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Figure 1. (a) Given an input image and a binary object mask, our model is able to decompose the image into a clean background layer and a
transparent foreground layer with preserved visual effects such as shadows and reflections. (b) Subsequently, our decomposition empowers
complex and controllable layer-wise editing such as spatial, color and/or style editing.

Abstract

Recent advancements in large generative models, partic-
ularly diffusion-based methods, have significantly enhanced
the capabilities of image editing. However, achieving pre-
cise control over image composition tasks remains a chal-
lenge. Layered representations, which allow for indepen-
dent editing of image components, are essential for user-
driven content creation, yet existing approaches often strug-
gle to decompose an image into plausible layers with accu-
rately retained transparent visual effects such as shadows
and reflections. We propose LayerDecomp, a generative
framework for image layer decomposition which outputs
photorealistic clean backgrounds and high-quality trans-
parent foregrounds with faithfully preserved visual effects.
To enable effective training, we first introduce a dataset
preparation pipeline that automatically scales up simulated
multi-layer data with synthesized visual effects. To fur-
ther enhance real-world applicability, we supplement this
simulated dataset with camera-captured images contain-
ing natural visual effects. Additionally, we propose a con-
sistency loss which enforces the model to learn accurate

representations for the transparent foreground layer when
ground-truth annotations are not available. Our method
achieves superior quality in layer decomposition, outper-
forming existing approaches in object removal and spatial
editing tasks across several benchmarks and multiple user
studies, unlocking various creative possibilities for layer-
wise image editing.

1. Introduction

The rapid advancement of large-scale text-to-image diffu-
sion models [3, 7, 32] has greatly improved image editing
capabilities, with recent studies [5, 14, 35, 51] demonstrat-
ing promising results by training on large-scale datasets of
captioned images. However, achieving precise control for
user-driven image composition tasks remains challenging.
Layered representations, which decompose image compo-
nents into independently editable layers, are essential for
precise user-driven content creation. Most visual content
editing software and workflows are layer-based, relying
heavily on transparent or layered elements to compose and
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create content. Despite this, few existing approaches have
explored layer-based representation for image editing in
depth. Recently, LayerDiffusion [48] is proposed to gener-
ate transparent layer representations from text inputs; how-
ever, this approach is not well-suited for image-to-image
editing tasks. Meanwhile, MULAN [38] presents a multi-
layer annotated dataset for controllable generation, but it of-
ten fails to preserve essential visual effects in the right lay-
ers, limiting its adaptability for seamless downstream edits.

This work aims to fill these gaps by decomposing an in-
put image into two layers: a highly plausible clean back-
ground layer, and a high-quality transparent foreground
layer that retains natural visual effects associated with
the target. These decomposed layers will support layer-
constrained content modification and allow seamless blend-
ing for harmonious re-composition. Additionally, the faith-
fully preserved natural visual effects in the foreground layer
will benefit related research areas, such as shadow detection
and shadow generation. However, the lack of publicly avail-
able multi-layer datasets with realistic visual effects, such
as shadows and reflections, poses a significant challenge
for training high-quality layer-wise decomposition models.
How to accurately decompose images into layers and learn
correct representation for visual effects in the foreground
layer without ground-truth data is the key problem to solve.

To address these challenges, we first design a dataset
preparation pipeline to collect data from two sources: (1)
simulated image triplets consisting of composite images
blended from random background and unrelated transparent
foreground with generated shadow, allowing us to create a
large-scale training set with ground-truth for both branches;
and (2) camera-captured images for a scene with and with-
out the target foreground object, ensuring the model can
effectively adapt to real-world scenarios. Building on this
dataset, we introduce Layer Decomposition with Visual

Effects (LAYERDECOMP), a generative training frame-
work that enables large-scale pretrained diffusion trans-
formers to effectively decompose images into editable lay-
ers with correct representation of visual effects. The key
to our model training lies in a consistency loss, which en-
sures faithful retention of natural visual effects within the
foreground layer while maintaining background coherence.
Specifically, for real-world data where visual effect annota-
tions are not available, it is not feasible to directly compute
diffusion loss on the foreground layer. Instead, LAYERDE-
COMP enforces consistency between the original input im-
age and the re-composite result, blended from the two pre-
dicted layers, to ensure the model learns correct representa-
tion for the transparent foreground layer.

