for action recognition.

Method ZS Accuracy

TIM [38] ✗ 63.80
FRMSNN [49] ✗ 63.50
3D ResNet [5] ✗ 57.90

EventBind [51] ✓ 79.99
EventBindup [51] ✓ 81.09
ECLIP [50] ✓ 74.43
ECLIPup [50] ✓ 74.70
EventCLIP [44] ✓ 71.62
EventCLIPup [44] ✓ 72.28
Ours ✓ 81.32
Oursup ✓ 81.69

(i) All methods are evaluated on the UCF101-DVS
dataset [4] for action recognition.

uninformative, such as ‘mobile card 1’ and ‘mobile card 2’
from the HARDVS dataset [43]. To address these issues

and explore the performance of all zero-shot frameworks,
we train a two-layer ViT to temporally aggregate seman-
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Figure 5. Ablation study on the number of training epochs and
percentage of training data. (a) Training epochs are varied from
10 to 60 with a step size of 10. (b) The percentage (%) of synthetic
data used in training our method is varried from 20% to 100%
with a step size of 20%.

tics from the visual class embeddings of event frames. This
model contains approximately 0.35M parameters and can
be trained in 10 minutes. Similarly, the upper bound perfor-
mance is explored by optimizing text embeddings that are
indicated in rows of the method name superscripted with the
‘up’ symbol.

Results. Tab. 2 (e-i) compares all methods for action
recognition on the HARDVS [43], DailyAction [27], PAF
[30], Bullying10K [11], and UCF101-DVS [4] datasets.
Our findings are threefold: i) all zero-shot learning frame-
works serve as strong semantic extractors. Coupled with the
two-layer ViT for reasoning temporal dynamics, they gener-
ally achieve better scores than the dataset-specific methods
in action recognition. Among them, our method showing
the best performance; ii) consistent with object recognition
task, the optimized text embeddings always lead to a better
action recognition performance; iii) our method is signifi-
cantly better than other zero-shot learning frameworks and
dataset-specific methods, on the largest and most complex
action recognition dataset, HARDVS [43], demonstrating
the effectiveness of our approach.

4.4. Ablations and Discussions
Performance of all the ablation studies are evaluated on the
largest event-based object recognition dataset (i.e., the N-
ImagetNet dataset).

Training epochs. We study our network convergence by
showing the zero-shot object recognition performance vari-
ations with respect to the number of training epochs in
Fig. 5 (a). The training epochs are ranged from 10 to 60,
and a step size of 10 is used. A performance saturation is
observed after 50 epochs, and motivate us to set the number
of training epochs to 50.

Data scalability. We validate the effectiveness of our syn-
thetic event data for training. Fig. 5 (b) investigates it by
varying the percentage of training data from 20% to 100%
with a step size of 20%. Consistently, as more synthetic
event data is used, the zero-shot object recognition perfor-
mance is further improved.

Table 3. Model scalability. We study training with various CLIP
image encoder architectures pre-trained from various sources [35,
40]. The performance is evaluated with accuracy (%). ‘-’ denotes
unavailability.

Model Source Accuracy

ViT-B/32 OpenAI [35] 32.87
EVA [40] -

ViT-B/16 OpenAI [35] 40.47
EVA [40] 47.84

ViT-L/14 OpenAI [35] 51.44
EVA [40] 57.53

ViT-L/14-336 OpenAI [35] 51.56
EVA [40] 59.17

ViT-bigE/14+ OpenAI [35] -
EVA [40] 62.28

Table 4. Example of integrating our event encoder in place of the
one used by LLaVA [26]. The corresponding RGB image of the
event frame is shown on the right for reference.

Example conversation

User: Caption the image in 80 words.
Assistant: A bustling city street scene with a crowd of peo-

ple, a mix of individuals and groups, some walking,
others standing, all engaged in their own activities.
The atmosphere is vibrant and dynamic, with a sense
of movement and energy. The architecture and sig-
nage suggest a dense urban environment, possibly in
a downtown or central district. The image captures
the diversity and liveliness of city life.

