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Figure 1. Examples by applying our Hash3D on Gaussian-Dreamer [63] and Dream-Gaussian [53]. We accelerate Gaussian-Dreamer by
1.5→ and Dream-Gaussian by 4→ with comparable visual quality.

Abstract

The quality of 3D generative modeling has been notably
improved by the adoption of 2D diffusion models. Despite
this progress, the cumbersome optimization process per se
presents a critical problem to efficiency. In this paper, we
introduce Hash3D, a universal acceleration for 3D score
distillation sampling (SDS) without model training. Cen-
tral to Hash3D is the observation that images rendered
from similar camera positions and diffusion time-steps of-
ten have redundant feature maps. By hashing and reusing
these feature maps across nearby timesteps and camera an-
gles, Hash3D eliminates unnecessary calculations. We im-
plement this through an adaptive grid-based hashing. As
a result, it largely speeds up the process of 3D genera-
tion. Surprisingly, this feature-sharing mechanism not only
makes generation faster but also improves the smoothness
and view consistency of the synthesized 3D objects. Our
experiments covering 5 text-to-3D and 3 image-to-3D mod-
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els, demonstrate Hash3D’s versatility to speed up optimiza-
tion, enhancing efficiency by 1.5 → 4↑. Additionally,
Hash3D’s integration with 3D Gaussian splatting largely
speeds up 3D model creation, reducing text-to-3D conver-
sion to about 10 minutes and image-to-3D conversion to
30 seconds. The project page is https://adamdad.
github.io/hash3D/.

1. Introduction
In the field of 3D generation, the integration of 2D diffusion
models [36, 55] has led to notable advancements. These
methods leverage off-the-the-shelf image diffusion models
to distill 3D models by predicting 2D score functions at dif-
ferent views, known as score distillation sampling (SDS).

While this approach opens up new opportunities for
creating realistic 3D assets, it also brings significant effi-
ciency challenges. Particularly, SDS requires thousands of
score predictions from different camera angles and denois-
ing steps in the diffusion model. This results in long opti-
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mization times, sometimes taking hours to create a single
object [57]. These durations hinder practical use. We need
new solutions to improve its efficiency.

To mitigate this bottleneck, current efforts focus on three
potential solutions. The first solution trains feed-forward
models [7, 12, 18, 24, 61] to skip the lengthy optimiza-
tion. While effective, this method requires extensive train-
ing time and substantial computational resources. The sec-
ond approach [40, 53, 63] reduces optimization times by
using faster 3D representations. However, each type of
representation needs a unique design for 3D generation,
which creates its own challenges. The third approach di-
rectly generates sparse views to model 3D objects [16, 27].
This method assumes near-perfect consistency for gener-
ated views, which, in practice, is often not achievable.

Focusing back on SDS, the main computational cost
comes from repeatedly sampling the 2D image score func-
tion [51]. Inspired by techniques that accelerate 2D diffu-
sion sampling [3, 28, 50], we posed the question: Is it pos-
sible to reduce the number of inference steps of the diffusion
model for 3D generation?

In exploring this question, we make a crucial observa-
tion: denoising outputs and feature maps from near camera
positions and timesteps are very similar. This discovery led
us to develop Hash3D, which reduces the computation by
leveraging this redundancy.

At its core, Hash3D stores and hashes previously com-
puted features to reduce time. We do this using a a grid-
based hash table. Specifically, when a new view is close
to one that has already been processed, Hash3D retrieves
and reuses the nearby features from the table. This reuse
allows Hash3D to compute the current view’s score func-
tion without repeating earlier calculations.Additionally, we
developed a method to dynamically adjust the grid size for
each view, which makes the system more adaptable. As a
result, Hash3D saves computational resources without re-
quiring any model training or complex changes, making it
easy to implement and efficient to use.

Beyond improving efficiency, Hash3D also has the po-
tential to improve the cross-view consistency of generated
objects. Traditional diffusion-based methods often result in
3D objects with disjointed appearances when viewed from
various angles [2]. In contrast, Hash3D links independently
generated views by sharing features within each grid. It
leads to smoother, more consistent 3D models.