As shown in Figure 1, LAYERDECOMP can effectively
decompose an input image into a clean background and a
transparent foreground with preserved visual effects. This
capability supports downstream editing applications with-

out requiring additional model training or inference. Fur-
thermore, our method exhibits superior layer decomposition
quality, outperforming existing approaches in both object
removal tasks and object spatial editing tasks across various
benchmarks and in multiple user studies.

In summary, our contributions are as follows:
• We introduce a scalable pipeline to generate large-scale

simulated multi-layer data with paired ground-truth visual
effects for training layer decomposition models.

• We present LAYERDECOMP, a generative training frame-
work that leverages both simulated and real-world data
to enable robust layer-wise decomposition with accurate
visual effect representation through a consistency loss, fa-
cilitating high-quality, training-free downstream edits.

• LAYERDECOMP surpasses existing state-of-the-arts in
maintaining visual integrity during layer decomposition,
excelling in object removal and object spatial editing, and
enabling more creative layer-wise editing.

2. Related Works

2.1. Image Editing

Image editing methods can be broadly categorized into
two groups: multi-task editing and local editing. Multi-
task editing allows for a wide array of image modifica-
tions based on high-level inputs, such as user instruc-
tions. For example, Emu-Edit [35] offers a flexible
interface for diverse image edits. Other methods, in-
cluding InstructPix2Pix [4], Prompt2Prompt [10], Instruc-
tAny2Pix [17], MagicBrush [47], Imagic [16], Photo-
Swap [9], UltraEdit [51], HQ-Edit [13], MGIE [8], and Om-
niGen [43], focus on fine-grained, user-specific edits. These
approaches achieve high precision by aligning closely with
user instructions, often through fine-tuned models. How-
ever, due to the absence of region references, these methods
struggle with accurately locating objects and preserving the
integrity of unrelated regions.

Local image editing focuses on tasks like inpainting and
object insertion, typically guided by masks or reference im-
ages. Early GAN-based methods, such as CMGAN [53],
LAMA [37], CoModGAN [52], ProFill [45], CRFill [46],
and DeepFillv2 [44], use latent space manipulation for in-
painting missing regions. Leveraging the success of text-to-
image diffusion models, Repaint [22], SDEdit [24], Con-
trolNet [49], BrushNet [15], and Blended Diffusion [2]
combine text guidance with masks or references for cus-
tomized image inpainting. Further, ObjectStitch [36], HD-
Painter [23], and PowerPaint [54] extend this to versatile
object editing with text prompts. Beyond local object edit-
ing, recent research also focuses on spatial editing tech-
niques that allow more interactive control over object posi-
tioning and transformations. Methods like MagicFixup [1],
DiffusionHandle [27], DragGAN [26], DiffEditor [25], De-
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Figure 2. The framework of LAYERDECOMP. The model takes four inputs: two conditional inputs, including a composite image and
an object mask, and two noisy latent representations of the background and foreground layers. During training, we use simulated image
triplets alongside camera-captured background-composite image pairs. We also introduce a pixel-space consistency loss to ensure that
natural visual effects such as shadows and refelctions are faithfully preserved in the transparent foreground layer.

signEdit [14], and DragAnything [42] highlight a growing
emphasis on user-driven, spatially aware editing. However,
preserving object appearance and background integrity dur-
ing spatial edits (e.g., moving and resizing) remains chal-
lenging, particularly when complex visual effects like shad-
ows and reflections are involved.

