
Hash3D: Training-free Acceleration for 3D Generation

Xingyi Yang Songhua Liu Xinchao Wang*

National Unversity of Singapore
{xyang,songhua.liu}@u.nus.edu, xinchao@nus.edu.sg

An old car overgrown by vines
and weeds

An orc forging a hammer on an anvil A gummy bear playing the
saxophone

A marble bust of a fox head A porcelain dragon

Dr
ea
m
-G
au

ss
ia
n

Ga
us
sia

n-
Dr
ea
m
er

1.5×

4. #×

+
Ha

sh
3D

+
Ha

sh
3D

Figure 1. Examples by applying our Hash3D on Gaussian-Dreamer [63] and Dream-Gaussian [53]. We accelerate Gaussian-Dreamer by
1.5→ and Dream-Gaussian by 4→ with comparable visual quality.

Abstract

The quality of 3D generative modeling has been notably
improved by the adoption of 2D diffusion models. Despite
this progress, the cumbersome optimization process per se
presents a critical problem to efficiency. In this paper, we
introduce Hash3D, a universal acceleration for 3D score
distillation sampling (SDS) without model training. Cen-
tral to Hash3D is the observation that images rendered
from similar camera positions and diffusion time-steps of-
ten have redundant feature maps. By hashing and reusing
these feature maps across nearby timesteps and camera an-
gles, Hash3D eliminates unnecessary calculations. We im-
plement this through an adaptive grid-based hashing. As
a result, it largely speeds up the process of 3D genera-
tion. Surprisingly, this feature-sharing mechanism not only
makes generation faster but also improves the smoothness
and view consistency of the synthesized 3D objects. Our
experiments covering 5 text-to-3D and 3 image-to-3D mod-

*Corresponding author.

els, demonstrate Hash3D’s versatility to speed up optimiza-
tion, enhancing efficiency by 1.5 → 4↑. Additionally,
Hash3D’s integration with 3D Gaussian splatting largely
speeds up 3D model creation, reducing text-to-3D conver-
sion to about 10 minutes and image-to-3D conversion to
30 seconds. The project page is https://adamdad.
github.io/hash3D/.

1. Introduction
In the field of 3D generation, the integration of 2D diffusion
models [36, 55] has led to notable advancements. These
methods leverage off-the-the-shelf image diffusion models
to distill 3D models by predicting 2D score functions at dif-
ferent views, known as score distillation sampling (SDS).

While this approach opens up new opportunities for
creating realistic 3D assets, it also brings significant effi-
ciency challenges. Particularly, SDS requires thousands of
score predictions from different camera angles and denois-
ing steps in the diffusion model. This results in long opti-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

21481

mization times, sometimes taking hours to create a single
object [57]. These durations hinder practical use. We need
new solutions to improve its efficiency.

To mitigate this bottleneck, current efforts focus on three
potential solutions. The first solution trains feed-forward
models [7, 12, 18, 24, 61] to skip the lengthy optimiza-
tion. While effective, this method requires extensive train-
ing time and substantial computational resources. The sec-
ond approach [40, 53, 63] reduces optimization times by
using faster 3D representations. However, each type of
representation needs a unique design for 3D generation,
which creates its own challenges. The third approach di-
rectly generates sparse views to model 3D objects [16, 27].
This method assumes near-perfect consistency for gener-
ated views, which, in practice, is often not achievable.

Focusing back on SDS, the main computational cost
comes from repeatedly sampling the 2D image score func-
tion [51]. Inspired by techniques that accelerate 2D diffu-
sion sampling [3, 28, 50], we posed the question: Is it pos-
sible to reduce the number of inference steps of the diffusion
model for 3D generation?

In exploring this question, we make a crucial observa-
tion: denoising outputs and feature maps from near camera
positions and timesteps are very similar. This discovery led
us to develop Hash3D, which reduces the computation by
leveraging this redundancy.

At its core, Hash3D stores and hashes previously com-
puted features to reduce time. We do this using a a grid-
based hash table. Specifically, when a new view is close
to one that has already been processed, Hash3D retrieves
and reuses the nearby features from the table. This reuse
allows Hash3D to compute the current view’s score func-
tion without repeating earlier calculations.Additionally, we
developed a method to dynamically adjust the grid size for
each view, which makes the system more adaptable. As a
result, Hash3D saves computational resources without re-
quiring any model training or complex changes, making it
easy to implement and efficient to use.

Beyond improving efficiency, Hash3D also has the po-
tential to improve the cross-view consistency of generated
objects. Traditional diffusion-based methods often result in
3D objects with disjointed appearances when viewed from
various angles [2]. In contrast, Hash3D links independently
generated views by sharing features within each grid. It
leads to smoother, more consistent 3D models.

Another key advantage of Hash3D is its versatility. It
could be integrated into any diffusion-based 3D generative
workflows. Our experiments, covering 5 text-to-3D and 3
image-to-3D models, demonstrate Hash3D’s versatility to
speed up optimization, enhancing efficiency by 1.5 → 4↑,
without compromising on performance. Specifically, the in-
tegration of Hash3D with 3D Gaussian Splatting [13] brings
a significant leap forward, cutting down the time for text-

to-3D to about 10 minutes and image-to-3D to roughly 30
seconds.

The contribution of this paper can be summarized into
• We introduce Hash3D, a versatile, plug-and-play and

training-free acceleration method for diffusion-based
text-to-3D and image-to-3D models.

• The paper emphasizes the redundancy in diffusion mod-
els when processing nearby views and timesteps. This
finding motivates the development of Hash3D, aiming to
boost efficiency without compromising quality.

• Hash3D employs an adaptive grid-based hashing to effi-
ciently retrieve features, significantly reducing the com-
putations across view and time.