Another key advantage of Hash3D is its versatility. It
could be integrated into any diffusion-based 3D generative
workflows. Our experiments, covering 5 text-to-3D and 3
image-to-3D models, demonstrate Hash3D’s versatility to
speed up optimization, enhancing efficiency by 1.5 → 4↑,
without compromising on performance. Specifically, the in-
tegration of Hash3D with 3D Gaussian Splatting [13] brings
a significant leap forward, cutting down the time for text-

to-3D to about 10 minutes and image-to-3D to roughly 30
seconds.

The contribution of this paper can be summarized into
• We introduce Hash3D, a versatile, plug-and-play and

training-free acceleration method for diffusion-based
text-to-3D and image-to-3D models.

• The paper emphasizes the redundancy in diffusion mod-
els when processing nearby views and timesteps. This
finding motivates the development of Hash3D, aiming to
boost efficiency without compromising quality.

• Hash3D employs an adaptive grid-based hashing to effi-
ciently retrieve features, significantly reducing the com-
putations across view and time.

• Our extensive testing demonstrates that Hash3D not only
speeds up the generative process by 1.5 → 4↑, but also
results in a slight improvement in performance.

2. Related Work
3D Generation Model. Building 3D generative mod-
els is important but hard. Typically, these models are
trained to predict the 3D representation parameters, such
as voxel [59], point cloud [1, 34], implicit function [11], tri-
plane [49, 61]. Despite these advances, scalability remains
a major challenge due to the demands of large datasets and
high computational costs. A promising solution is to lever-
age 2D generative models generate 3D models. Recent
progress, especially in diffusion-based models using score
distillation [36, 46, 47], have shown significant potential in
3D generation. However, these methods are heavily hin-
dered by long optimization processes.
Efficient Diffusion Model. Diffusion models, while effec-
tive, are often time-consuming due to their iterative denois-
ing process. Efforts to speed them up focus on two main
strategies. The first reduces sampling steps using advanced
sampling [3, 22, 28, 50] or distillation [45, 52] techniques.
The second strategy aims to streamline each model infer-
ence by developing smaller models [9, 14, 62] or reusing
features from nearby steps [20, 29, 30]. Although these
methods are common in 2D and video generation, their ap-
plication to 3D generative tasks remains largely unexplored.
Hashing Techniques. Hashing is a fast and efficient
method for data storage. This is achieved by converting
variable-sized inputs into fixed-size hash codes using hash
functions. These codes index a hash table for fast and con-
sistent data access. Commonly used in file systems, hash-
ing is also effective in 3D representation [10, 33, 35, 60],
neural network compression [6, 15], and as components
in deep networks [41] or for developing neural hash func-
tions [4, 17, 19, 65]. Our study explores the application of
hashing to retrieve features from 3D generation. By adopt-
ing this technique, we aim to reduce computational over-
head for repeated diffusion sampling and speed up the cre-
ation of realistic 3D objects.
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3. Preliminary
In this section, we provide the notations and background
on optimization-based 3D generation, focusing on diffusion
models and Score Distillation Sampling (SDS) [36].

3.1. Diffusion Models
Diffusion models are generative models that reverse a noise-
adding process through a series of latent variables. Start-
ing with data x0 → q(x0), Gaussian noise is progressively
added over T steps during the forward process, each de-
fined by q(xt|xt→1) = N (xt;

↓
1↔ ωtxt→1,ωtI), where

ωt ↗ [0, 1]. Due to the Gaussian nature, xt can be directly
sampled as:

xt =
↓
ε̄tx0 +

↓
1↔ ε̄tω, ϑ → N (0, I) (1)

where εt = 1↔ ωt and ε̄t =
∏t

s=1 εs

The reverse process is modeled as a Markov chain
parameterized by a denoising neural network ω(xt, t, y),
where y is the conditional input, such as text [44] or camera
pose [26]. The training of the denoiser aims to minimize a
re-weighted evidence lower bound (ELBO), aligning with
the noise:

LDDPM = Et,x0,ω

[
||ω↔ ω(xt, t, y)||22

]
(2)