2.2. Image Layer representation

Obtaining high-quality image layer representations is cru-
cial for implementing accurate and diverse editing objec-
tives. This process typically involves image decomposition,
layer extraction, and image matting. PACO [21] provides
a fine-grained dataset with mask annotations for parts and
attributes of common objects. However, these object rep-
resentations indicate only the regions of parts and objects,
lacking transparent layers for flexible editing. MAGICK [6]
offers a large-scale matting dataset generated by diffusion
models, while MULAN [38] creates RGBA layers from
COCO [18] and Laion Aesthetics 6.5 [34] using off-the-
shelf detection, segmentation, and inpainting models; how-
ever, it does not capture visual effects, limiting its applica-
bility for direct editing. LayerDiffusion [48] and Alfie [31]
generate transparent image layers from text prompts, facili-
tating layer blending. However, text-driven generation lim-
its object identity control in image-specific editing tasks.
Once the image decomposition is performed, users typically
need to execute image composition to achieve a cohesive fi-
nal image. Existing methods like ObjectDrop [40] require
model fine-tuning to restore visual effects, which can dis-
rupt the original image’s appearance. In contrast, LAY-
ERDECOMP models these effects during training, inher-

ently preserving them to produce a seamless, harmonious
composite image without extra fine-tuning.

3. Approach

3.1. Overview of LAYERDECOMP Framework

As shown in Fig 2, the LAYERDECOMP framework builds
upon Diffusion Transformers (DiTs) [29] to denoise multi-
layer image outputs in the latent space encoded by the
VAE encoders g

RGB
φ

(·) and g
RGBA
 

(·). Specifically, the
DiT model f✓(·) takes two types of conditional input c =
(ycomp,yobj), which are the latents of the original compos-
ite image, and the decomposition object mask, respectively,
i.e., c=(ycomp,yobj)=(g

RGB
φ

(IRGB
comp), g

RGB
φ

(Mobj)). By taking
the conditional image embeddings, the model targets to de-
noise the noisy latent xt=(xbg

t
,xfg

t
), to recover the latents

of the clean background image and the transparent fore-
ground layer x0=(x

bg
0 ,xfg

0 )=(gRGB
φ

(IRGB
bg ), gRGBA

 
(IRGBA

fg )).
The training loss follows the standard denoising diffusion
loss [12, 19]:

Ldm = Et⇠U({1,...,T}),✏,xt

⇥
k✏✓(xt; c, t)− ✏k22

⇤
, (1)

s.t. x0⇠qdata(x0), ✏⇠N (0, I),xt =
p
↵tx0 +

p
1− ↵t✏.

Specifically, the noisy input xt and image conditions c
are initially divided into non-overlapping patches and con-
verted into patch embeddings. The patch embeddings of
each type of images, such as background, foreground or
any conditions, are added with a corresponding type em-
bedding and then concatenated into a sequence. Subse-
quently, the model follows the standard DiT architecture,
where the patch embeddings are processed through multiple
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transformer blocks. With such design, the image conditions
provide comprehensive contextual information through the
self-attention in the transformer blocks to enhance the de-
noising, and the loss is only computed on the positions cor-
responding to the noisy latents.

Note that the latent of the foreground image needs to
be encoded with RGBA channels, we leverage an RGBA-
VAE fine-tuned from the original VAE by following Lay-
erDiffusion [48] which makes minimal disturbance to the
original latent space. Moreover, as the foreground image is
not always available, e.g., in the case of real-world camera-
captured data, the noisy input and output corresponding to
the foreground are masked out from Ldm computation if
IRGBA

fg is absent in the training stage.

3.2. Consistency Loss for Visual Effects Learning

To handle cases where real-world data lacks ground-truth
annotations, we introduce a consistency loss that enables
the learning of natural visual effects in the transparent fore-
ground layer without explicit annotation. Intuitively, as
shown in Fig 2, the consistency loss is applied in the de-
coded pixel space to encourage the predicted foreground
can faithfully reconstruct the composite input after blend-
ing with the background layers.