• Our extensive testing demonstrates that Hash3D not only
speeds up the generative process by 1.5 → 4↑, but also
results in a slight improvement in performance.

2. Related Work
3D Generation Model. Building 3D generative mod-
els is important but hard. Typically, these models are
trained to predict the 3D representation parameters, such
as voxel [59], point cloud [1, 34], implicit function [11], tri-
plane [49, 61]. Despite these advances, scalability remains
a major challenge due to the demands of large datasets and
high computational costs. A promising solution is to lever-
age 2D generative models generate 3D models. Recent
progress, especially in diffusion-based models using score
distillation [36, 46, 47], have shown significant potential in
3D generation. However, these methods are heavily hin-
dered by long optimization processes.
Efficient Diffusion Model. Diffusion models, while effec-
tive, are often time-consuming due to their iterative denois-
ing process. Efforts to speed them up focus on two main
strategies. The first reduces sampling steps using advanced
sampling [3, 22, 28, 50] or distillation [45, 52] techniques.
The second strategy aims to streamline each model infer-
ence by developing smaller models [9, 14, 62] or reusing
features from nearby steps [20, 29, 30]. Although these
methods are common in 2D and video generation, their ap-
plication to 3D generative tasks remains largely unexplored.
Hashing Techniques. Hashing is a fast and efficient
method for data storage. This is achieved by converting
variable-sized inputs into fixed-size hash codes using hash
functions. These codes index a hash table for fast and con-
sistent data access. Commonly used in file systems, hash-
ing is also effective in 3D representation [10, 33, 35, 60],
neural network compression [6, 15], and as components
in deep networks [41] or for developing neural hash func-
tions [4, 17, 19, 65]. Our study explores the application of
hashing to retrieve features from 3D generation. By adopt-
ing this technique, we aim to reduce computational over-
head for repeated diffusion sampling and speed up the cre-
ation of realistic 3D objects.

21482

3. Preliminary
In this section, we provide the notations and background
on optimization-based 3D generation, focusing on diffusion
models and Score Distillation Sampling (SDS) [36].

3.1. Diffusion Models
Diffusion models are generative models that reverse a noise-
adding process through a series of latent variables. Start-
ing with data x0 → q(x0), Gaussian noise is progressively
added over T steps during the forward process, each de-
fined by q(xt|xt→1) = N (xt;

↓
1↔ ωtxt→1,ωtI), where

ωt ↗ [0, 1]. Due to the Gaussian nature, xt can be directly
sampled as:

xt =
↓
ε̄tx0 +

↓
1↔ ε̄tω, ϑ → N (0, I) (1)

where εt = 1↔ ωt and ε̄t =
∏t

s=1 εs

The reverse process is modeled as a Markov chain
parameterized by a denoising neural network ω(xt, t, y),
where y is the conditional input, such as text [44] or camera
pose [26]. The training of the denoiser aims to minimize a
re-weighted evidence lower bound (ELBO), aligning with
the noise:

LDDPM = Et,x0,ω

[
||ω↔ ω(xt, t, y)||22

]
(2)

Here, ω(xt, t, y) approximates the score function
↘xt log p(xt|x0). Data generation is achieved
by denoising from noise, often enhanced using
classifier-free guidance with scale parameter ϖ:
ϑ̂(xt, t, y) = (1 + ϖ)ω(xt, t, y)↔ ϖω(xt, t, ≃).
Extracting Feature from Diffusion Model. A diffusion
denoiser ω is typically parameterized with a U-Net [43]. It
uses l down-sampling layers {Di}li=1 and up-sampling lay-
ers {Ui}li=1, coupled with skip connections that link fea-
tures from Di to Ui. This module effectively merges high-
level features from Ui+1 with low-level features from Di,
as expressed by the equation:

v(U)
i+1 = concat(Di(v

(D)
i→1), Ui+1(v

(U)
i)) (3)

In this context, v(U)
i and v(D)

i+1 represent the up-sampled and
down-sampled features after the i-th layer, respectively.

3.2. Score Distillation Sampling (SDS)
The Score Distillation Sampling (SDS) [36] represents an
optimization-based 3D generation method. This method fo-
cuses on optimizing the 3D representation, denoted as !,
using a pre-trained 2D diffusion models with its noise pre-
diction network, denoted as ωpretrain(xt, t, y).

Given a camera pose c = (ϱ,ς, φ) ↗ R3 defined by el-
evation ς, azimuth ϱ and camera distances φ, and the its
corresponding prompt yc, a differentiable rendering func-
tion g(·;!), SDS aims to refine the parameter !, such that

each rendered image x0 = g(c; ϱ) is perceived as realis-
tic by ωpretrain. The optimization objective is formulated as
follows:

min
!

LSDS = Et,c

[
↼t

εt
ϖ(t)KL

(
q!(xt|yc, t) ⇐ p(xt|yc; t)

)]

(4)
By excluding the Jacobian term of the U-Net, the gradient of
the optimization problem can be effectively approximated:

↘!LSDS ⇒ Et,c,ω

[
ϖ(t)(ωpretrain(xt, t, y

c)↔ ω)
↽x

↽!

]
(5)

To optimize Eq. 5, we randomly sample different time-step
t, camera c, and random noise ω, and compute gradient
of the 3D representation, and update ϱ accordingly. This
approach ensures that the rendered image from 3D object
aligns with the distribution learned by the diffusion model.
Efficiency Problem. The main challenge lies in the need
for thousands to tens of thousands of iterations to optimize
Eq 5, each requiring a separate diffusion model inference.
This process is time-consuming due to the model’s com-
plexity. We make it faster by using a hash function to reuse
features from similar inputs, cutting down on the number of
calculations needed.