Here, ω(xt, t, y) approximates the score function
↘xt log p(xt|x0). Data generation is achieved
by denoising from noise, often enhanced using
classifier-free guidance with scale parameter ϖ:
ϑ̂(xt, t, y) = (1 + ϖ)ω(xt, t, y)↔ ϖω(xt, t, ≃).
Extracting Feature from Diffusion Model. A diffusion
denoiser ω is typically parameterized with a U-Net [43]. It
uses l down-sampling layers {Di}li=1 and up-sampling lay-
ers {Ui}li=1, coupled with skip connections that link fea-
tures from Di to Ui. This module effectively merges high-
level features from Ui+1 with low-level features from Di,
as expressed by the equation:

v(U)
i+1 = concat(Di(v

(D)
i→1), Ui+1(v

(U)
i )) (3)

In this context, v(U)
i and v(D)

i+1 represent the up-sampled and
down-sampled features after the i-th layer, respectively.

3.2. Score Distillation Sampling (SDS)
The Score Distillation Sampling (SDS) [36] represents an
optimization-based 3D generation method. This method fo-
cuses on optimizing the 3D representation, denoted as !,
using a pre-trained 2D diffusion models with its noise pre-
diction network, denoted as ωpretrain(xt, t, y).

Given a camera pose c = (ϱ,ς, φ) ↗ R3 defined by el-
evation ς, azimuth ϱ and camera distances φ, and the its
corresponding prompt yc, a differentiable rendering func-
tion g(·;!), SDS aims to refine the parameter !, such that

each rendered image x0 = g(c; ϱ) is perceived as realis-
tic by ωpretrain. The optimization objective is formulated as
follows:

min
!

LSDS = Et,c

[
↼t

εt
ϖ(t)KL

(
q!(xt|yc, t) ⇐ p(xt|yc; t)

)]

(4)
By excluding the Jacobian term of the U-Net, the gradient of
the optimization problem can be effectively approximated:

↘!LSDS ⇒ Et,c,ω

[
ϖ(t)(ωpretrain(xt, t, y

c)↔ ω)
↽x

↽!

]
(5)

To optimize Eq. 5, we randomly sample different time-step
t, camera c, and random noise ω, and compute gradient
of the 3D representation, and update ϱ accordingly. This
approach ensures that the rendered image from 3D object
aligns with the distribution learned by the diffusion model.
Efficiency Problem. The main challenge lies in the need
for thousands to tens of thousands of iterations to optimize
Eq 5, each requiring a separate diffusion model inference.
This process is time-consuming due to the model’s com-
plexity. We make it faster by using a hash function to reuse
features from similar inputs, cutting down on the number of
calculations needed.

4. Hash3D
This section introduces Hash3D, a plug-and-play tool that
enhances the efficiency of SDS. We start by analyzing the
redundancy presented in the diffusion model when perform-
ing 3D generation. Based on the finding, we present our
strategy that employs a grid-based hashing to reuse feature
across different sampling iterations.

4.1. Probing the Redundancy in SDS
Typically, SDS randomly samples camera poses and
timesteps to ensure that the rendered views align with the
diffusion model’s distribution. However, during this re-
peated sampling, we observe that deep feature extraction at
proximate c and t often reveals a high degree of similarity.
Therefore, this similarity underpins our method, suggesting
that reusing features from nearby points does not signifi-
cantly impact the model’s predictions.
Measuring Similarity. Intuitively, images captured from
similar camera positions and at similar times result in sim-
ilar visual content. We hypothesize that features produced
by diffusion models exhibit a similar pattern. Specifically,
we propose two hypotheses: (1) temporal similarity: fea-
tures extracted at close timesteps are similar, and (2) spatial
similarity: features extracted from images rendered at close
camera poses are similar.

Regarding the temporal similarity, previous studies [20,
30] have noted that features extracted from adjacent
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Figure 2. Feature similarity extracted from different camera poses.
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Figure 3. Similarity dynamics at
different SDS training steps.

timesteps in diffusion models show a high level of simi-
larity. To test the hypothesis of spatial similarity, we con-
ducted two preliminary studies measuring feature similarity
when denoising images of the same object taken from dif-
ferent camera poses.
Feature Similarity in Camera-Conditioned Diffusion. In
the first study, we used Zero-123 [26], a model that gen-
erates images from different camera poses conditioned on
a single input image. For each specific camera angle and
timestep, we extracted features v(U)

l→1 from the input of
the last up-sampling layer. By varying the elevation (ς)
and azimuth (ϱ) angles, we measured the cosine similarity
between features of different views, averaging the results
across all timesteps.