More specifically, given a composite image IRGB
comp, at any

denoising timestep t, we reparameterize our model predic-
tion back to the estimation of the clean latent x0 as:

x̂0(xt; c, t) =
1

p
↵t

�
xt −

p
1− ↵t · ✏✓(xt; c, t)

�
. (2)

Given Eq. 2, we compute the estimated x̂0(xt; c, t) =

(x̂bg
0 , x̂fg

0 ) of background and foreground at time step t and
decode them into pixel space to get ÎRGB

bg = h
RGB
φ0 (x̂bg

0 )

and ÎRGBA
fg = h

RGBA
 0 (x̂fg

0 ), via the decoder of RGB-VAE
and RGBA-VAE, respectively. The results are combined
through alpha blending to produce the estimated compos-
ite image ÎRGB

comp = A(̂IRGB
bg , ÎRGBA

fg ). The consistency loss is
thus:

Lconsist = Et

HX

i=1

WX

j=1

���IRGB
comp(i, j)− ÎRGB

comp(i, j)
��� , (3)

where H and W indicates the height and the width of the
composite image, respectively.

The consistency loss enables LAYERDECOMP to learn
faithful representations of transparent visual effects in the
foreground layer, which is essential for accurately decom-
posing natural shadows and reflections in real-world data,
especially in the absence of ground-truth annotations.

3.3. Dataset Preparation

To effectively train LAYERDECOMP, we curated a hybrid
dataset that combines simulated and real-world data. Ide-
ally, training LAYERDECOMP requires image triplets: an

input image IRGB
comp, a transparent foreground layer containing

the target object and its visual effects IRGBA
fg , and a back-

ground image without the foreground object IRGB
bg . While

collecting natural triplet images with specialized devices or
through manual annotation might be feasible, it is costly
and impractical for large-scale data needs. Conversely, syn-
thesizing such triplet data directly with generative models
presents significant challenges. Observations from existing
approaches, such as HQ-Edit [13] and LayerDiffusion [48],
indicate that generative models often inadvertently modify
areas outside the target foreground, making it difficult to
produce truly aligned image layers with consistent content.
Additionally, accurately representing transparent visual ef-
fects, such as shadows and reflections in the foreground
layer with an alpha channel for transparency, remains unex-
plored in existing works. To address these limitations, we
developed a simulated data pipeline to create triplet images
and supplemented it with a smaller portion of real-world
IRGB

comp and IRGB
bg pairs to enhance robustness.

Simulated Data: To create image triplets, we first collected
a large-scale object assets consisting of unoccluded fore-
ground objects with synthesized shadows. We used entity
segmentation [30] to select “thing” objects from natural im-
ages, and applied depth estimation to infer occlusion re-
lations to exclude incomplete objects. We then applied a
shadow synthesis method [39] to generate a shadow inten-
sity map for each object on a white background. By in-
tegrating the intensity map into the alpha channel, we ob-
tained comprehensive object assets in RGBA format. Dur-
ing training, we adjusted the scale and position of each fore-
ground asset to align with the properties of a randomly se-
lected background image IRGB

bg , resulting in a finalized fore-
ground layer IRGBA

fg . By blending the two layers together,
we obtained a composite image IRGB

comp, completing the triplet
data needed for model training. Although the composite
results may lack fully realistic geometry and harmonized
content, this approach enables large-scale training and al-
lows the model to learn the appropriate representations for
the two output layers in the decomposition task.

Camera-Captured Data: We also include a small set of
real-world camera-captured image pairs, denoted as IRGB

com
and IRGB

bg , similar to the counterfactual dataset proposed by
ObjectDrop [40]. The real-world data enhances the model’s
ability to generalize to natural images containing authen-
tic shadows and a broader range of visual effects, such
as reflections, which are crucial for accurate foreground-
background decomposition in real-world tasks.