4. Hash3D
This section introduces Hash3D, a plug-and-play tool that
enhances the efficiency of SDS. We start by analyzing the
redundancy presented in the diffusion model when perform-
ing 3D generation. Based on the finding, we present our
strategy that employs a grid-based hashing to reuse feature
across different sampling iterations.

4.1. Probing the Redundancy in SDS
Typically, SDS randomly samples camera poses and
timesteps to ensure that the rendered views align with the
diffusion model’s distribution. However, during this re-
peated sampling, we observe that deep feature extraction at
proximate c and t often reveals a high degree of similarity.
Therefore, this similarity underpins our method, suggesting
that reusing features from nearby points does not signifi-
cantly impact the model’s predictions.
Measuring Similarity. Intuitively, images captured from
similar camera positions and at similar times result in sim-
ilar visual content. We hypothesize that features produced
by diffusion models exhibit a similar pattern. Specifically,
we propose two hypotheses: (1) temporal similarity: fea-
tures extracted at close timesteps are similar, and (2) spatial
similarity: features extracted from images rendered at close
camera poses are similar.

Regarding the temporal similarity, previous studies [20,
30] have noted that features extracted from adjacent

21483

! = 0° ! = 180°! = 90° ! = 270°

polar !

po
la

r!

azimuth "

az
im

ut
h
"

Figure 2. Feature similarity extracted from different camera poses.

2000 iter 5000 iter 10000 iter

100 iter 500 iter 1000 iter

Figure 3. Similarity dynamics at
different SDS training steps.

timesteps in diffusion models show a high level of simi-
larity. To test the hypothesis of spatial similarity, we con-
ducted two preliminary studies measuring feature similarity
when denoising images of the same object taken from dif-
ferent camera poses.
Feature Similarity in Camera-Conditioned Diffusion. In
the first study, we used Zero-123 [26], a model that gen-
erates images from different camera poses conditioned on
a single input image. For each specific camera angle and
timestep, we extracted features v(U)

l→1 from the input of
the last up-sampling layer. By varying the elevation (ς)
and azimuth (ϱ) angles, we measured the cosine similarity
between features of different views, averaging the results
across all timesteps.

As shown in Figure 2, features from views within a
[↔10↑, 10↑] range for both elevation and azimuth have high
similarity scores, with most values exceeding 0.8.
Feature Similarity Dynamics in T2I diffusion. In the
second study, we test the feature redundancy using text-to-
image diffusion models. During the SDS process, the op-
timized 3D object gets continuously updated. This causes
the similarity of rendered images to vary across different
training steps. We analyze this similarity by denoising the
rendered images at various stages using a diffusion model.

Specifically, at different SDS iterations, we ren-
der images uniformly at camera angles (ϱ,ς) =
(10↑, 0↑, 5↑, . . . , 360↑). We add a noise level

↓
ε̄t = 0.5,

process them with Stable Diffusion [42], and extract fea-
tures v(U)

l→1. We then compute the average cosine similarity
within windows of ⇀ = {5↑, 10↑, 20↑} for all feature pairs.
The SDS process runs for 10,000 iterations.

As illustrated in Figure 3, the object appears blurry with
low feature similarity across views in the early stages of
training. By approximately 1,000 iterations, the images be-
come clearer, and feature similarity sharply increases. For
example, when ⇀ = 5↑, the similarity fluctuates around

0.65. However, with larger windows, the similarity remains
lower compared to smaller windows. These results high-
light the redundancy in predicted outputs throughout the
SDS process.

Based on these analysis, we present our approach: in-
stead of computing the noise prediction for every new cam-
era pose and timestep, we create a memory system to store
previously computed features. As such, we can retrieve and
reuse these pre-computed features whenever needed. Ide-
ally, this approach could reduces redundant calculations and
speeds up the optimization process.

4.2. Hashing-based Feature Reuse
Based on our analysis, we developed Hash3D, which uses
hashing to speedup SDS. Hash3D reduces the repetitive
computational cost in diffusion models by trading storage
space for faster 3D optimization.

At its core, Hash3D employs a hash table to store and
retrieve previously computed features. When Hash3D sam-
ples a specific camera pose c and timestep t, it first checks
the hash table for similar features. If a match is found, it’s
reused directly in the diffusion model, significantly cutting
down on computation. If not, it performs standard inference
and adds the new features to the hash table for future use.
Grid-based Hashing. To efficiently index the hash ta-
ble, we use grid-based hashing based on camera poses
c = (ϱ,ς, φ) and timestep t. This function assigns each
c and t to a grid cell for data storage and retrieval.

Firstly, we define the size of our grid cells in both the
spatial and temporal domains, denoted as ”ϱ,”ς,”φ and
”t respectively. For each input key [ϱ,ς, φ, t], we calculate
the grid cell indices:

i =

⌊
ω
!ω

⌋
, j =

⌊
ε
!ε

⌋
, k =

⌊
ϑ
!ϑ

⌋
, l =

⌊
t
!t

⌋
(6)

These indices are combined into a single hash code: idx =
(i+N1·j+N2·k+N3·l) mod n is used, where N1, N2, N3

21484

Used Camera

Reuse
Feature

Camera Pose !
Timestep "

Retrieve and Reuse

True

False

Update
Hash Table

New Camera

3D Model ! !(#; %)

Add '

Extract Feature

Grid-based
Hash

Figure 4. Overall pipeline of our Hash3D. Given the sampled camera and time-step, we retrieve the intermediate diffusion feature from
hash table. If no matching found, it performs a standard inference and stores the new feature in the hash table; otherwise, if a feature from
a close-up view already exists, it is reused without re-calculation.