As shown in Figure 2, features from views within a
[↔10↑, 10↑] range for both elevation and azimuth have high
similarity scores, with most values exceeding 0.8.
Feature Similarity Dynamics in T2I diffusion. In the
second study, we test the feature redundancy using text-to-
image diffusion models. During the SDS process, the op-
timized 3D object gets continuously updated. This causes
the similarity of rendered images to vary across different
training steps. We analyze this similarity by denoising the
rendered images at various stages using a diffusion model.

Specifically, at different SDS iterations, we ren-
der images uniformly at camera angles (ϱ,ς) =
(10↑, 0↑, 5↑, . . . , 360↑). We add a noise level

↓
ε̄t = 0.5,

process them with Stable Diffusion [42], and extract fea-
tures v(U)

l→1. We then compute the average cosine similarity
within windows of ⇀ = {5↑, 10↑, 20↑} for all feature pairs.
The SDS process runs for 10,000 iterations.

As illustrated in Figure 3, the object appears blurry with
low feature similarity across views in the early stages of
training. By approximately 1,000 iterations, the images be-
come clearer, and feature similarity sharply increases. For
example, when ⇀ = 5↑, the similarity fluctuates around

0.65. However, with larger windows, the similarity remains
lower compared to smaller windows. These results high-
light the redundancy in predicted outputs throughout the
SDS process.

Based on these analysis, we present our approach: in-
stead of computing the noise prediction for every new cam-
era pose and timestep, we create a memory system to store
previously computed features. As such, we can retrieve and
reuse these pre-computed features whenever needed. Ide-
ally, this approach could reduces redundant calculations and
speeds up the optimization process.

4.2. Hashing-based Feature Reuse
Based on our analysis, we developed Hash3D, which uses
hashing to speedup SDS. Hash3D reduces the repetitive
computational cost in diffusion models by trading storage
space for faster 3D optimization.

At its core, Hash3D employs a hash table to store and
retrieve previously computed features. When Hash3D sam-
ples a specific camera pose c and timestep t, it first checks
the hash table for similar features. If a match is found, it’s
reused directly in the diffusion model, significantly cutting
down on computation. If not, it performs standard inference
and adds the new features to the hash table for future use.
Grid-based Hashing. To efficiently index the hash ta-
ble, we use grid-based hashing based on camera poses
c = (ϱ,ς, φ) and timestep t. This function assigns each
c and t to a grid cell for data storage and retrieval.

Firstly, we define the size of our grid cells in both the
spatial and temporal domains, denoted as ”ϱ,”ς,”φ and
”t respectively. For each input key [ϱ,ς, φ, t], we calculate
the grid cell indices:

i =

⌊
ω
!ω

⌋
, j =

⌊
ε
!ε

⌋
, k =

⌊
ϑ
!ϑ

⌋
, l =

⌊
t
!t

⌋
(6)

These indices are combined into a single hash code: idx =
(i+N1·j+N2·k+N3·l) mod n is used, where N1, N2, N3
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Figure 4. Overall pipeline of our Hash3D. Given the sampled camera and time-step, we retrieve the intermediate diffusion feature from
hash table. If no matching found, it performs a standard inference and stores the new feature in the hash table; otherwise, if a feature from
a close-up view already exists, it is reused without re-calculation.

are large prime numbers [35, 54], and n denotes the size of
the hash table. This hash function maps keys with simi-
lar camera poses and timesteps to the same bucket. This
grid-based approach not only speeds up data retrieval but
also preserves the spatial-temporal relationships in the data,
which is crucial for our method.
Collision Resolution. When multiple keys are assigned to
the same hash value, a collision occurs. We address these
collisions using separate chaining. In this context, each
hash value idx is linked to a distinct queue, denoted as
qidx. To ensure the queue reflects the most recent data and
remains manageable in size, it is limited to a maximum
length Q = 3. When this limit is reached, the oldest ele-
ments is removed to accommodate the new entry, ensuring
the queue stays relevant to the evolving 3D representation.
Feature Retrieval and Update. After computing the hash
value idx, we either retrieve features from the hash table
or update it with new ones. We control this with hash prob-
ability 0 < ⇁ < 1. With probability ⇁, we retrieve features;
otherwise, we perform an update.