4. Experiments

Implementation. LAYERDECOMP is finetuned from a 5B-
parameter DiT model pre-trained for text-to-image genera-
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Figure 3. Object removal - comparison with mask-based methods. Our model, using tight input masks, generates more visually
plausible results with fewer artifacts compared to ControlNet Inpainting [49], SD-XL Inpainting [32], and PowerPaint [54], which all
require loose mask input. Besides, our model delivers coherent foreground layers and supports more advanced downstream editing tasks.

tion, with the text encoder removed for the layer decomposi-
tion task. RGBA-VAE is finetuned from the DiT VAE using
L1, GAN, and perceptual losses [50]. Following LayerDif-
fusion [48], we extend the input/output from 3 to 4 chan-
nels and introduce an extra latent code to adapt the original
VAE’s latent space. It takes images with 512 ⇥ 512 reso-
lution and encode them into 64 ⇥ 64 latent feature maps.
Image type embedding is learnable through linear layers.
For the simulated dataset, we use 100k foreground object
images with precomputed shadows on plain backgrounds,
selecting unoccluded main objects using segmentation and
depth heuristics. For backgrounds, we source 5M stock im-
ages and blend the foregrounds based on object size and
placement. Our camera-captured dataset consists of 6, 000
image pairs. During training, we use the Adam optimizer
and set the learning rate at 1e-5. Training is conducted with
a total batch size of 128 on 16 A100 GPUs for 80, 000 it-
erations. During inference, all results are generated using
DDIM sampling with 50 steps.

4.1. Ablations

To quantitatively assess the advantages of incorporating vi-
sual effects in the foreground layer and the effectiveness
of our proposed consistency loss, we construct a held-out
evaluation dataset of 635 images for ablation studies. This
dataset includes camera-captured composite images with
the corresponding backgrounds. Visual examples will be
provided in the supplementary materials. The quality of

Table 1. Ablation study of LAYERDECOMP on held-out test

set. “BG” denotes the decomposed background, and “Comp” rep-
resents the re-composited image created by our two-layer results.

Model PSNR " LPIPS # FID # CLIP-FID #

BG Comp BG Comp BG Comp BG Comp

V0:RGB-only 28.21 - 0.0732 - 21.00 - 4.551 -
V1:V0+RGBA FG (obj.) 28.28 27.53 0.0708 0.0649 18.48 18.83 2.487 2.329
V2:V0+RGBA FG (obj.+v.e.) 28.56 28.66 0.0691 0.0612 17.99 16.87 2.539 2.172

Ours:V2 + Lconsist 29.27 30.53 0.0618 0.0494 16.04 12.75 1.813 1.564

the decomposed background layers can be directly evalu-
ated using standard metrics, such as PSNR, LPIPS [50],
FID [11, 28], and CLIP-FID [28]. To further evaluate
the quality of the decomposed foreground layers, we ap-
ply alpha blending to re-composite the background and
foreground together, comparing the result with the origi-
nal composite image. As shown in Tab. 1, compared to a
naı̈ve DiT baseline which outputs only an RGB background,
adding an RGBA foreground layer not only enables decom-
position but also improves background quality. Incorpo-
rating visual effects in the foreground layer and introduc-
ing a consistency loss further enhance model performance.
This demonstrates the decomposition task may implicitly
improve the model’s understanding of the input scene, lead-
ing to superior results in both layers’ predictions.

7647



Table 2. Comparison of LAYERDECOMP with mask-based object removal methods. Loose (L) and Tight (T) mask-based results are
shown where applicable. PSNR

m and SSIM
m are computed on the shadow mask region to assess the model’s shadow removal ability.

RORD [33] MULAN [38] DESOBAv2 [20]

Model PSNR " LPIPS # FID # CLIP-FID # PSNR " LPIPS # FID # CLIP-FID # PSNR
m " SSIM

m "

CNI [49] 20.45L22.01T 0.235L0.182T 50.40L53.71T 8.853L9.262T 17.79 0.321 65.03 9.396 36.94L 0.491L

SDI [32] 19.88L20.81T 0.205L0.166T 53.73L56.28T 11.38L11.10T 16.04 0.303 65.74 11.54 34.21L 0.527L

PP [54] 20.88L21.26T 0.231L0.201T 39.48L56.56T 8.596L11.32T 17.17 0.314 55.80 9.988 29.33L 0.369L

Ours 24.56L24.79T 0.133L0.132T 21.77L21.73T 5.735L5.778T 19.13 0.244 39.26 6.332 38.57T 0.640T

Ours (BG)ObjectDropInput Ours (FG)

Figure 4. Object removal - comparison with ObjectDrop [21].