are large prime numbers [35, 54], and n denotes the size of
the hash table. This hash function maps keys with simi-
lar camera poses and timesteps to the same bucket. This
grid-based approach not only speeds up data retrieval but
also preserves the spatial-temporal relationships in the data,
which is crucial for our method.
Collision Resolution. When multiple keys are assigned to
the same hash value, a collision occurs. We address these
collisions using separate chaining. In this context, each
hash value idx is linked to a distinct queue, denoted as
qidx. To ensure the queue reflects the most recent data and
remains manageable in size, it is limited to a maximum
length Q = 3. When this limit is reached, the oldest ele-
ments is removed to accommodate the new entry, ensuring
the queue stays relevant to the evolving 3D representation.
Feature Retrieval and Update. After computing the hash
value idx, we either retrieve features from the hash table
or update it with new ones. We control this with hash prob-
ability 0 < ⇁ < 1. With probability ⇁, we retrieve features;
otherwise, we perform an update.

For feature updates, following prior work [30], we ex-
tract the feature v(U)

l→1, which is the input of the last up-
sampling layer in the U-net. Once extracted, we compute
the hash code idx and append the data to the correspond-
ing queue qidx. The stored data includes noisy latent input
x, camera pose c, timestep t, and extracted diffusion fea-
tures v(U)

l→1.
For feature retrieval, we aggregate data from qidx

through weighted averaging. This method considers the dis-
tance of each noisy input xi from the current query point x.
The weighted average v for a given index is calculated as
follows:

v =

|qidx|∑

i=1

Wivi, where Wi =
e(→||x→xi||22)

∑|qidx|
i=1 e(→||x→xi||22)

(7)

Here, Wi is the weight assigned to vi based on its distance
from the query point, and |qidx| is the current length of the
queue. An empty queue |qidx| indicates unsuccessful re-
trieval, necessitating feature update.

Comparison with Feature Caching. Our hashing-based
feature reuse is fundamentally different from previous
works that use feature caching [20, 30, 58] to accelerate dif-
fusion models. Feature caching assumes an ordered denois-
ing process, while SDS involves an inherently unordered
and stochastic sampling process. Moreover, storing all fea-
tures is costly. To handle this, we employ a hash table to
organize these features efficiently. As a result, those feature
caching methods cannot be directly applied to our setup.

4.3. Adaptive Grid Hashing
In grid-based hashing, the selection of an appropriate grid
size ”ϱ,”ς,”φ,”t — plays a pivotal role. As illustrated
in Section 4.1, we see three insights related to grid size.
First, feature similarity is only maintained at a median grid
size; overly large grids tend to produce artifacts in gener-
ated views. Second, it is suggested that ideal grid size dif-
fers across various objects. Third, even for a single object,
optimal grid sizes vary for different views and time steps,
indicating the necessity for adaptive grid sizing to ensure
optimal hashing performance.
Learning to Adjust the Grid Size. To address these chal-
lenges, we propose to dynamically adjusting grid sizes.
The objective is to maximize the average cosine similarity
cos(·, ·) among features within each grid. In other words,
only if the feature is similar enough, we can reuse it. Such
problem is formulated as

max
!ω,!ε,!ϑ,!t

1
|qidx|

|qidx|∑

i,j

cos(vj ,vi), s.t.|qidx| > 0 [Non-empty]

(8)
Given that our hashing function is non-differentiable, we

employ a brute-force approach. Namely, we evaluate M
predetermined potential grid sizes, each corresponding to a
distinct hash table, and only use best one.

For each input [ϱ,ς, φ, t], we calculate the hash code
{idx(m)}Mm=1 for M times, and indexing in each bucket.
Feature vectors are updated accordingly, with new elements
being appended to their respective bucket. We calculate the

21485

Zero-123 + Hash3D (6 min) Zero-123 (20 min)

Figure 5. Qualitative Results using Hash3D along with Zero123 for image-to-3D generation. We mark the visual dissimilarity in yellow.

cosine similarity between the new and existing elements in
the bucket, maintaining a running average s

idx
(n) of these

similarities

s
idx

(m) ↑ ϖs
idx

(m) + (1↓ ϖ)
1

|q
idx

(m) |

|q
idx

(m) |∑

i=1

cos(vnew,vi)

(9)
During retrieval, we hash across all M grid sizes but only

consider the grid with the highest average similarity for fea-
ture extraction.
Computational and Memory Efficiency. Despite employ-
ing a brute-force approach that involves hashing M times
for each input, our method maintains computational effi-
ciency due to the low cost of hashing. It also maintains
memory efficiency, as hash tables store only references to
data. To prioritize speed, we deliberately avoid using neu-
ral networks for hashing function learning.

5. Experiment
In this section, we evaluate Hash3D by integrating it with
various 3D generative models, encompassing both image-
to-3D and text-to-3D tasks.

5.1. Experimental Setup
Baselines. To verify our method, we conduct extensive tests
across a wide range of baseline text-to-3D and image-to-3D
methods.
• Image-to-3D. We build our method on Zero-123+SDS

[25], DreamGaussian [53] and Magic123 [38]. For Zero-
123+SDS, we incorporate Instant-NGP [32] and Gaussian
Splatting [13] as its representation. We call these two
variants Zero-123 (NeRF) and Zero-123 (GS).

• Text-to-3D. Our tests also covered a range of meth-
ods, such as Dreamfusion [36], Fantasia3D [5], Latent-
NeRF [31], Magic3D [21], and GaussianDreamer [63].