For feature updates, following prior work [30], we ex-
tract the feature v(U)

l→1, which is the input of the last up-
sampling layer in the U-net. Once extracted, we compute
the hash code idx and append the data to the correspond-
ing queue qidx. The stored data includes noisy latent input
x, camera pose c, timestep t, and extracted diffusion fea-
tures v(U)

l→1.
For feature retrieval, we aggregate data from qidx

through weighted averaging. This method considers the dis-
tance of each noisy input xi from the current query point x.
The weighted average v for a given index is calculated as
follows:

v =

|qidx|∑

i=1

Wivi, where Wi =
e(→||x→xi||22)

∑|qidx|
i=1 e(→||x→xi||22)

(7)

Here, Wi is the weight assigned to vi based on its distance
from the query point, and |qidx| is the current length of the
queue. An empty queue |qidx| indicates unsuccessful re-
trieval, necessitating feature update.

Comparison with Feature Caching. Our hashing-based
feature reuse is fundamentally different from previous
works that use feature caching [20, 30, 58] to accelerate dif-
fusion models. Feature caching assumes an ordered denois-
ing process, while SDS involves an inherently unordered
and stochastic sampling process. Moreover, storing all fea-
tures is costly. To handle this, we employ a hash table to
organize these features efficiently. As a result, those feature
caching methods cannot be directly applied to our setup.

4.3. Adaptive Grid Hashing
In grid-based hashing, the selection of an appropriate grid
size ”ϱ,”ς,”φ,”t — plays a pivotal role. As illustrated
in Section 4.1, we see three insights related to grid size.
First, feature similarity is only maintained at a median grid
size; overly large grids tend to produce artifacts in gener-
ated views. Second, it is suggested that ideal grid size dif-
fers across various objects. Third, even for a single object,
optimal grid sizes vary for different views and time steps,
indicating the necessity for adaptive grid sizing to ensure
optimal hashing performance.
Learning to Adjust the Grid Size. To address these chal-
lenges, we propose to dynamically adjusting grid sizes.
The objective is to maximize the average cosine similarity
cos(·, ·) among features within each grid. In other words,
only if the feature is similar enough, we can reuse it. Such
problem is formulated as

max
!ω,!ε,!ϑ,!t

1
|qidx|

|qidx|∑

i,j

cos(vj ,vi), s.t.|qidx| > 0 [Non-empty]

(8)
Given that our hashing function is non-differentiable, we

employ a brute-force approach. Namely, we evaluate M
predetermined potential grid sizes, each corresponding to a
distinct hash table, and only use best one.

For each input [ϱ,ς, φ, t], we calculate the hash code
{idx(m)}Mm=1 for M times, and indexing in each bucket.
Feature vectors are updated accordingly, with new elements
being appended to their respective bucket. We calculate the
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Figure 5. Qualitative Results using Hash3D along with Zero123 for image-to-3D generation. We mark the visual dissimilarity in yellow.

cosine similarity between the new and existing elements in
the bucket, maintaining a running average s

idx
(n) of these

similarities

s
idx

(m) ↑ ϖs
idx

(m) + (1↓ ϖ)
1

|q
idx

(m) |

|q
idx

(m) |∑

i=1

cos(vnew,vi)

(9)
During retrieval, we hash across all M grid sizes but only

consider the grid with the highest average similarity for fea-
ture extraction.
Computational and Memory Efficiency. Despite employ-
ing a brute-force approach that involves hashing M times
for each input, our method maintains computational effi-
ciency due to the low cost of hashing. It also maintains
memory efficiency, as hash tables store only references to
data. To prioritize speed, we deliberately avoid using neu-
ral networks for hashing function learning.