Based on their released examples, our model demonstrates com-
parable quality in photorealistic object removal in the background
layer, while decomposing the foreground with intact visual effects.

4.2. Comparison on Object Removal

To assess the quality of the background layers predicted
by LAYERDECOMP, we evaluate the model on the object
removal task, comparing it to several state-of-the-art ap-
proaches, including mask-based methods (ControlNet In-
painting [49], SD-XL Inpainting [32], PowerPaint [54],
ObjectDrop [40]) and instruction-driven models (Emu-
Edit [35], MGIE [8], and OmniGen [43]).

Quantitative evaluation among mask-based inpaint-
ing methods is conducted on three public benchmarks:
RORD [33], a real-world object removal dataset collected
from video data with human-labeled loose and tight object
masks; MULAN [38], a synthesized multi-layer dataset that
provides instance-wise RGBA decompositions for COCO
and LAION images; and DESOBAv2 [20], a real-world im-
age dataset with shadow mask annotations and synthesized
image pairs where instance shadows are removed. Standard
metrics, including PSNR, LPIPS, FID, and CLIP-FID, are
used on RORD and MULAN, while regional similarity such
as masked PSNR and masked SSIM are used for shadow re-

Table 3. User study for instruction-driven object removal.

Methods

Removal
Effectiveness

Result
Plausibility

Background
Integrity Overall

Emu-Edit [35] 5.00% 4.38% 3.33% 4.79%
Ours 57.08% 77.92% 76.25% 83.54%

OmniGen [43] 4.07% 3.15% 2.96% 3.89%
Ours 67.04% 80.56% 84.63% 87.78%

moval in DESOBAv2. More details of dataset preparation
will be included in the supplementary materials.

Most existing mask-based object removal approaches
cannot automatically detect and remove visual effects as-
sociated with the target object, necessitating a loose mask
input. Indeed, as shown in Tab. 2, using a loose mask in-
troduces more inpainting area and thus hurts PSNR and
LPIPS, but significantly improves result fidelity (i.e., FID
and CLIP-FID) for all compared methods. In contrast, LAY-
ERDECOMP demonstrates robustness to mask tightness and
outperforms all methods by a large margin. For shadow
removal on DESOBAv2, LAYERDECOMP surpasses other
methods even without utilizing the shadow annotation in-
cluded in the loose mask. As shown in Fig. 3, LAYERDE-
COMP provides substantial improvements over existing
methods, generating more photorealistic background lay-
ers with fewer artifacts and minimal visual effect residues.
Comparing with ObjectDrop, a leading model in object re-
moval that can automatically eliminate visual effect with
a tight input mask, we applied LAYERDECOMP to the ex-
ample images released by their work. As shown in Fig. 4,
LAYERDECOMP achieves similar high-quality backgrounds
with effective object removal. Additionally, LAYERDE-
COMP decomposes the foreground with realistic visual ef-
fects, enabling further editing capabilities not supported by
ObjectDrop. More visual comparisons will be included in
the supplementary materials.

To compare with instruction-driven methods, we con-
duct a user study on 60 randomly selected images from the
Emu-Edit Remove Set [35]. We ask 17 independent re-
searchers to compare results from LAYERDECOMP and an
existing method, focusing on three quality aspects: removal
effectiveness, result plausibility, and background integrity.
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Figure 5. Object removal - comparison with instruction-driven methods. Combining with a text-based grounding method, our model
can effectively remove target objects and preserve background integrity, while existing instruction-based editing methods, such as Emu-
Edit [35], MGIE [8], and OmniGen [43], may struggle to fully remove the target or maintain background consistency.

DiffEditor DesignEdit OursDragAnythingInput OursDiff. HandleInput

OursDesginEditInput

Figure 6. Object spatial editing. Our model enables precise object moving and resizing with seamless handling of visual effects, resulting
in highly effective and realistic edits that preserve content identity. When applied to examples released by specific works, such as Diffu-
sionHandle [27] and DesignEdit [14], our model also achieves satisfying results.