Model scalability. Tab. 3 studies model scalability in
terms of computations and parameters. CLIP based on dif-
ferent image encoder architectures and pre-trained by Ope-
nAI [35] and EVA [13] are investigated. Scaling from 86M
parameters (ViT-B) to 4.4B parameters (ViT-bigE) for the
CLIP image encoder results in a significant increase in zero-
shot performance for our methods. Meanwhile, examin-
ing the impact of more computations during inference (e.g.,
ViT-L/14 vs. ViT-L/14-336), we find a positive correlation
with zero-shot performance. Jointly with the data scalabil-
ity explored in the last section, our method demonstrates the
appealing scalability in model parameters and training data.

Event and text data. The reader may wonder about the
performance of our methods when using synthetic event
data and text data. We fine-tune our network using the syn-
thetic event data on the CC3M dataset [6]. However, we
observe a decrease in zero-shot performance during train-
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A butterfly perched on a vibrant flower. A read ball in the grass.

...mountainous backdrop under a cloudy sky. ...mug filled with small, round red objects.

(a) (b) (c) (d) (e) (f) (g) (h)
Figure 6. Samples of heatmaps on event frames. The warmer the color, the more important the area. (a)/(e) are RGB images provided as
references. (b)/(f) are event frames. Similarly, red and blue indicate positive and negative events. (c)/(d)/(g)/(h) are heatmaps with respect
to texts highlighted in the same color, where the text descriptions of the image are provided in the bottom of each row.

(a) (b) (c) (d)
Figure 7. Samples of cross correspondences between two semantically similar event frames. The corresponding RGB images of (b)/(d)
are shown in (a)/(c) as references. Note that there are some spatial misalignments between the RGB and event frames. The top cross
correspondences extracted from the event frames in (b) and (d) are visualized as red lines.

ing, with an accuracy of only 14.84%, which is significantly
lower than the 47.84% accuracy of our method. The perfor-
mance decrease suggests the effectiveness of our approach.

Model analysis. We evaluate our model from three per-
spectives: i) Tab. 4 demonstrates conversations with a
vision-language model, where our event encoder is inte-
grated as a replacement for the CLIP image encoder used
in LLaVA [26]; ii) Fig. 6 visualizes heatmaps of event
data in relation to corresponding texts; iii) Fig. 7 extracts
the sparse cross-correspondences between two semantically
similar event frames. Overall, our model exhibits a robust
ability to understand semantic content. For instance, in
Fig. 6, the model trained on event and RGB data pairs effec-
tively captures meaningful textual semantics. Specifically,
on the right side of the second row, the model accurately
identifies the last word, ‘objects’, described as ‘small’ and
‘round’, as referring to pomegranates. This strong semantic
comprehension ability underpins our performance in tasks
such as object and action recognition.

Limitations. While progressing in zero-shot object
recognition, a gap remains in developing a generalist foun-

dation model for event camera data. However, as shown by
[9, 26], a versatile pre-trained CLIP image encoder is a key
component for such models, which this paper investigates.

5. Conclusion and Broader Impact
We propose a framework to unlock zero-shot object recog-
nition performance within the event camera data commu-
nity. Our method is trained with event and RGB data pairs.
To address the scarcity of these data pairs, we study a
pipeline to synthesize event data from still RGB images.
By analyzing the limitations of existing approaches, our key
insights are to perform the scalar-wise semantic modula-
tion during training. Experiments on standard object and
action recognition benchmark datasets extensively demon-
strate the superiority of our approach compared to previous
state-of-the-art methods.
Broader impact. We believe our method is promising to
be applied in training a generative event-vision-language
foundation model. We hope it inspires future work.
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Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mah-
moud Assran, Nicolas Ballas, Wojciech Galuba, Rus-
sell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra,
Michael G. Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu,
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