5. Experiment
In this section, we evaluate Hash3D by integrating it with
various 3D generative models, encompassing both image-
to-3D and text-to-3D tasks.

5.1. Experimental Setup
Baselines. To verify our method, we conduct extensive tests
across a wide range of baseline text-to-3D and image-to-3D
methods.
• Image-to-3D. We build our method on Zero-123+SDS

[25], DreamGaussian [53] and Magic123 [38]. For Zero-
123+SDS, we incorporate Instant-NGP [32] and Gaussian
Splatting [13] as its representation. We call these two
variants Zero-123 (NeRF) and Zero-123 (GS).

• Text-to-3D. Our tests also covered a range of meth-
ods, such as Dreamfusion [36], Fantasia3D [5], Latent-
NeRF [31], Magic3D [21], and GaussianDreamer [63].

For DreamGaussian and GaussianDreamer, we implement
Hash3D on top of the official code. And for other methods,
we use the reproduction from threestudio*.
Implementation Details. We stick to the same
hyper-parameter setup within their original implementa-
tions of these methods. For text-to-3D, we use the
stable-diffusion-2-1

† as our 2D diffusion model.
For image-to-3D, we employ the stable-zero123‡. We
use a default hash probability setting of ⇁ = 0.1. We use
M = 3 sets of grid sizes, with ”ϱ,”ς,”t ↗ {10, 20, 30}
and ”φ ↗ {0.1, 0.15, 0.2}. We verify this hyper-parameter
setup in the ablation study.
Dataset and Evaluation Metrics. To assess our method,
we focus on evaluating the computational cost and visual
quality achieved by implementing Hash3D.
• Image-to-3D. For image-to-3D experiments, we used the

Google Scanned Objects (GSO) dataset [8] for evalua-
tion [24, 26]. We evaluated novel view synthesis (NVS)
performance with PSNR, SSIM [56], and LPIPS [64]. We
selected 30 objects, each with a 2562 input image for 3D
reconstruction. We rendered 16 views at a 30-degree ele-
vation with varying azimuths to compare the reconstruc-
tions with ground truth. CLIP-similarity scores were cal-
culated to ensure semantic consistency between rendered
views and original images.

• Text-to-3D. We generated 3D models from 50 different
prompts selected from DreamFusion. To evaluate our
methods, we focus on two primary metrics: mean±std
CLIP-similarity [23, 37, 39] and the average generation
time for each method. CLIP-similarity was measured be-
tween the input prompt and 8 uniformly rendered views.

• User Study.To evaluate the visual quality of generated 3D
objects, we conducted a study with 44 participants. They

*https://github.com/threestudio-project/threestudio
†https://huggingface.co/stabilityai/stable-diffusion-2-1
‡https://huggingface.co/stabilityai/stable-zero123
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Table 1. Speed and quality comparison when applying Hash3D on
image-to-3D task. We report the time from original papers.

Method Time↓ Speed↔ MACs↓ PSNR↔ SSIM↔ LPIPS↓ CLIP-G/14↔

DreamGaussian 2m - 169G 16.202 0.772 0.225 0.693
+ Hash3D 30s 4.0↗ 154G 16.356 0.776 0.223 0.694

Zero-123(NeRF) 20m - 169G 17.773 0.787 0.198 0.662
+ Hash3D 7m 3.3↗ 154G 17.961 0.789 0.196 0.665

Zero-123(GS) 6m - 169G 18.409 0.789 0.204 0.643
+ Hash3D 3m 2.0↗ 154G 18.616 0.793 0.204 0.632

Magic123 120m - 847G 18.718 0.803 0.169 0.718
+ Hash3D 74m 1.6↗ 777G 18.631 0.803 0.174 0.715

Table 2. Speed and quality comparison between various text-to-3D
baselines integrated with Hash3D.