In cases where both methods achieve satisfactory results,
users could mark it as a “tie”. For a fair comparison, we
use a grounding model to generate text-based masks to in-
put to LAYERDECOMP. In total, 3060 data points are col-
lected in this study. As shown in Tab. 3, LAYERDECOMP
is clearly preferred in at least 83% of the testing cases for
overall quality. Example object removal results are visu-
alized in Fig. 5. While Emu-Edit and MGIE struggle to
fully remove the target object, OmniGen is more effective
but does not reliably preserve the background integrity. Our
model, in contrast, successfully removes the target object

while preserving most background fine details.

4.3. Comparison on Object Spatial Editing

We further compare LAYERDECOMP for object spatial edit-
ing tasks, including object moving and resizing, against sev-
eral state-of-the-art methods: DiffEditor [25], DragAny-
thing [41], DesignEdit [14], and Diffusion Handles [27].
For user study, we select 15 editing samples using web
images for each task, and ask 23 independent researcher
to compare results from LAYERDECOMP and an existing
method, focusing on three quality aspects: edit effective-
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Original Image Layer-Edited Image Multi-Layer Decomposition & Editing

More Editing Examples

Figure 7. Multi-layer Decomposition and Creative layer-editing. By sequentially applying our model, we can decompose multiple
foreground layers with distinct visual effects, which can then be used for further creative editing tasks.

Table 4. User study for object spatial editing.

Methods

Edit
Effectiveness

Result
Plausibility

Content
Integrity Overall

M
o
v
in

g

DesignEdit [14] 1.67% 1.11% 1.11% 2.22%
Ours 71.67% 90.56% 77.22% 94.44%

DragAnything [41] 1.82% 1.21% 2.42% 1.21%
Ours 67.88% 93.33% 95.15% 96.36%

R
e
s
iz

in
g DesignEdit [14] 2.22% 3.89% 3.33% 3.89%

Ours 69.44% 82.78% 71.67% 87.22%

DiffEditor [25] 1.11% 1.11% 1.21% 1.11%
Ours 95.15% 96.36% 92.21% 96.36%

ness, result plausibility, and content integrity. In this study,
2070 data points are collected. As shown in Tab. 4, LAY-
ERDECOMP is at least 87% more preferred in the spatial
editing tasks, featuring superior plausibility in editing re-
sults. As shown in Fig. 6, LAYERDECOMP enables seam-
less spatial editing for objects in various scenes. By preserv-
ing intact visual effects in the transparent foreground layer,
shadows and reflections move naturally with the editing tar-
gets, allowing harmonious re-composition to be effortlessly
achieved through alpha blending. When compared to Diffu-
sionHandle [27] and DesignEdit [14] on their released ex-
amples, LAYERDECOMP demonstrates comparable results
in most scenarios, including graphic design examples with-
out requiring additional fine-tuning.

4.4. Multi-Layer Decomposition and Editing

LAYERDECOMP can be applied sequentially to an origi-
nal input image with different instance masks, decomposing
multiple layers along with their visual effects, as examples
shown in Fig. 7. This process enables creative and complex
layer-based editing for each individual layer, including spa-
tial manipulation, recoloring, and filtering. Once editing is
complete, the re-composition of all layers maintains a natu-
ral and realistic appearance, as demonstrated in Fig. 7.

5. Discussions

In conclusion, our model achieves superior image layer de-
composition, outperforming existing methods in object re-
moval and spatial editing across benchmarks and user stud-
ies. By decomposing images into a realistic background
and transparent foreground with preserved visual effects,
it enables diverse creative editing possibilities. Our con-
sistency loss facilitates accurate foreground representation
learning even without hard-to-obtain ground truth. While
robust, the model may require refinement for challenging
cases like incomplete masks, heavy occlusions, or intricate
colorful shadows. Future directions include enhancing per-
formance under such conditions and expanding support for
a broader range of visual effects to enable more generaliz-
able and versatile image decomposition.
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