For DreamGaussian and GaussianDreamer, we implement
Hash3D on top of the official code. And for other methods,
we use the reproduction from threestudio*.
Implementation Details. We stick to the same
hyper-parameter setup within their original implementa-
tions of these methods. For text-to-3D, we use the
stable-diffusion-2-1

† as our 2D diffusion model.
For image-to-3D, we employ the stable-zero123‡. We
use a default hash probability setting of ⇁ = 0.1. We use
M = 3 sets of grid sizes, with ”ϱ,”ς,”t ↗ {10, 20, 30}
and ”φ ↗ {0.1, 0.15, 0.2}. We verify this hyper-parameter
setup in the ablation study.
Dataset and Evaluation Metrics. To assess our method,
we focus on evaluating the computational cost and visual
quality achieved by implementing Hash3D.
• Image-to-3D. For image-to-3D experiments, we used the

Google Scanned Objects (GSO) dataset [8] for evalua-
tion [24, 26]. We evaluated novel view synthesis (NVS)
performance with PSNR, SSIM [56], and LPIPS [64]. We
selected 30 objects, each with a 2562 input image for 3D
reconstruction. We rendered 16 views at a 30-degree ele-
vation with varying azimuths to compare the reconstruc-
tions with ground truth. CLIP-similarity scores were cal-
culated to ensure semantic consistency between rendered
views and original images.

• Text-to-3D. We generated 3D models from 50 different
prompts selected from DreamFusion. To evaluate our
methods, we focus on two primary metrics: mean±std
CLIP-similarity [23, 37, 39] and the average generation
time for each method. CLIP-similarity was measured be-
tween the input prompt and 8 uniformly rendered views.

• User Study.To evaluate the visual quality of generated 3D
objects, we conducted a study with 44 participants. They

*https://github.com/threestudio-project/threestudio
†https://huggingface.co/stabilityai/stable-diffusion-2-1
‡https://huggingface.co/stabilityai/stable-zero123

21486

Table 1. Speed and quality comparison when applying Hash3D on
image-to-3D task. We report the time from original papers.

Method Time↓ Speed↔ MACs↓ PSNR↔ SSIM↔ LPIPS↓ CLIP-G/14↔

DreamGaussian 2m - 169G 16.202 0.772 0.225 0.693
+ Hash3D 30s 4.0↗ 154G 16.356 0.776 0.223 0.694

Zero-123(NeRF) 20m - 169G 17.773 0.787 0.198 0.662
+ Hash3D 7m 3.3↗ 154G 17.961 0.789 0.196 0.665

Zero-123(GS) 6m - 169G 18.409 0.789 0.204 0.643
+ Hash3D 3m 2.0↗ 154G 18.616 0.793 0.204 0.632

Magic123 120m - 847G 18.718 0.803 0.169 0.718
+ Hash3D 74m 1.6↗ 777G 18.631 0.803 0.174 0.715

Table 2. Speed and quality comparison between various text-to-3D
baselines integrated with Hash3D.

Method Time↓ Speed↔ MACs↓ CLIP-G/14↔ CLIP-L/14↔ CLIP-B/32↔

Dreamfusion 60m - 679G 0.407 0.267 0.314
+ Hash3D 40m 1.5↗ 622G 0.411 0.266 0.312
Latent-NeRF 30m - 679G 0.406 0.254 0.306
+ Hash3D 17m 1.8↗ 622G 0.406 0.258 0.305
SDS+GS 78m - 679G 0.413 0.263 0.313
+ Hash3D 40m 1.9↗ 622G 0.402 0.252 0.306
Magic3D 90m - 679G 0.399 0.257 0.303
+ Hash3D 60m 1.5↗ 622G 0.393 0.250 0.304
GaussianDreamer 15m - 679G 0.412 0.267 0.312
+ Hash3D 10m 1.5↗ 622G 0.416 0.271 0.312

viewed 12 video renderings from two methods: Zero-123
(NeRF) for images-to-3D and Gaussian-Dreamer for text-
to-3D, with and without Hash3D. Participants rated each
pair by distributing 100 points to indicate perceived qual-
ity differences.

• Computational Cost. We report the running time for
each experiment on a single RTX A5000 and include
MACs in the tables. As feature retrieval is stochastic,
we provide the theoretical average MACs, assuming all
retrievals succeed.

5.2. 3D Generation Results
Image-to-3D Qualitative Results. Figure 5 shows the re-
sults of integrating Hash3D into the Zero-123 framework
for generating 3D objects. This integration maintains visual
quality and view consistency while significantly reducing
processing time. In some cases, Hash3D outperforms the
baseline, such as the clearer “dragon wing boundaries” in
row 1 and the more distinct “train taillights” in row 3. Simi-
lar visual fidelity is seen in Figure 1, where Hash3D is used
with DreamGaussian, demonstrating effective quality main-
tenance and improved efficiency.
Image-to-3D Quantitative Results. Table 1 presents a de-
tailed numerical analysis of novel view synthesis, includ-
ing CLIP scores and running times for all four baseline
methods. Notably, Our method achieves a 4↑ speedup
on DreamGaussian and 3↑ on Zero-123 (NeRF), due to
Hash3D’s efficient feature retrieval and reuse. This not
only accelerates processing but also slightly improves CLIP
score performance by sharing features across views, reduc-
ing inconsistencies, and producing smoother 3D models.
Text-to-3D Qualitative Results. In Figure 6, we present
the results generated by our Hash3D, on top of DreamFu-
sion [36], SDS+GS, and Fantasia3D [5]. It demonstrates
that Hash3D maintains comparable visual quality to these
established methods.
Text-to-3D Quantitative Results. Table 2 presents a quan-
titative evaluation of Hash3D. Hash3D significantly reduces
processing times across various methods while maintaining

a zoomed out DSLR photo of
a baby bunny sitting on top

of a stack of pancakes
a delicious hamburger

DreamFusion
1 h

+ Hash3D
40 min (1.5×)