Method Time↓ Speed↔ MACs↓ CLIP-G/14↔ CLIP-L/14↔ CLIP-B/32↔

Dreamfusion 60m - 679G 0.407 0.267 0.314
+ Hash3D 40m 1.5↗ 622G 0.411 0.266 0.312
Latent-NeRF 30m - 679G 0.406 0.254 0.306
+ Hash3D 17m 1.8↗ 622G 0.406 0.258 0.305
SDS+GS 78m - 679G 0.413 0.263 0.313
+ Hash3D 40m 1.9↗ 622G 0.402 0.252 0.306
Magic3D 90m - 679G 0.399 0.257 0.303
+ Hash3D 60m 1.5↗ 622G 0.393 0.250 0.304
GaussianDreamer 15m - 679G 0.412 0.267 0.312
+ Hash3D 10m 1.5↗ 622G 0.416 0.271 0.312

viewed 12 video renderings from two methods: Zero-123
(NeRF) for images-to-3D and Gaussian-Dreamer for text-
to-3D, with and without Hash3D. Participants rated each
pair by distributing 100 points to indicate perceived qual-
ity differences.

• Computational Cost. We report the running time for
each experiment on a single RTX A5000 and include
MACs in the tables. As feature retrieval is stochastic,
we provide the theoretical average MACs, assuming all
retrievals succeed.

5.2. 3D Generation Results
Image-to-3D Qualitative Results. Figure 5 shows the re-
sults of integrating Hash3D into the Zero-123 framework
for generating 3D objects. This integration maintains visual
quality and view consistency while significantly reducing
processing time. In some cases, Hash3D outperforms the
baseline, such as the clearer “dragon wing boundaries” in
row 1 and the more distinct “train taillights” in row 3. Simi-
lar visual fidelity is seen in Figure 1, where Hash3D is used
with DreamGaussian, demonstrating effective quality main-
tenance and improved efficiency.
Image-to-3D Quantitative Results. Table 1 presents a de-
tailed numerical analysis of novel view synthesis, includ-
ing CLIP scores and running times for all four baseline
methods. Notably, Our method achieves a 4↑ speedup
on DreamGaussian and 3↑ on Zero-123 (NeRF), due to
Hash3D’s efficient feature retrieval and reuse. This not
only accelerates processing but also slightly improves CLIP
score performance by sharing features across views, reduc-
ing inconsistencies, and producing smoother 3D models.
Text-to-3D Qualitative Results. In Figure 6, we present
the results generated by our Hash3D, on top of DreamFu-
sion [36], SDS+GS, and Fantasia3D [5]. It demonstrates
that Hash3D maintains comparable visual quality to these
established methods.
Text-to-3D Quantitative Results. Table 2 presents a quan-
titative evaluation of Hash3D. Hash3D significantly reduces
processing times across various methods while maintaining

a zoomed out DSLR photo of 
a baby bunny sitting on top 

of a stack of pancakes
a delicious hamburger

DreamFusion
1 h

+ Hash3D
40 min (1.5×)

SDS + 3DGS
1.3 h

+ Hash3D
40 min (1.9×)

A oil and small 
monster that is 

playing with guitar
an astronaut riding a horse

Fantasia3d
2 h

+ Hash3D
1.2 h (1.7×)

batman a teddy bear with christmas
hat and leather boot

Figure 6. Visual comparison for text-to-3D task, when applying
Hash3D to DreamFusion [36], SDS+GS and Fantasia3D [5].

visual quality, with minimal impact on CLIP scores. For
methods like GaussianDreamer, it even slightly improves
visual fidelity, indicating the benefit of leveraging relation-
ships between nearby camera views.
User preference study. As shown in Figure 9, Hash3D
received an average preference score of 52.33/100 and
56.29/100 when compared to Zero-123 (NeRF) and
Gaussian-Dreamer. These scores are consistent with pre-
vious results, indicating that Hash3D slightly enhances the
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Figure 7. Ablation study with different hash probability ϱ.

Method Time CLIP-G/14

Zero-123 (NeRF) + Hash3D w/n 6 min 0.631

Zero-123 (NeRF) + Hash3D 7 min 0.665

Zero-123 (GS) + Hash3D w/n 3 min 0.622

Zero-123 (GS) + Hash3D 3 min 0.632

Figure 8. Comparison between Hashing Features vs. Hashing
Noise, applied to Zero-123.

Figure 9. User preference study for Hash3D.

visual quality of the generated objects.