SDS + 3DGS
1.3 h

+ Hash3D
40 min (1.9×)

A oil and small
monster that is

playing with guitar
an astronaut riding a horse

Fantasia3d
2 h

+ Hash3D
1.2 h (1.7×)

batman a teddy bear with christmas
hat and leather boot

Figure 6. Visual comparison for text-to-3D task, when applying
Hash3D to DreamFusion [36], SDS+GS and Fantasia3D [5].

visual quality, with minimal impact on CLIP scores. For
methods like GaussianDreamer, it even slightly improves
visual fidelity, indicating the benefit of leveraging relation-
ships between nearby camera views.
User preference study. As shown in Figure 9, Hash3D
received an average preference score of 52.33/100 and
56.29/100 when compared to Zero-123 (NeRF) and
Gaussian-Dreamer. These scores are consistent with pre-
vious results, indicating that Hash3D slightly enhances the

21487

Figure 7. Ablation study with different hash probability ϱ.

Method Time CLIP-G/14

Zero-123 (NeRF) + Hash3D w/n 6 min 0.631

Zero-123 (NeRF) + Hash3D 7 min 0.665

Zero-123 (GS) + Hash3D w/n 3 min 0.622

Zero-123 (GS) + Hash3D 3 min 0.632

Figure 8. Comparison between Hashing Features vs. Hashing
Noise, applied to Zero-123.

Figure 9. User preference study for Hash3D.

visual quality of the generated objects.

5.3. Ablation Study and Analysis
In this section, we study several key components in our
Hash3D framework.
Ablation 1: Hashing vs. Storing All Features. We com-
pare hashing features with storing all past features and re-
trieving them by similarity. As shown in Table 3, hashing is
more effective. On efficiency side, storing all feature even
causes an OOM error in Dreamfusion. Hashing requires
only constant space. Additionally, our grid-based hashing
leverages geometric information to improve sample quality.
More visual results are available in the appendix.
Ablation 2: Hashing Features vs. Hashing Noise. In
Hash3D, we hash intermediate features within the diffu-
sion U-Net. Alternatively, we developed Hash3D with noise
(Hash3D w/n), which hashes and reuses the denoising pre-
diction directly. We tested both methods on the image-to-
3D task using Zero123, with results shown in Table 8. Inter-
estingly, while Hash3D w/n reduced processing time, it sig-
nificantly lowered CLIP scores. This highlights that hashing
features is more effective than hashing noise predictions.
Ablation 3: Influence of Hash Probability ⇁. A key pa-
rameter in Hash3D is the retrieval probability ⇁. We tested
⇁ ↗ {0.01, 0.05, 0.1, 0.3, 0.5, 0.7} using Dreamfusion. As
shown in Figure 7, runtime decreases as ⇁ increases. For
⇁ < 0.3, Hash3D slightly improved the visual quality of
3D models by enabling smoother noise predictions through
feature sharing. However, for ⇁ > 0.3, the runtime gains
were minimal. This balance of performance and efficiency
led us to choose ⇁ = 0.1 for our main experiments.
Ablation 4: Adaptive Grid Size. We use AdaptGrid to
dynamically adjusts the grid size for hashing based on each
sample. Compared to using a constant grid size in Dreamfu-
sion, AdaptGrid performs better as shown in Table 4. Larger

Table 3. Comparison of feature retrieval with and without hashing.

Name Time↓ GPU Mem.↓ CLIP-G/14↔

Hash3D+Zero-123 (NeRF) w/o hashing 11m 8G 0.661
Hash3D+Zero-123 (NeRF) 7m 6G 0.665
Hash3D+DreamFusion w/o hashing - OOM -
Hash3D+DreamFusion 40m 8G 0.411

grid sizes reduce the visual quality of 3D objects, while
smaller grid sizes maintain quality but increase computa-
tion time because fewer features match. AdaptGrid effec-
tively balances visual quality and efficiency by optimizing
the grid size for each sample.

Table 4. Ablation study on the Adaptive v.s. Constant Grid Size.

”ω,”ε,”ϑ,”t (10, 10, 0.1, 10) (20, 20, 0.15, 20) (30, 30, 0.2, 30) AdaptGrid (Ours)

CLIP-G/14↔ 0.408 0.345 0.287 0.411
Time↓ 48m 38m 32m 40m

Ablation 5: Spatial vs. Temporal Grid. A key distinction
from previous feature caching acceleration methods is our
incorporation of spatial redundancy in 3D space. To iso-
late the effects of spatial and temporal redundancy, we con-
ducted an experiment on DreamFusion where we applied
either the spatial grid or the temporal grid individually. As
shown in Table 5, using only the temporal grid—where fea-
tures are shared only across nearby timesteps—yields sig-
nificant performance degradation.

Table 5. Ablation study on Spatial Grid v.s. Temporal Grid.

Spatial Grid (”ω,”ε,”ϑ) Temporal Grid (”t) CLIP-G/14↔ Time↓

✁ ✂ 0.347 36m
✂ ✁ 0.280 30m
✁ ✁ 0.411 40m

6. Conclusion
In this paper, we present Hash3D, a training-free technique
that improves the efficiency of diffusion-based 3D genera-
tive modeling. Hash3D utilizes adaptive grid-based hash-
ing to efficiently retrieve and reuse features from adjacent
camera poses, to minimize redundant computations. As a
result, Hash3D not only speeds up 3D model generation by
1.5 → 4↑ without the need for additional training, but it
also improves the smoothness and consistency of the gener-
ated 3D models.