5.3. Ablation Study and Analysis
In this section, we study several key components in our
Hash3D framework.
Ablation 1: Hashing vs. Storing All Features. We com-
pare hashing features with storing all past features and re-
trieving them by similarity. As shown in Table 3, hashing is
more effective. On efficiency side, storing all feature even
causes an OOM error in Dreamfusion. Hashing requires
only constant space. Additionally, our grid-based hashing
leverages geometric information to improve sample quality.
More visual results are available in the appendix.
Ablation 2: Hashing Features vs. Hashing Noise. In
Hash3D, we hash intermediate features within the diffu-
sion U-Net. Alternatively, we developed Hash3D with noise
(Hash3D w/n), which hashes and reuses the denoising pre-
diction directly. We tested both methods on the image-to-
3D task using Zero123, with results shown in Table 8. Inter-
estingly, while Hash3D w/n reduced processing time, it sig-
nificantly lowered CLIP scores. This highlights that hashing
features is more effective than hashing noise predictions.
Ablation 3: Influence of Hash Probability ⇁. A key pa-
rameter in Hash3D is the retrieval probability ⇁. We tested
⇁ ↗ {0.01, 0.05, 0.1, 0.3, 0.5, 0.7} using Dreamfusion. As
shown in Figure 7, runtime decreases as ⇁ increases. For
⇁ < 0.3, Hash3D slightly improved the visual quality of
3D models by enabling smoother noise predictions through
feature sharing. However, for ⇁ > 0.3, the runtime gains
were minimal. This balance of performance and efficiency
led us to choose ⇁ = 0.1 for our main experiments.
Ablation 4: Adaptive Grid Size. We use AdaptGrid to
dynamically adjusts the grid size for hashing based on each
sample. Compared to using a constant grid size in Dreamfu-
sion, AdaptGrid performs better as shown in Table 4. Larger

Table 3. Comparison of feature retrieval with and without hashing.

Name Time↓ GPU Mem.↓ CLIP-G/14↔

Hash3D+Zero-123 (NeRF) w/o hashing 11m 8G 0.661
Hash3D+Zero-123 (NeRF) 7m 6G 0.665
Hash3D+DreamFusion w/o hashing - OOM -
Hash3D+DreamFusion 40m 8G 0.411

grid sizes reduce the visual quality of 3D objects, while
smaller grid sizes maintain quality but increase computa-
tion time because fewer features match. AdaptGrid effec-
tively balances visual quality and efficiency by optimizing
the grid size for each sample.

Table 4. Ablation study on the Adaptive v.s. Constant Grid Size.

”ω,”ε,”ϑ,”t (10, 10, 0.1, 10) (20, 20, 0.15, 20) (30, 30, 0.2, 30) AdaptGrid (Ours)

CLIP-G/14↔ 0.408 0.345 0.287 0.411
Time↓ 48m 38m 32m 40m

Ablation 5: Spatial vs. Temporal Grid. A key distinction
from previous feature caching acceleration methods is our
incorporation of spatial redundancy in 3D space. To iso-
late the effects of spatial and temporal redundancy, we con-
ducted an experiment on DreamFusion where we applied
either the spatial grid or the temporal grid individually. As
shown in Table 5, using only the temporal grid—where fea-
tures are shared only across nearby timesteps—yields sig-
nificant performance degradation.

Table 5. Ablation study on Spatial Grid v.s. Temporal Grid.

Spatial Grid (”ω,”ε,”ϑ) Temporal Grid (”t) CLIP-G/14↔ Time↓

✁ ✂ 0.347 36m
✂ ✁ 0.280 30m
✁ ✁ 0.411 40m

6. Conclusion
In this paper, we present Hash3D, a training-free technique
that improves the efficiency of diffusion-based 3D genera-
tive modeling. Hash3D utilizes adaptive grid-based hash-
ing to efficiently retrieve and reuse features from adjacent
camera poses, to minimize redundant computations. As a
result, Hash3D not only speeds up 3D model generation by
1.5 → 4↑ without the need for additional training, but it
also improves the smoothness and consistency of the gener-
ated 3D models.
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