21488

Acknowledgement
This project is supported by the Singapore Ministry of Edu-
cation Academic Research Fund Tier 1 (WBS: A-0009440-
01-00), and the National Research Foundation, Singapore,
under its Medium Sized Center for Advanced Robotics
Technology Innovation.

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative
models for 3d point clouds. In International conference on
machine learning, pages 40–49. PMLR, 2018.

[2] Mohammadreza Armandpour, Huangjie Zheng, Ali
Sadeghian, Amir Sadeghian, and Mingyuan Zhou. Re-
imagine the negative prompt algorithm: Transform 2d
diffusion into 3d, alleviate janus problem and beyond. arXiv
preprint arXiv:2304.04968, 2023.

[3] Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-
DPM: an analytic estimate of the optimal reverse variance in
diffusion probabilistic models. In International Conference
on Learning Representations, 2022.

[4] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S
Yu. Hashnet: Deep learning to hash by continuation. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 5608–5617, 2017.

[5] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fan-
tasia3d: Disentangling geometry and appearance for high-
quality text-to-3d content creation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), 2023.

[6] Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q.
Weinberger, and Yixin Chen. Compressing neural networks
with the hashing trick. In Proceedings of the 32nd Interna-
tional Conference on International Conference on Machine
Learning - Volume 37, page 2285–2294. JMLR.org, 2015.

[7] Yiming Chen, Zhiqi Li, and Peidong Liu. Et3d: Efficient
text-to-3d generation via multi-view distillation, 2023.

[8] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kin-
man, Ryan Hickman, Krista Reymann, Thomas B McHugh,
and Vincent Vanhoucke. Google scanned objects: A high-
quality dataset of 3d scanned household items. In 2022 In-
ternational Conference on Robotics and Automation (ICRA),
pages 2553–2560. IEEE, 2022.

[9] Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural
pruning for diffusion models. In Advances in Neural Infor-
mation Processing Systems, 2023.

[10] Sharath Girish, Abhinav Shrivastava, and Kamal Gupta.
Shacira: Scalable hash-grid compression for implicit neural
representations. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 17513–17524,
2023.

[11] Heewoo Jun and Alex Nichol. Shap-e: Generat-
ing conditional 3d implicit functions. arXiv preprint
arXiv:2305.02463, 2023.

[12] Heewoo Jun and Alex Nichol. Shap-e: Generating condi-
tional 3d implicit functions, 2023.

[13] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023.

[14] Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and
Shinkook Choi. Bk-sdm: A lightweight, fast, and cheap ver-
sion of stable diffusion. arXiv preprint arXiv:2305.15798,
2023.

[15] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Re-
former: The efficient transformer. In International Confer-
ence on Learning Representations, 2020.

[16] Xin Kong, Shikun Liu, Xiaoyang Lyu, Marwan Taher, Xi-
aojuan Qi, and Andrew J Davison. Eschernet: A gen-
erative model for scalable view synthesis. arXiv preprint
arXiv:2402.03908, 2024.

[17] H. Lai, Y. Pan, Ye Liu, and S. Yan. Simultaneous feature
learning and hash coding with deep neural networks. In 2015
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 3270–3278, Los Alamitos, CA, USA,
2015. IEEE Computer Society.

[18] Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun
Luan, Yinghao Xu, Yicong Hong, Kalyan Sunkavalli, Greg
Shakhnarovich, and Sai Bi. Instant3d: Fast text-to-3d
with sparse-view generation and large reconstruction model.
https://arxiv.org/abs/2311.06214, 2023.

[19] Qi Li, Zhenan Sun, Ran He, and Tieniu Tan. Deep supervised
discrete hashing. Advances in neural information processing
systems, 30, 2017.

[20] Senmao Li, Joost van de Weijer, Fahad Khan, Tao Liu, Linx-
uan Li, Shiqi Yang, Yaxing Wang, Ming-Ming Cheng, et al.
Faster diffusion: Rethinking the role of the encoder for dif-
fusion model inference. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems.

[21] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,
Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler,
Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution
text-to-3d content creation. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2023.

[22] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo
numerical methods for diffusion models on manifolds. In In-
ternational Conference on Learning Representations, 2022.

[23] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Zexiang
Xu, Hao Su, et al. One-2-3-45: Any single image to 3d mesh
in 45 seconds without per-shape optimization. arXiv preprint
arXiv:2306.16928, 2023.

[24] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund
Varma T, Zexiang Xu, and Hao Su. One-2-3-45: Any single
image to 3d mesh in 45 seconds without per-shape optimiza-
tion. Advances in Neural Information Processing Systems,
36, 2024.

[25] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-
3: Zero-shot one image to 3d object. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9298–9309, 2023.

[26] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:

21489

Zero-shot one image to 3d object. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 9298–9309, 2023.

[27] Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie
Liu, Taku Komura, and Wenping Wang. Syncdreamer: Gen-
erating multiview-consistent images from a single-view im-
age. In The Twelfth International Conference on Learning
Representations, 2024.

[28] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. Dpm-solver: A fast ode solver for diffusion
probabilistic model sampling in around 10 steps. Advances
in Neural Information Processing Systems, 35:5775–5787,
2022.

[29] Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao
Wang. Learning-to-cache: Accelerating diffusion trans-
former via layer caching. Advances in Neural Information
Processing Systems, 37:133282–133304, 2024.

[30] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache:
Accelerating diffusion models for free. In The IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2024.

[31] G. Metzer, E. Richardson, O. Patashnik, R. Giryes, and D.
Cohen-Or. Latent-nerf for shape-guided generation of 3d
shapes and textures. In 2023 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 12663–
12673, Los Alamitos, CA, USA, 2023. IEEE Computer So-
ciety.

[32] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, 2022.

[33] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics
(ToG), 41(4):1–15, 2022.

[34] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela
Mishkin, and Mark Chen. Point-e: A system for generat-
ing 3d point clouds from complex prompts. arXiv preprint
arXiv:2212.08751, 2022.

[35] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and
Marc Stamminger. Real-time 3d reconstruction at scale us-
ing voxel hashing. ACM Trans. Graph., 32(6), 2013.

[36] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. In The
Eleventh International Conference on Learning Representa-
tions, 2023.

[37] Guocheng Qian, Jinjie Mai, Abdullah Hamdi, Jian Ren,
Aliaksandr Siarohin, Bing Li, Hsin-Ying Lee, Ivan Sko-
rokhodov, Peter Wonka, Sergey Tulyakov, and Bernard
Ghanem. Magic123: One image to high-quality 3d object
generation using both 2d and 3d diffusion priors. arXiv
preprint arXiv:2306.17843, 2023.

[38] Guocheng Qian, Jinjie Mai, Abdullah Hamdi, Jian Ren,
Aliaksandr Siarohin, Bing Li, Hsin-Ying Lee, Ivan Sko-
rokhodov, Peter Wonka, Sergey Tulyakov, and Bernard
Ghanem. Magic123: One image to high-quality 3d object
generation using both 2d and 3d diffusion priors. In The

Twelfth International Conference on Learning Representa-
tions (ICLR), 2024.

[39] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In Proceedings
of the 38th International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021.

[40] Jiawei Ren, Liang Pan, Jiaxiang Tang, Chi Zhang, Ang Cao,
Gang Zeng, and Ziwei Liu. Dreamgaussian4d: Genera-
tive 4d gaussian splatting. arXiv preprint arXiv:2312.17142,
2023.

[41] Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al.
Hash layers for large sparse models. Advances in Neural
Information Processing Systems, 34:17555–17566, 2021.

[42] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjrn Ommer. High-resolution image syn-
thesis with latent diffusion models. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2022.

[43] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015.

[44] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in Neural Information
Processing Systems, 35:36479–36494, 2022.

[45] Tim Salimans and Jonathan Ho. Progressive distillation for
fast sampling of diffusion models. In International Confer-
ence on Learning Representations, 2022.

[46] Qiuhong Shen, Xingyi Yang, and Xinchao Wang. Anything-
3d: Towards single-view anything reconstruction in the wild.
arXiv preprint arXiv:2304.10261, 2023.

[47] Qiuhong Shen, Xingyi Yang, Michael Bi Mi, and Xinchao
Wang. Vista3d: Unravel the 3d darkside of a single image. In
European Conference on Computer Vision, pages 405–421.
Springer, 2024.

[48] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep marching tetrahedra: a hybrid repre-
sentation for high-resolution 3d shape synthesis. Advances
in Neural Information Processing Systems, 34:6087–6101,
2021.

[49] J Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner,
Jiajun Wu, and Gordon Wetzstein. 3d neural field generation
using triplane diffusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 20875–20886, 2023.

[50] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In International Conference
on Learning Representations, 2021.

21490

[51] Yang Song and Stefano Ermon. Generative modeling by esti-
mating gradients of the data distribution. Advances in neural
information processing systems, 32, 2019.

[52] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

[53] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang
Zeng. Dreamgaussian: Generative gaussian splatting for effi-
cient 3d content creation. arXiv preprint arXiv:2309.16653,
2023.

[54] Matthias Teschner, Bruno Heidelberger, Matthias Müller,
Danat Pomerantes, and Markus H Gross. Optimized spa-
tial hashing for collision detection of deformable objects. In
Vmv, pages 47–54, 2003.

[55] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh,
and Greg Shakhnarovich. Score jacobian chaining: Lifting
pretrained 2d diffusion models for 3d generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12619–12629, 2023.

[56] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004.

[57] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan
Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and
diverse text-to-3d generation with variational score distilla-
tion. Advances in Neural Information Processing Systems,
36, 2024.

[58] Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang
Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu, Peizhao Zhang,
Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accel-
erating diffusion models through block caching. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6211–6220, 2024.

[59] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of
object shapes via 3d generative-adversarial modeling. Ad-
vances in neural information processing systems, 29, 2016.

[60] Xiufeng Xie, Riccardo Gherardi, Zhihong Pan, and Stephen
Huang. Hollownerf: Pruning hashgrid-based nerfs with
trainable collision mitigation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 3480–3490, 2023.

[61] Yinghao Xu, Hao Tan, Fujun Luan, Sai Bi, Peng Wang, Ji-
ahao Li, Zifan Shi, Kalyan Sunkavalli, Gordon Wetzstein,
Zexiang Xu, and Kai Zhang. DMV3d: Denoising multi-
view diffusion using 3d large reconstruction model. In The
Twelfth International Conference on Learning Representa-
tions, 2024.

[62] Xingyi Yang, Daquan Zhou, Jiashi Feng, and Xinchao Wang.
Diffusion probabilistic model made slim. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 22552–22562, 2023.

[63] Taoran Yi, Jiemin Fang, Junjie Wang, Guanjun Wu, Lingxi
Xie, Xiaopeng Zhang, Wenyu Liu, Qi Tian, and Xinggang
Wang. Gaussiandreamer: Fast generation from text to 3d
gaussians by bridging 2d and 3d diffusion models. arXiv
preprint arXiv:2310.08529, 2023.

[64] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018.

[65] Han Zhu, Mingsheng Long, Jianmin Wang, and Yue Cao.
Deep hashing network for efficient similarity retrieval. In
Proceedings of the AAAI conference on Artificial Intelli-
gence, 2016.

21491

